Относительная плотность эфирного масла: отношение плотности анализируемого эфирного масла к плотности воды

Источник: " ПРОДУКЦИЯ И СЫРЬЕ ЭФИРНОМАСЛИЧНОЕ, ТРАВЯНИСТОЕ И ЦВЕТОЧНОЕ. ТЕРМИНЫ И ОПРЕДЕЛЕНИЯ. ГОСТ Р 53043-2008"

(утв. Приказом Ростехрегулирования от 15.12.2008 № 404-ст)

Ссылки на определение понятия «Относительная плотность эфирного масла»

Уважаемые пользователи сайта. На данной странице вы найдете определение понятия «Относительная плотность эфирного масла». Полученная информация поможет вам понять, что такое Багаж. Если по вашему мнению определение термина «Относительная плотность эфирного масла» ошибочно или не обладает достаточной полнотой, то рекомендуем вам предложить свою редакцию этого слова.

Для вашего удобства мы оптимизируем эту страницу не только по правильному запросу «Относительная плотность эфирного масла», но и по ошибочному запросу «». Такие ошибки иногда происходят, когда пользователи забывают сменить раскладку клавиатуры при вводе слова в строку поиска.

Моноциклические

Бициклические

2. Сесквитерпеноиды:

Алифатические (ациклические)

фарнезол (масло цветков липы)

Моноциклические

(+)-α-бизаболол (масло цветков ромашки аптечной)

Бициклические сесквитерпеноиды делят на 2 подгруппы:

тип азулена Тип эвдалина
Производные гвайяна гвайян Производные амброзана (псевдогвайяна) амброзан Производные селинана (эвдесмана) селинан
хамазулен матрицин алантолактон (масло девясила высокого) сантонин (масло полыни цитварной)
артабсин (масло полыни горькой абсинтин арнифолин (масло цветков арники)

Трициклические сесквитерпеноиды

ледол (масло багульника болотного)

3. Ароматические соединения

Собственно ароматические

Фенилпропаноидные соединения

Физико-химические свойства

Эфирные масла – маслянистые летучие жидкости бесцветные, желтоватые, иногда окрашенные в оранжевый, синий, зеленый цвета, со специфическим запахом, пряным, жгучим вкусом. Они хорошо растворимы в спирте, хлороформе и других органических растворителях, жирных маслах. В воде нерастворимы, но придают ей свой аромат и вкус. Обладают оптической активностью и в зависимости от состава имеют разные значения угла вращения. По показателю угла вращения можно судить о подлинности и доброкачественности масел.



Фальсификация спиртом и жирным маслом уменьшает значение этой константы.

Эфирные масла обладают высокой рефракцией. Коэффициент рефракции зависит от содержания в эфирном масле кислородных производных. По этой константе можно определить срок сбора сырья, так как в начале вегетации в эфирном масле образуется больше углеводородов, а затем накапливаются кислородсодержащие соединения. Коэффициент рефракции увеличивается при окислении масел; примесь спирта и жирного масла уменьшает эту константу.

Плотность большинства эфирных масел меньше 1, у гвоздичного масла больше 1. При хранении плотность эфирных масел увеличивается.

Эфирные масла не имеют четкой температуры кипения и температуры застывания из-за разнородного состава. При охлаждении некоторых масел, а иногда и при обычной температуре, образуется кристаллическая масса, называемая стеароптен; жидкая часть масла называется элеоптен.

Эфирные масла под действием кислорода воздуха, света, повышенной температуры могут менять свой цвет, запах, плотность.

Распространение в растительном мире. Типы локализации эфирного масла.

Больше всего эфироносов у семейств: яснотковые (около 190 видов), зонтичные (около 177 видов), астровые (около 177 видов), миртовые (51 вид), рутовые (~ 48 видов), лавровые и др. Особенно богаты эфирным маслом растения тропической и субтропической зон (~ 54%); в умеренной зоне ~ 20%, космополиты – 27 %.

Количество эфирного масла в растениях колеблется от сотых долей процента до 20%. Качественный состав масла редко бывает одинаковым в разных органах одного и того же растения. На накопление и качественный состав масла оказывают влияние фазы вегетации, географические и климатические факторы (широта, инсоляция, влажность, высота над уровнем моря и др.). Все это надо учитывать при заготовке и культивировании эфирно-масличных растений.

Типы локализации эфирных масел

В растениях эфирные масла локализуются в разных органах растения: в цветках, плодах, листьях, коре, подземных органах.

Различают экзогенную локализацию, когда эфирное масло отделено от окружающей среды кутикулой:

Железистые пятна (у лепестков розы, цветков лаванды);

Железистые волоски;

Эпидермальные железки (листья мяты, шалфея, полыни горькой).

При эндогенной локализации масло находится в тканях растения:

Отдельные клетки (корневища аира);

Слои клеток (корневища с корнями валерианы);

Вместилища (листья эвкалипта, корневища и корни девясила);

Канальца (плоды зонтичных).

Получение эфирных масел

В зависимости от локализации эфирных масел сырье измельчают или используют цельное. Самым распространенным является метод перегонки с водяным паром, основанный на летучести эфирных масел и на действии физического закона Рауля, согласно которому две несмешивающиеся жидкости, нагретые вместе, закипают при температуре ниже точки кипения каждой жидкости в отдельности. Этот метод широко используется для получения эфирных масел, применяемых в медицине. Этот метод применим для сырья, в котором сравнительно много эфирного масла, а также в тех случаях, когда температура перегонки не отражается на качестве эфирного масла.

Из других методов применяют методы, основанные на способности эфирных масел растворяться в жирных маслах (анфлераж, мацерация) или органических растворителях. В последнее время проводят экстракцию сжиженными газами (углекислый газ и др.).

Заготовка, сушка, хранение сырья

Заготовку эфирно-масличного сырья проводят в соответствии с нормативными документами. Сушат сырья в воздушных или тепловых сушилках при температуре 30-40 0 С (не выше 45 0 С), раскладывая толстым слоем и без сильной аэрации, так как в процессе сушки продолжается синтез эфирного масла. Во время сушки сырье периодически переворачивают.

Хранят эфирно-масличное сырье в сухих прохладных помещениях, отдельно от других видов сырья.

Анализ эфирных масел

Проводят по статье ГФ Х1 «Масла эфирные. Olea aetherea».

При анализе определяют подлинность эфирных масел по внешнему виду, растворимости в спирте различной концентрации, цвету, прозрачности, вкусу.

Большое значение в анализе эфирных масел имеют числовые показатели. Из физических констант определяют температуру затвердевания, плотность с помощью пикнометра, угол вращения плоскости поляризации в поляриметре, показатель преломления рефрактометром. Плотность масел зависит от сроков сбора сырья, способа его получения, условий и сроков его хранения. Низкое значение этой константы говорит о пониженном количестве кислородных соединений, что бывает у несвоевременно собранного сырья. Высокое значение свидетельствует об осмолении масла. При длительном хранении увеличивается рефракция масла за счет процессов окисления, полимеризации и др. в эфирном масле. Изменение угла вращения от обычных предельных величин, а аткже знака вращения, свидетельствует о недоброкачественности эфирного масла и его фальсификации.

Из химических констант определяют:

Кислотное число (КЧ) – количество мг едкого кали, пошедшего на нейтрализацию свободных кислот, содержащихся в 1 г эфирного масла. При хранении эта константа может увеличиваться за счет омыления сложных эфиров. Обычно КЧ – 0,5-5;

Эфирное число (ЭЧ) – количество мг едкого кали, пошедшего на омыление сложных эфиров, содержащихся в 1 г эфирного масла;

Эфирное число после ацетилирования (ЭЧпа) определяют в тех маслах, которые содержат большое количество ценных спиртов.

Для этого эфирное масло ацетилируют, затем омыляют, определяя ЭЧПА. По разности между ЭЧПА и ЭЧ можно определить количество свободных спиртов. Кроме того, определяют содержание фенолов.

Определение содержания эфирного масла в лекарственном растительном сырье

В ГФ Х1 дается 4 метода, которые основаны на перегонке эфирного масла с водяным паром из растительного сырья с последующим измерением объема. Содержание масла выражается в объемно-весовых процентах в пересчете на абсолютно-сухое сырье.

Масса сырья, степень его измельченности, время перегонки и возможные растворители указаны в НД на лекарственное сырье. Сырье, содержащее эфирное масло, которое при перегонке претерпевает изменения, образует эмульсию, легко загустевает или имеет плотность, близкую к единице, определяют методами 3 и 4.

Рисунки приборов и описание методик имеется в ГФ Х1, т. 1, с. 290-295.

Применение.

В фармацевтической практике эфирномасличное сырье широко применяется в виде настоев, настоек, экстрактов, в составе сборов. Иногда из сырья выделяют эфирные масла (мятное, фенхелевое и др.) или отдельные компоненты (ментол, камфора).

Фармакологическое действие очень широкое: местное раздражающее при растираниях, отхаркивающее, диуретическое, желчегонное, противовоспалительное, седативное, кардиотоническое, антимикробное, дезинфицирующее.

text_fields

text_fields

arrow_upward

Эфирные масла — это бесцветные или окрашенные жидкости. Например, эфирное масло аира болотного — желтоватое, ромашки и тысячелистника — синее, тимьяна — красноватое, корицы — коричневое.

Запах и вкус эфирных масел специфичны.

Большинство эфирных масел легче воды и лишь некоторые из них имеют плотность больше единицы (масло гвоздики и корицы).

Эфирные масла мало или практически нерастворимы в воде. При взбалтывании с водой образуют эмульсии, придают воде запах и вкус. Эфирные масла растворимы в жирных (подсолнечное и др.) и минеральных (вазелиновое) маслах, спирте, эфире и других органических растворителях.

Температура кипения эфирных масел обычно колеблется от 40 °С до 260 °С, причем фракция монотерпеноидов кипит при 150-190 °С, фракция сесквитерпеноидв — при 230-300 °С.

Эфирные масла оптически активны.

Реакция масел нейтральная или кислая.

Эфирные масла перегоняются с водяным паром, причем монотерпеноиды перегоняются хорошо, сесквитерпеноиды — труднее.

При охлаждении эфирных масел некоторые компоненты выкристаллизовываются (анетол, ментол, тимол, камфора). Твердую часть эфирного масла называют стеароптен, жидкую часть — олеоптен.

Химические свойства эфирных масел

text_fields

text_fields

arrow_upward

Компоненты эфирных масел легко вступают в реакции окисления, изомеризации, полимеризации; по двойным связям легко гидрогенизируются, гидратируются, присоединяют галогены, кислород, серу; дают реакции, характерные для их функциональных групп.

«Изменчивыми хамелеонами органической химии» назвал класс терпеноидов академик А.Е. Арбузов за способность подвергаться всевозможным химическим превращениям, порой с полной перестройкой скелета молекулы.

На свету в присутствии кислорода воздуха эфирные масла окисляются, меняют цвет (темнеют) и запах. Некоторые эфирные масла загустевают после отгонки или при хранении.

Содержание статьи

ЭФИРНЫЕ МАСЛА, душистые маслянистые вещества растительного происхождения, называемые также летучими маслами. Слова «летучие» или «эфирные» подчеркивают отличие этих масел от нелетучих (или глицеридных) масел растительного и животного происхождения, а также от минеральных масел. Эфирные масла получают из растений, принадлежащих примерно к девяноста семействам. Из различных частей одного и того же растения могут быть извлечены разные эфирные масла. Например, цветы апельсинового дерева дают неролиевое масло, из кожуры плодов получают апельсинное масло и еще одно масло выделяют из листьев.

Эфирные масла представляют собой смеси органических соединений, главные компоненты которых – терпены; возможно присутствие также алифатических и бензоидных соединений. Свойства эфирных масел зависят от вида растения, климата, почвы, времени и метода сбора, процессов выделения и хранения.

Историческая справка.

Использование эфирных масел человеком началось еще в дописьменную эпоху, но археологические находки свидетельствуют, что в древнем мире, включая цивилизации Египта, Шумера, Ассирии, Вавилона, Крита и Китая, были известны масла для притираний, благовоний и курений и имелись навыки в экстракции, смешивании и сохранении растительных масел. В 14 в. каталонский врач Арнальдо да Вилланова впервые описал перегонку эфирных масел. В 18–20 вв. систематическим изучением химии эфирных масел занимались А.Лавуазье, Й.Берцелиус, Ф.Вёлер и Ж.Дюма; значительный вклад в эту область внесли Ф.Кекуле , У.Тилден, О.Валлах , Л.Ружичка . И в наши дни в химии душистых веществ ведутся активные исследования.

Свойства.

Свежеперегнанные эфирные масла бесцветны или имеют желтоватый оттенок, но в присутствии примесей цвет может изменяться от красного до голубого. При стоянии эфирные масла темнеют. Пахнут они так же, как те части растения, из которых они получены, но поскольку аромат эфирного масла гораздо интенсивнее, он может казаться неприятным. Содержащиеся в маслах терпены легко окисляются, и тогда появляется скипидарный запах. Плотность эфирных масел изменяется в пределах от 0,84 до 1,18. Они летучи уже при комнатной температуре и легко испаряются при нагревании. Эфирные масла, как правило, слегка растворимы в воде и лучше – в растворах сахара.

Состав.

Эфирные масла – это смеси, обычно состоящие главным образом из углеводородов и содержащихся в небольших количествах многочисленных кислород-, азот- и серусодержащих компонентов. Углеводороды обычно представлены терпенами (С 5 Н 8) n (полимерами изопрена, т.е. 2-метилбутадиена 1,3-С 5 Н 8), монотерпенами (n = 2), сесквитерпенами (или полуторатерпенами (n = 3)) и политерпенами, т.е. димерами (n = 4), тримерами (n = 6) и т.д. Монотерпены (С 10 Н 16) могут быть ациклическими (мирцен и оцимен), моноциклическими (лимонен, фелландрен и терпинен) или бициклическими (карен и пинен). Аналогично, сесквитерпены (C 15 H 24) могут быть ациклическими (фарнезол), моноциклическими (бизаболен), бициклическими (кадинен) или трициклическими (цедрол и санталол).

В некоторых эфирных маслах содержание терпеновых углеводородов очень высоко. Так, в лимонном, апельсинном и других цитрусовых маслах около 95% приходится на монотерпены, а 85–90% масла аира, имбиря, можжевельника и розмарина состоит из моно- и сесквитерпеновых углеводородов. Однако есть и масла с низким содержанием монотерпеновых углеводородов: например, от 70 до 90% масла корицы или кассии приходится на коричный альдегид, а около 70% масла гвоздики составляет эвгенол.

Производство.

Эфирные масла производятся из свежего, частично обезвоженного или высушенного сырья; для получения цветочных масел, таких, как розовое масло или масло из цветов апельсина, сырье должно быть свежим или законсервированным (при помощи глицерина или соли). Майоран и различные виды мяты (болотной, перечной или колосовой) перегоняют свежими. Сухое сырье часто требует мацерации (разъединения клеток растительных тканей путем растворения или разрушения межклеточного вещества при замачивании в растворителе) перед перегонкой и должно быть измельчено.

Отжим.

Этим методом получают только масла из плодов цитрусовых – грейпфрута, лимона, апельсина, лайма и бергамота. В «губочном» процессе кожуру плода погружают в воду и отжимают рукой через губку, которая поглощает масло и при повторном выжимании выделяет его. В механизированном варианте для измельчения плодов применяют мельницы, затем масло отделяют от водной фазы (сока).

Перегонка.

Основным способом выделения эфирных масел является перегонка с паром (струя пара пропускается через сырье, нагреваемое в перегонном кубе). Конденсат улавливают в приемнике, и масло отделяют от водной фазы. При низком выходе масла водную фазу возвращают в перегонный куб и смесь перегоняют снова.

Некоторые эфирные масла можно перегнать непосредственно. Так, копайское масло выделяют перегонкой копайского бальзама. Ряд масел, прежде всего масла, не содержащие моно- и сесквитерпенов, получают фракционной и вакуумной перегонкой. Для извлечения некоторых масел, например масел горького миндаля и горчицы, перегонке предшествует стадия ферментации.

Экстракция растворителем.

Существует два основных варианта экстракционного метода. Первый: масла извлекаются низкокипящими растворителями (спирт, хлороформ, эфир или петролейный эфир) путем мацерации или перколяции (фильтрации через адсорбирующий слой), затем растворитель отгоняют. Второй: для экстракции эфирного масла путем мацерации применяют подогретое масло или жир (не имеющее запаха растительное масло, свиной жир или смесь свиного и говяжьего жира).

Противоточная экстракция

применяется для извлечения не содержащих терпенов (бестерпеновых) масел, при этом используются два несмешивающихся растворителя – неполярный (минеральное масло или жидкие алифатические углеводороды) и полярный (этиловый или метиловый спирт). Неполярный растворяет удаляемые терпены и другие углеводородные компоненты, а полярный – нужные компоненты. Затем фазы разделяют и выделяют компоненты посредством химических реакций, перегонкой, вымораживанием, высаливанием или комбинацией подходящих методов.

Анфлераж,

или мацерация в холодном состоянии, – это процесс контактной жировой экстракции. Испаряющиеся из цветков эфирные масла поглощаются говяжьим или свиным жиром с последующей экстракцией растворителем. Таким способом получают масла жасмина, резеды, розы и туберозы, используемые в парфюмерии.

Анализ.

Применение.

Эфирные масла применяются в качестве ароматизирующих пищевых добавок, косметических средств и фармацевтических препаратов. Для их получения используются следующие виды сырья:

ароматизаторы для пищевых продуктов: анис, апельсин померанец, базилик, бальзамическая мята, береза граболистная, гаультерия, гвоздика, горчица, дудник, имбирь, кардамон, кассия, кмин тминовый, кожура плодов грейпфрута, кориандр, корица, лавр, лайм, лимон, любисток, майоран, мандарин, миндаль обыкновенный (без синильной кислоты), мирт, можжевельник, морковь, мускатный орех, мята колосовая, мята лимонная (мелисса), мята перечная, ореган, пальма ротантовая, перец, перец гвоздичный, петрушка, плоды бадьяна (анис звездчатый), ромашка, сассафрас, сельдерей, тмин, укроп, фенхель, хмель, чабер, шалфей, эстрагон;

парфюмерные эфирные масла : бальзамовое дерево, бергамот, березовый деготь, вербена, гваяковое (бакаутовое) дерево, герань, ель, иланг-иланг (кунанга душистая), иссоп, камфара, кедровая хвоя и древесина, корневище ириса (с ароматом фиалки), лаванда, ладан, магнолия виргинская, мироксилон (перуанский бальзам), мирра, мята болотная, неролиевое масло (цветов апельсина), пачули, пихта бальзамическая, пихта сибирская, роза, розмарин, рута, сандаловое дерево, смола мастикового дерева, сорго лимонное, сосна, стиракс, тсуга (американское хвойное дерево), цитронелла, шалфей;

эфирные масла для фармацевтических препаратов : березовый деготь, валериана, душица, кипарис, копайский бальзам, кротон, лавровишня, мелколепестник, можжевельник, пижма, полынь, тимьян, чайное дерево, шалфей, эвкалипт.

Это деление, однако, не является жестким; например, многие эфирные масла, используемые как ароматизаторы, применяются также в парфюмерии и лекарственных препаратах.

Плотность

Большинство эфирных масел легче воды, однако, имеются масла и тяжелее ее (как мы наверное все помним из школьных курсов физики и химии плотность воды равна почти 1 г/см 3). Самое легкое из известных эфирных масел – это масло сосны Сабини (Pinus sabinianа), в диком виде произрастающей на юго-западе США, имеет плотность 0.6962. Самое тяжелое масло – гаультерпеновое, получаемое из гаультерии лежачей (Gaultherpia procumbens), также происходящей из Америки, имеет плотность 1.188.

Плотность эфирного масла определяют пикнометром

Плотность одного и того же эфирного масла может изменяться от стадии развития растения, способа получения масла, условий и продолжительности хранения. Таким образом, по отклонению от установленных пределов плотности можно судить о доброкачественности масла. Например, пониженная плотность может свидетельствовать о пониженном количестве кислородных соединений, что обычно бывает у эфирных масел, полученных из преждевременно собранного сырья. Наоборот, повышенная плотность (одновеменно с побурением масла) свидетельствуют об “осмолении” эфирного масла вследствие кислородного окисления.

Угол вращения плоскости поляризации

Поскольку эфирные масла представляют собой смеси оптически активных веществ (часто имеющих противоположные знаки вращения), определяемая константа является алгебраической суммой вращения данной смеси. По этой причине угол вращения не всегда может являться надежной характеристикой эфирного масла. Однако, в ряде случаев, когда в составе масла преобладает определенный компонент, обладающий определенным значением и направлением (вправо, влево) вращения, эта константа может свидетельствовать о качестве масла. Конечно же, отклонение от определенных величин, и уж тем более изменение знака вращения должно насторожить аналитика.

В зависимости от природы вещества вращение плоскости поляризации может иметь различное направление и величину. Если от наблюдателя, к которому направлен свет, проходящий через оптически активное вещество, вращение плоскости поляризации происходит вправо (по движению часовой стрелки), то вещество называют правовращающим и перед его названием ставят индекс « или знак «(+)» [(+)-линалоол, d-линалоол], если же вращение плоскости поляризации происходит влево (против часовой стрелки), то вещество называют левовращающим и перед названием ставят индекс «l » или знак «(-)». Величину отклонения плоскости поляризации от начального положения, выраженную в угловых градусах, называют углом вращения и обозначают греческой буквой α . Обычно определение оптического вращения проводят при 20°С и длине волны линии D спектра натрия (589,3 нм).

Угол вращения плоскости поляризации определяют в поляриметре.

К примеру для эфирного масла мяты перечной угол вращения должен быть не менее -18°, для эфирного масла эвкалипта - от 0 до +10°.

Показатель преломления

Показателем преломления называют отношение скорости распространения света в воздухе к скорости распространения света в испытуемом веществе. Показатель преломления зависит от при­роды вещества, температуры (обычно 20 0) и длины волны света (линия D спектра натрия), которые указываются как индексы около буквы n .

Высокая рефракция, как и высокая плотность обычно характеризуют богатство масла кислородными соединениями, что свидетельствует, в частности о своевременности сбора сырья. Точно так же, при длительном хранении ввиду окисления, полимеризации и других процессов, протекающих в масле, его рефракция увеличивается.

К примеру для того же эфирного масла мяты перечной показатель преломления должен быть 1.459-1.470. Показатель преломления определяется в рефрактометре.

Растворимость в спирте

Растворимость в этиловом спирте (крепком или 70%-ном) также дает представление не только о подлинности, но и о качестве масла. Большинство углеводородов плохо растворимо в спирте, особенно в разведенном, поэтому по растворимости можно судить об их количестве в масле. Отклонение от обычных норм может свидетельствовать о низком качестве масла или об их примеси.

Известно, что основные, самые ценные и душистые компоненты эфирного масла отгоняются в течение определенного времени. При несоблюдении времени или температурных пределов перегонки, получают масло не слишком хорошего качества. Иногда для отгона более тяжелых фракций время отгонки увеличивают. Добросовестный производитель, как правило, разделяет такое масло по сортам, так как наличие тяжелых фракций меняет константы масел, но самое главное изменяется тончайшее кружево и переливы запаха, присущее маслу высокого качества.

Таким же образом обнаруживается и фальсификат, когда к маслу примешиваются углеводороды (к примеру, скипидар к хвойным маслам) либо какое-либо жирное масло. При растворении фальсифицированного масла в спирте углеводороды всплывут наверх, а жирное масло каплями опустится вниз. Чистые эфирные масла, как правило, образуют со спиртом совершенно прозрачный раствор.

Кислотное число

Кислотное число (КЧ) означает количество миллиграммов гидроксида калия (КОН), пошедшее на нейтрализацию свободных кислот в 1 грамме эфирного масла. Это важная константа, поскольку содержание свободных кислот колеблется в определенных, довольно небольших пределах у каждого эфирного масла. В результате хранения КЧ увеличивается вследствие разложения сложных эфиров.

Эфирное число

Эфирное число (ЭЧ) означает количество миллиграммов КОН, пошедшее на омыление (разложение сложных эфиров под действием щелочи на соли органических кислот и спирты) сложных эфиров, содержащихся в 1 грамме эфирного масла. Это также важная константа, так как зачастую приятный запах эфирных масел обусловливается сложными эфирами.

Эфирное число после ацетилирования

Эфирное число после ацетилирования (ЭЧПА) определяют в тех эфирных маслах, качество которых характеризуется наличием таких ценных спиртов как линалоол, гераниол, цитронеллол и др. Для этого эфирное масло ацетилируют, затем омыляют и определяют эфирное число. Далее зная ЭЧ исходного масла вычисляют их разность, которая покажет количество свободных спиртов в исследуемом масле.

Указанные выше химические методы дают лишь общую оценку качества эфирного масла. Химический состав и содержание отдельных веществ дает лишь метод хроматографии.