• Болен 5 мес. 2 года назад перенес травму с повреждением селезенки и левого легкого.
  • Боль – «неприятное сенсорное или эмоциональное ощущение, связанное с угрожающим или происшедшим повреждением тканей или описываемое в терминах такого повреждения».
  • Нарушения микроциркуляции.
    I.Внутрисосудистые
    1) увеличение скорости кровотока (например, при артериальной гипертонии);
    2)снижение скорости кровотока (при венозной гиперемии);
    3)стаз. При различных болезнях эритроциты образуют агрегаты и вызывают остановку кровотока;
    4)нарушение ламинарности (параллельности) при варикозе, тромбозе и т.д. ;
    5)нарушение реологических свойств в крови (текучести).
    Разжижение или сгущение.
    Сладж – агрегация эритроцитов в виде монетных столбиков. Эритроциты изменяются под действием алкоголя, при инфекциях.

    II.Сосудистые нарушения микроциркуляции
    - увеличение проницаемости капилляров;
    - разрывы стенок и кровоизлияния.

    III. Внесосудистые
    - при нарушении нервно-трофической регуляции, процесса выхода гистамина из тучных клеток (лаброцитов). Гистамин расширяет микрососуды, повышает адгезивные свойства эндотелия, расширяет межэндотелиальные щели.
    Гипоксия-определение типы (№8) и их характеристика патогенетического расстройства (№8)
    адаптивные реакции при гипоксии (№5)
    течение (острое, хроническое) и исходы – см. Пауков, стр.57

    Нарушение лимфообращения



    Лекция №3,4. Повреждение клетки.

    Повреждение начальное звено патогенеза. П.- анатомической целостности, структуры тканей, или органа влечёт за собой расстройство их функций. П могут действовать непосредственно или опосредованно через гуморальные, рефлекторные влияния. Степень повреждения зависит от силы, природы, длительности действия, от особенностей органа или ткани, от реактивности организма. П могут быть на тканевом, молекулярном, клеточном, органном, системном и организменном. На тканевом уровне П представлено дистрофией и некрозом. На молекулярном уровне –это разрушение молекул, до неорганических веществ- деструкция, и изменение структуры биомолекул. Т.О. П- всеоблемьющий термин.

    Клетка- элементарная, живая система Главная функция клетки обмен с окружающей средой веществом, энергией, и информацией. Органеллы клетки определяют жизнедеятельность клетки. : дыхание, энергетические запасы, (минотхондрии, синтез белка(рибосомы, гЭПС,) накопление и транспорт липидов и гликогена, детоксикационная функция, (гладкая ЭПС), внутриклеточное пищеварение и защитная функция (лизосома)П клетки встречается в 3хвариантах:

    1. морфологические, соответствующие функциональные,

    2. структурные изменения выражены больше чем функциональные,

    3. функциональные выражены больше чем структурные.

    П бывают обратимы и необратимые. , специфические и неспецифические, .

    Специфическое связано с действием этиологического фактора. (механическая травма, гемолиз эритроцитов, и.т.д.

    Неспецифическое повреждение клетки это П любым агентом вызвавшим нарушение неравновесного состояния клетки и среды. Например неспецифические проявления это нарушение деполяризации клеточной мембраны., нарушение обмена воды, электролитов.

    Смерть клетки характеризуется прекращением неравновесного состояния живой системы и переходом его в состояние полного равновесия. Повреждение клетки может быть острым и хроническим. Функциональное состояние острого повреждения делится на:

    1. преддеприсионную гиперактивность,

    2 парциальный некроз,

    3 тотальное повреждение

    Преддеприссионная гипереактивность возникает вследствие обратимого повреждения клетки умеренным действием патогенных факторов. В результате этого в мембране клетке происходит неспецифическое возбуждение аденилатциклазной системы и активация вторичных посредников мессенджиров и усиление деятельности органелл, в первую очередь митохондрий. Усиливается окисление субстратов и и синтез АТФ. Мобилизуются все реакции направленные на повышение резистентности клетки.

    В случае парциального некроза повреждённая часть клетки отделяется от функционирующей части демаркационной мембранной и уничтожается фагоцитами. Оставшаяся часть восстанавливается за счёт гиперплазии субклеточных единиц.

    Но может быть и тотальное повреждение при этом происходит депрессия функции митохондрий, снижению синтеза макроэргов, нарушению энергозависимого клеточного транспорта. Нарастает дисфункция клетки деструкция лизосом выход литических ферментов в цитоплазму и повреждение органелл и мембран. Это агония клетки Исчезновение МП, в результате выравнивания концентрации ионов натрия и калия по обе стороны мембраны характеризуют смерть клетки. Структурные изменения клетки приводит к нарушению её функции.

    Патология клетки:

    1. Патология специализированных ультраструктур клетки. При этом говорят о хромосомных болезнях, лизосомальных, пироксисомных, митохондриальных

    2.изменения её компонентов и структур общих закономерностей повреждения и её реакции на повреждение Например рецепция патогенной информации, нарушение проницаемости мембраны клетки и циркуляция внутриклеточной жидкости, патология ядра, нарушение метаболизма клетки. и.т.д.

    Патогенетические звенья повреждения.

    1 Нарушение энергетического обеспечения процессов протекающих в клетке.

    Снижение изменение ресинтеза, транспорта, и использования энергии АТФ.

    2. Повреждение мембранного аппарата и ферментных систем клетки.

    3. Дисбаланс ионов и жидкости в клетке.

    4.На рушение генетической программы или механизмов её реализации: изменение структур генов, дерепрессия патогенных генов,

    Репрессия жизненно важных генов.

    Внедрение в геном фрагмента чужеродной ДНК с патогенными свойствами.

    Нарушение реализации генетической программы: расстройство митоза и, нарушение мейоза.

    Расстройство внутриклеточных механизмов: нарушение рецепции, образования вторичных посредников и нарушение фофорилирования протеинкиназ.

    Патология клеточной мембраны может привести к нарушению мембранного транспорта, изменение проницаемости мембран, изменения подвижности мембран, и формы клетки, нарушение синтеза и обмена мембран.

    Нарушение мембранного транспорта: процесс заключается в переносе ионов против градиента концентрации Транспорт может быть активным когда требует АТФи подвижности транспортных белков мембраны. И пассивным путём диффузии.

    Энергитической основой его работы являются процессы фосфорилирования и дефосфорилирования аденозинфосфотаз за счёт энергии АТФ. Эти ферменты вмонтированы в белквую часть клеточных мембран Там же работают ионные каналы для транспорта воды, ионов и др. веществ. Различают Na-K ATФ азу, Ca Mg АТФазу Н-АТФ азу Повреждение калий-натриевого насоса вызывает освобождение калия из клетки и накопление в ней ионов натрия., например при гипоксии, аллергии, и.т.д. С транспортом калия натрия связан и транспорт Са. Повреждение мембран митохондрий основа клеточного повреждения. Большую роль при этом играют иона Са в цитоплазме. При повышении уровня ионизированногог кальция в митохондриях падет эффективность окслительного фосфорилирования., они набухают увеличивается проницаемость внутренней мембраны, наступает тотальное повреждение. Нарушение натрий калиевого обмена, ведёт к вытеснению Са+ из митохондрий. В цитоплазме повышается уровень ионизированного Са+ и увеличивается связывание его с кальмодулином при этом происходит расхождение клеточных стыков, поглащение кальция митохондриями, изменение трубочек, микрофиламентов, активация фосфолипаз. При этом ЭПС накапливает воду и ионы, развивается гидропическая дистрофия. Усиление гликолиза, сопровождается истощением гликогена, накоплением лактата и снижением клеточного рН. В клетках развивается ацидоз первичный- вследствие активации протеолиза, гликогенолиза, гликолиза. Вторичный в воспалённой ткани. Большую роль в повреждении клетки играют лизосомы.- орган внутриклеточного пищеварения, или убийца клеток. Активность лизосом зависит от стабилизации мембран лизосом, и активности их ферментов. Дестабилизацию их мембран могут вызвать токсины бактерий канцерогены, активаторы ПОЛ, шок, травма и.т.д. Эти факторы называются лабилизаторы мембран Антогонастами их являются стабилизаторы мембран противовоспалительные гормоны.. От действия стабилизаторов и лабилизаторов зависит проницаемость мембраны лизосом и выход гидролаз к клетку и её лизис.

    Клетка является структурно-функциональной единицей тканей и органов. В ней протекают процессы , лежащие в основе энергетического и пластического обеспечения структур и функций тканей.

    Различные патогенные факторы действующие на клетку могут обусловить повреждение . Под повреждением клетки понимают такие изменения ее структуры, обмена веществ, физико-химических свойств и функций, которые ведут к нарушению жизнедеятельности.

    Нередко процесс повреждения обозначают термином альтерация, что не совсем точно, поскольку alteratio переводится как изменение, отклонение и является, таким образом, более широким понятием. Однако в медицинской литературе эти термины применяются обычно как синонимы.


    1. ПРИЧИНЫ ПОВРЕЖДЕНИЯ КЛЕТОК

    Повреждение клетки может быть результатом действия на нее множества патогенных факторов. Их условно подразделяют на три основные группы: физического, химического и биологического характера.

    Среди факторов физического характера причинами повреждения клеток наиболее часто являются следующие:


    • механические воздействия. Они обуславливают нарушение структуры плазмолеммы и мембран субклеточных образований;

    • колебания температуры. Повышенная температура среды, в которой находится клетка, до 45-50С и более, может привести к денатурации белка, нуклеиновых кислот, декомпозиции липопротеидных комплексов, повышению проницаемости клеточных мембран и другим изменениям. Значительное снижение температуры может обусловить существенное замедление или необратимое прекращение метаболических процессов в клетке, кристаллизацию внутриклеточной жидкости и разрыв мембран;

    • изменения осмотического давления в клетке, в частности, вследствие накопления в ней продуктов неполного окисления органических субстратов, а также избытка ионов. Последнее, как правило, сопровождается током жидкости в клетку по градиенту осмотического давления, набуханием ее и растяжением (вплоть до разрыва) ее плазмолеммы и мембран органелл. Снижение внутриклеточного осмотического давления или повышение его во внеклеточной среде ведет к потере клеткой жидкости, ее сморщиванию (пикнозу) и нередко к гибели;

    • воздействие ионизирующей радиации, обусловливающей образование свободных радикалов и активацию перекисных свободно-радикальных процессов, продукты которых повреждают мембраны и денатурируют ферменты клеток. Патогенное действие на клетку могут также оказывать гравитационные, электромагнитные и другие факторы физического характера.
    Повреждение клеток нередко вызывают воздействия факторов химической природы . К их числу относятся разнообразные вещества экзогенного и эндогенного происхождения: органические кислоты, щелочи, соли тяжелых металлов, продукты нарушенного метаболизма. Так, цианиды подавляют активность цитохромоксидазы. Этанол и его метаболиты ингибируют многие ферменты клетки. Вещества, содержащие соли мышьяка, угнетают пируватоксидазу. Неправильное применение лекарственных средств также может привести к повреждению клеток. Например, передозировка строфантина обусловливает значительное подавление активности К + - Na + - АТФазы сарколеммы клеток миокарда, что ведет к дисбалансу интрацеллюлярного содержания ионов и жидкости.

    Важно, что повреждение клетки может быть обусловлено как избытком, так и дефицитом одного и того же фактора. Например, избыточное содержание кислорода в тканях активирует процесс перекисного свободнорадикального окисления липидов (ПСОЛ), продукты которого повреждают ферменты и мембраны клеток. С другой стороны, снижение содержания кислорода обусловливает нарушение окислительных процессов, понижение образования АТФ и, как следствие, расстройство функций клетки.

    Повреждение клеток нередко обусловливается факторами иммунных и аллергических процессов. Они могут быть вызваны, в частности, сходством антигенов, например, микробов и клеток организма.

    Повреждение может быть также результатом образования антител или Т-лимфоцитов, действующих против неизменных клеток организма вследствие мутаций в гемоне В- или Т-лимфоцитов иммунной системы.

    Важную роль в поддержании метаболических процессов в клетке играют вещества, поступающие в нее из окончаний нейронов, в частности нейромедиаторы, трофогены, нейропептиды. Уменьшение или прекращение их транспорта является причиной расстройства обмена веществ в клетках, нарушения их жизнедеятельности и развития патологических состояний, получивших название нейродистрофий.

    Кроме указанных факторов, повреждение клеток нередко бывает обусловлено значительно повышенной функцией органов и тканей. Например, при длительной чрезмерной физической нагрузке возможно развитие сердечной недостаточности в результате нарушения жизнедеятельности кардиомиоцитов.

    Повреждение клетки может быть результатом действия не только патогенных факторов, но и следствием генетически запрограммированных процессов. Примером может служить гибель эпидермиса, эпителия кишечника, эритроцитов и других клеток в результате процесса их старения. К механизмам старения и смерти клетки относят постепенное необратимое изменение структуры мембран, ферментов, нуклеиновых кислот, истощение субстратов метаболических реакций, снижение устойчивости клеток к патогенным воздействиям.

    По происхождению все причинные факторы повреждения клетки делят на: 1) экзогенные и эндогенные; 2) инфекционного и неинфекционного генеза.

    Действие повреждающих факторов на клетку осуществляется прямо или опосредовано . В последнем случае речь идет о формировании цепи вторичных реакций, образовании веществ – посредников, реализующих повреждающее действие. Действие повреждающего агента может опосредоваться через: - изменения нервных или эндокринных воздействий на клетки (например, при стрессе, шоке); - расстройство системного кровообращения (при сердечной недостаточности); - отклонение физико-химических параметров (при состояниях, сопровождающихся ацидозом, алкалозом, образованием свободных радикалов, продуктов ПСОЛ, дисбалансом ионов и жидкости); - иммунно-алллергические реакции при аутоаллергических заболеваниях; - образование избытка или недостатка биологически активных веществ (гистамина, кининов, простакландинов). Многие из этих и других соединений, участвующих в развитии патологических процессов, получили название посредников – медиаторов (например, медиаторы воспаления, аллергии, канцерогенеза и др.).


    II. ОБЩИЕ МЕХАНИЗМЫ ПОВРЕЖДЕНИЯ КЛЕТОК
    На уровне клетки повреждающие факторы “включают” несколько патогенетических звеньев. К их числу относят:

    • расстройство процессов энергетического обеспечения клеток;

    • повреждение мембран и ферментных систем;

    • дисбаланс ионов и жидкости;

    • нарушение генетической программы и/или ее реализации;

    • расстройство механизмов регуляции функции клеток.
    1. Нарушение энергетического обеспечения процессов, протекающих в клетках, часто является инициальным и ведущим механизмом их альтерации. Энергоснабжение может расстраиваться на этапах синтеза АТФ, транспорта, а также утилизации его энергии.

    Синтез АТФ может быть нарушен в результате дефицита кислорода и/или субстратов метаболизма, снижения активности ферментов тканевого дыхания и гликолиза, повреждения и разрушения митохондрий, в которых осуществляются реакции цикла Кребса и перенос электронов к молекулярному кислороду, сопряженный с фосфорилированием АДФ.

    Известно, что доставка энергии АТФ от мест ее синтеза – из митохондрий и гиалоплазмы – к эффекторным структурам (миофибриллам, мембранным ионным “насосам” и др.) осуществляется с помощью ферментных систем: АДФ – АТФ – транслоказы (адениннуклеотидтрансферазы) и креатинфосфокиназы (КФК). Адениннуклеотидтрансфераза обеспечивает транспорт энергии макроэргической фосфатной связи АТФ из матрикса митохондрий через их внутреннюю мембрану, а КФК переносит ее далее на креатин с образованием креатинфосфата, который поступает в цитозоль. Креатинфосфокиназа эффекторных клеточных структур транспортиует фосфатную группу креатинфосфата на АДФ с образованием АТФ , который и используется в процессе жизнедеятельности клетки. Ферментные системы транспорта энергии могут быть повреждены различными патогенными агентами, в связи с чем даже на фоне высокого общего содержания АТФ в клетке может развиваться его дефицит в энергорасходующих структурах.

    Нарушение энергообеспечения клеток и расстройства их жизнедеятельности может развиваться и в условиях достаточной продукции и нормального транспорта энергии АТФ. Это может быть результатом повреждения ферментных механизмов утилизации энергии, главным образом за счет снижения активности АТФазы (АТФазы актомиозина, К + - Na + - зависимой АТФазы плазмолеммы, Mg 2+ - зависимой АТФазы “кальциевой помпы” саркоплазматического ретикулума и др.).

    Нарушение процессов энергообеспечения, в свою очередь, может стать одним из факторов расстройств функции мембранного аппарата клеток, их ферментных систем, баланса ионов и жидкости, а также механизмов регуляции клетки.

    2. Повреждение мембран и ферментов играет существенную роль в расстройстве жизнедеятельности клетки, а также переходе обратимых изменений в ней в необратимые. Это обусловлено тем, сто основные свойства клетки в существенной мере зависит от состояния ее мембран и связанных с ними или свободных энзимов.

    а). Одним из важнейших механизмов повреждения мембран и ферментов является интенсификация свободнорадикальных реакций (СРР) и ПСОЛ. Эти реакции протекают в клетках и в норме, являясь необходимым звеном таких жизненноважных процессов, как транспорт электронов в цепи дыхательных ферментов, синтез простагландинов и лейкотриенов, пролиферация и созревание клеток, фагоцитоз, метаболизм катехоламинов и др. ПСОЛ участвует в процессах регуляции липидного состава биомембран и активности ферментов. Последнее является результатом как прямого действия продуктов липопероксидных реакций на энзимы, так и опосредованного – через изменение состояния мембран, с которыми ассоциированы многие ферменты.

    Интенсивность ПСОЛ регулируются соотношением факторов, активирующих (прооксиданты) и подавляющих (антиоксиданты) этот процесс. К числу наиболее активных прооксидантов относятся легко окисляющиеся соединения, индуцирующие свободные радикалы, в частности, нафтохиноны, витамины А и Д, восстановителя – НАДФН 2 , НАДН 2 , липоевая кислота, продукты метаболизма простагландинов и катехоламинов.

    Процесс ПСОЛ условно можно разделить на три этапа: 1) кислордной иницикации (“кислородный” этап), 2) образования свободных радикалов органических и неорганических агентов (“свободнорадикальный” этап), 3) продукции перекисей липидов (“перекисный” этап). Инициальным звеном свободнорадикальных перекисных реакций при повреждении клетки является, как правило, образование в процессе оксигеназных реакций так называемых активных форм кислорода: супероксидного радикала кислорода (О 2 - .), гидроксильного радикала (ОН.), перекиси водорода (Н 2 О 2), которые взаимодействуют с компонентами структур клеток, главным образом с липидами, белками и нуклеиновыми кислотами. В результате образуются активные радикалы, в частности, липидов, а также их перекиси. При этом может приобрести цепной “лавинообразный” характер.

    Однако это происходит не всегда. В клетках протекают процессы и действуют факторы, которые ограничивают или даже прекращают свободнорадикальные и перекисные реакции, т.е. оказывают антиоксидантный эффект. Одним из таких процессов является взаимодействие радикалов и гидроперекисей липидов между собой, что ведет к образованию “нерадикальных” соединений. Ведущую роль в системе антиоксидантной защите клеток играют механизмы ферментной, а также не ферментной природы.


    и ее

    некоторые факторы:


    Звенья антиоксидантной системы

    Факторы

    Механизмы действия

    1

    2

    3

    I. “Антикислородное”

    Ретинол, каротиноиды, рибофлавин

    Уменьшение содержания О 2 в клетке, например, путем активации его утилизации, повышения сопряжения процессов окисления и фосфорилирования.

    1

    2

    3

    II. “Антирадикальное”

    супероксиддисмутаза, токоферолы, маннитол

    Перевод активных радикалов в “нерадикальные” соединения, “гашение” свободных радикалов органическими соединениями.

    III. “Антиперекисное”

    Глютатионпероксидазы, каталазы, серотинин

    Инактивация гидроперекисей лиидов, например, при их восстановлении.

    Исследование последних лет показали, что чрезмерная активация свободнорадикальных и перекисных реакция является одним из главных факторов повреждения мембран и ферментов клеток. Ведущее значение при этом имеют следующие процессы: 1) изменение физико-химических свойств липидов мембран, что обусловливает нарушение конформации их липопротеидных комплексов и в связи с этим снижение активности белков и ферментных систем, обеспечивающих рецепцию гуморальных воздействий, трансмембранный перенос ионов и молекул, структурную целостность мембран; 2) изменение физико-химических свойств белковых мицелл, выполняющих структурную и ферментные функции в клетке; 3) образование структурных дефектов в мембране – т.н. простейших каналов (кластеров) вследствие внедрения в них продуктов ПСОЛ. Указанные процессы, в сою очередь , обуславливают нарушение важных для жизнедеятельности клеток процессов – возбудимости, генерации и проведения неравного импульса, обмена веществ, восприятия и реализации регулирующих воздействий, межклеточного взаимодействия и др.

    б). Активация гидролаз (лизосомальных, мембраносвязанных и свободных).

    В норме состав и состояние мембран и ферментов модифицируется не только свободнорадикальными и липоперексидными процессами, но также мембраносвязанными, свободными (солюбилизированными) и лизосомальными ферментами: липазами, фосфолипазами, протеазами. Под влиянием патогенных факторов их активность или содержание в гиалоплазме клетки может повыситься (в частности, вследствие развития ацидоза, способствующего увеличению выхода ферментов из лизосом и их последующей активации). В связи с этим интенсивному гидролизу подвергаются глицерофосфолипиды и белки мембран, а также ферменты клеток. Это сопровождается значительным повышением проницаемости мембран и снижением кинетических свойств ферментов.

    в). Внедрение амфифильных соединений в липидную фазу мембран.

    В результате действия гидролаз (главным образом липаз и фосфолипаз) в клетке накапливаются свободные жирные кислоты и лизофосфолипиды, в частности, глицерофосфолипиды: фосфотидилхолины, фосфатидилэтаноламины, фосфатидилсерины. Они получили название амфифильных соединений в связи со способностью проникать и фиксироваться в обеих – как в гидрофобной, так и в гидрофильных средах мембран клеток (амфи – означает “оба”, “два”). При сравнительно небольшом уровне в клетке амфифильных соединений они, внедряясь в биомембраны изменяют нормальную последовательность глицерофосфолипидов, нарушают структуру липопротеидных комплексов, увеличивают пронацаемость, а также меняют конфигурацию мембран в связи с “клинообразной” формой липидных мицелл. Накопление в большом количестве амфифилов сопровождается массированным внедрением их в мембраны, что так же, как и избыток гидроперекисей липидов, ведет к формированию кластеров и микроразрывов в них. Повреждение мембран и ферментов клеток является одной из главных причин существенного расстройства жизнедеятельности клеток и нередко приводит к их гибели.

    3. Дисбаланс ионов и жидкости в клетке. Как правило, нарушение трансмембранного распределения, а также внутриклеточного содержания и соотношения различных ионов развивается вслед за или одновременно с расстройствами энергетического обеспечения и сочетается с признаками повреждения мембран и ферментов клеток. В результате этого существенно изменяется проницаемость мембран для многих ионов. В наибольшей мере это относится к калию, натрию, кальцию, магнию, хлору, то есть ионам, которые принимают участие в таких жизненноважных процессах, как возбуждение, его проведение, электромеханическое сопряжение и др.

    а). Изменение трансмембранного соотношения ионов. Как правило, дисбаланс ионов проявляется накоплением в клетке натрия и потерей калия.

    Следствием дисбаланса является изменение мембранного потенциала покоя и действия, а также нарушение проведения импульса возбуждения. Эти изменения имеют важное значение, поскольку они нередко являются одним из важных признаков наличия и характера повреждения клеток. Примером могут служить изменения электрокардиограммы при повреждении клеток миокарда, электроэнфецалограммы при нарушении структуры и функций нейронов головного мозга.

    б). Гипер- и дегидратацияклеток.

    Нарушения внутриклеточного содержания ионов обусловливают изменение объема клеток вследствие дисбаланса жидкости. Он проявляется либо гипергадратацией (уменьшением содержания жидкости) клетки. Так, например, повышение содержания ионов натрия и кальция в поврежденных клетках сопровождается увеличением в них осмотического давления. В результате этого в клетках накапливается вода. Клетки при этом набухают, объем их увеличивается, что сопровождается увеличением растяжением и нередко микроразрывами цитолеммы и мембран органелл. Напротив, дегидратация клеток (например, при некоторых инфекционных заболеваниях, обусловливающих потерю воды) характеризуется выходом из них жидкости и растворенных в ней белков (в том числе ферментов), а также других органических и неорганических водорастворимых соединений. Внутриклеточная дегидратация нередко сочетается со сморщиванием ядра, распадом митохондрий и других органелл.

    4. Одним из существенных механизмов расстройства жизнедеятельности клетки является повреждение генетической программы и /или механизмов ее реализации. Основными процессами, ведущими к изменению генетической информации клетки, являются мутации, депрессия патогенных генов (например, онкогенов), подавление активности жизненноважных генов (например, регулирующих синтез ферментов) или внедрение в геном фрагмента чужеродной ДНК (например, ДНК онкогенного вируса, аномального участка ДНК другой клетки).

    Помимо изменений в генетической программе, важным механизмом расстройства жизнедеятельности клеток является нарушение реализации этой программы , главным образом, в процессе клеточного деления при митозе или мейозе.

    5. Важным механизмом повреждения клеток является расстройство регуляции внутриклеточных процессов. Это может быть результатом нарушений, развивающихся на одном или нескольких уровнях регуляторных механизмов:


    • на уровне взаимодействия биологически активных веществ (гормонов, нейромедиаторов и др.) с рецепторами клетки;

    • на уровне клеточных т.н. “вторых посредников” (мессенджеров) нервных влияний: циклических нуклеотидов-аденозинмонофосфата (цАМФ) и гуанозинмонофосфата (цГМФ), образующих в ответ на действие “первых посредников” – гормонов и нейромедиаторов. Примером может служить нарушение формирования мембранного потенциала в кардиоцитах при накоплении в них цАМФ, что является, в частности, одной из возможных причин развития сердечных аритмий;

    • на уровне метаболических реакций, регулируемых циклическими нуклеотидами или другими внутриклеточными факторами. Так, нарушение процесса активации клеточных ферментов может существенно изменить интенсивность метаболических реакций и, как следствие, привести к расстройству жизнедеятельности клетки.

    III. ОСНОВНЫЕ ПРОЯВЛЕНИЯ ПОВРЕЖДЕНИЙ КЛЕТКИ


    1. Дистрофии . Под дистрофиями (dys – нарушение, расстройство, trophe- питаю) понимают нарушения обмена веществ в клетках и тканях, сопровождающиеся расстройствами их функций, пластических проявлений, а также структурными изменениями, ведущими к нарушению их жизнедеятельности.

    Основными механизмами дистрофий являются: - синтез аномальных веществ в клетке, например, белково-полисахаридного комплекса амилоида; избуточная трнасформация одних соединений в другие, нарпример, жиров и углеводов в белки, углеводов в жиры; - декомпозиция (фанероз), например, белково-липидных комплексов мембран; - инфильтрация клеток и межклеточного вещества, органическими и неорганическими соединениями, например, холестерином и его эфирами стенок артерий при атеросклерозе.

    К числу основных клеточных дистрофий относят белковые (диспротеинозы), жировые (липидозы), углеводные и минеральные.

    2. Дисплазии (dys – нарушение, расстройство, plaseo- образую) представляют собой нарушение процесса развития клеток, проявляющееся стойким изменением их структуры и функции, что ведет к расстройству их жизнедеятельности.

    Причиной дисплазии является повреждение генома клетки. Именно это обусловливает стойкие и, как правило, наследуемые от клетки к клетке изменения, в отличие от дистрофий, которые нередко носят временный, обратимый характер и могут устраниться при прекращении: действия причинного фактора.

    Основным механизмом дисплазий является расстройство процесса дифференцировки, который заключается в формировании структурной и функциональной специализации клетки. Структурными признаками дисплазий являются изменения величины и формы клеток, их ядер и других органелл, числа и строения хромосом. Как правило, клетки увеличены в размерах, имеют неправильную, причудливую форму (“клетки-монстры”), соотношение различных органелл в них диспропорционально. Нередко в таких клетках обнаруживаются различные включения, признаки дистрофических процессов. В качестве примеров дисплазий клеток можно назвать образование мегалобластов в костном мозге при пернициозной анемии, серповидных эритроцитов при патологии гемоглобина, крупных нейронов – “монстров” при поражении коры головного мозга (туберозный склероз), многоядерных гигантских клеток с причудливым расположением хроматина при нейрофиброматозе Реклингхаузена. Клеточные дисплазии являются одним из проявлений атипизма опухолевых клеток.


    1. Изменение структуры и функций клеточных органелл при повреждении клетки.
    Повреждение клетки характеризуется большим или меньшим нарушением структуры и функции всех ее компонентов. Однако при действии различных патогенных факторов могут преобладать признаками повреждения тех или иных органелл.

    При действии патогенных факторов отмечается изменение общего числа митохондрий, а также структуры отдельных органелл. Уменьшение числа митохондрий по отношению к общей массе клетки. Стереотипными для действия большинства повреждающих факторов изменениями отдельных митохондрий является уменьшение или увеличение их размеров и формы. Многие патогенные воздействия на клетку (гипоксия, эндо- и экзогенные токсические агенты, в том числе лекарственные препараты при их передозировке, ионизирующая радиация, изменение осмотического давления)сопровождаются набуханием и вакуолизацией митохондрий, что может привести к разрыву их мембраны, фрагментации и гомогенизации крист. Нарушение структуры митохондрий приводит к существенному подавлению процесса дыхания в них и образования АТФ, а также к дисбалансу ионов внутри клетки.

    Ядро . Повреждение ядра сочетается с изменением его формы, конденсацией хроматина по периферии ядра (маргинация хроматина), нарушением двуконтурности или разрывами ядерной оболочки, слиянием ее с полоской маргинации хроматина.

    Лизосомы . При патогенных воздействиях высвобождения и активация ферментов лизосом может привести к “самоперевариванию” (аутолизу) клетки. Выход лизосомальных гидролаз в цитоплазму может быть обусловлен механическими разрывами их мембраны или значительным повышением проницаемости последних. Это является следствием накопления в клетках ионов водорода (внутриклеточный ацидоз), продуктов ПОЛ, токсинов и других агентов.

    Рибосомы . При действии повреждающих факторов наблюдается разрушение группировок субъединиц рибосом (полисом), состоящих обычно из нескольких рибосом – “мономеров”, уменьшение числа рибосом, отрыв органелл от внутриклеточных мембран. Эти изменения сопровождаются снижением интенсивности процесса синтеза белка в клетке.

    Эндоплазматическая сеть . При повреждении отмечается расширение канальцев сети, вплоть до образования крупных вакуолей и цистерн вследствие накопления в них жидкости, очаговая деструкция мембран канальцев сети, их фрагментации.

    Аппарат Гольджи . Повреждение аппарата Гольджи сопровождается структурными изменениями, сходными с таковыми в эндоплазматической сети . При этом нарушается выведение из клетки продуктов жизнедеятельности, обусловливающее расстройство ее функции в целом.

    Цитоплазма представляет собой жидкую, слабовязкую среду, в которой находятся органеллы и включения клети. Действие на клетку повреждающих факторов может обусловливать уменьшение или увеличение содержания в цитоплазме жидкости, протеолиз или коакуляцию белка, образование “включений”, не встречающихся в норме. Изменение состояния цитоплазмы, в свою очередь, существенно влияет на процессы метаболизма, протекающие в ней, в связи с тем, что многие ферменты (например, гликолиза) находятся в клеточном матриксе, на функцию органелл, на процессы восприятия регулирующих и других влияний на клетку.


    1. Некроз и аутолиз .
    Некроз (гр. necro – мертвый) – гибель клеток и тканей, сопровождающаяся необратимым прекращением их жизнедеятельности. Некроз нередко является завершающим этапом дистрофий, дисплазий, а также следствием прямого действия повреждающих факторов значительной силы. Изменения, предшествующие некрозу называют некробиозом или патобиозом. Примерами патобиоза могут служить процессы омертвления тканей при нейро-трофических расстройствах в результате денервации тканей, вследствие длительной венозной гипереми или ишемии. Некробиотические процессы протекают и в норме, являясь завершающим этапом жизненного цикла многих клеток. Большинствопогибших клеток подвергаются аутолизу, т.е. саморазрушению структур.

    Основным механизмом аутолиза является гидролиз компонентов клеток и межклеточного вещества под влиянием ферментов лизосом. Этому способствует развитие ацидоза в поврежденных клетках.

    МОРФОЛОГИЯ ПОВРЕЖДЕНИЯ

    Лекция 3

    Повреждение органов начинается на молекулярном или кле­точном уровне, поэтому изучение патологии начинается с позна­ния причин и молекулярных механизмов структурных изменений, возникающих в клетках при их повреждении.

    Структура нормальной клетки генетически направлена на осуществление определенного метаболизма, дифференцировку и специализацию. В ответ на воздействие различных факторов в клетках развивается процесс адаптации. В результате этого про­цесса клетки могут достигать нового устойчивого состояния, по­зволяющего им приспособиться к подобным воздействиям. Если лимиты адаптивного ответа клетки исчерпаны, а адаптация не­возможна, то возникает повреждение клетки, до определенного предела обратимое. Однако, если неблагоприятный фактор дей­ствует постоянно или его интенсивность очень велика, развивает­ся необратимое повреждение, или смерть, клетки.

    Смерть клетки - конечный результат ее повреждения, глав­ное следствие ишемии, инфекции, интоксикации, иммунных ре­акций. Кроме того, это естественное событие в процессе нор­мального эмбриогенеза, развития лимфоидной ткани, инволюции органа под действием гормонов, а также желаемый результат ра­дио- и химиотерапии при раке.

    Существует два типа клеточной смерти - некроз и апоптоз.

    Некроз - наиболее распространенный тип смерти клетки. Он проявляется ее резким набуханием и разрывом клеточной мембраны, денатурацией и коагуляцией цитоплазматических белков, разрушением клеточных органелл. Апоптоз необходим для нормальной элиминации ненужных клеточных популяций в процессе эмбриогенеза и при различных физиологических про­цессах. Апоптоз встречается и при патологических процессах; в этом случае он сопровождается некрозом.

    Различают следующие причины повреждения клеток.

    1. Гипоксия. Она является исключительно важной и распро­страненной причиной повреждения и смерти клеток. Уменьше­ние кровотока (ишемия), возникающее при появлении препятст­вий в артериях, обычно при атеросклерозе или тромбозе, являет­ся основной причиной гипоксии. Другой причиной может быть неадекватная оксигенация крови при сердечно-сосудистой недос­таточности. Снижение способности крови к транспортировке ки­слорода, например при анемии и отравлении СО 2 - третья и наи­более редкая причина гипоксии. В зависимости от тяжести гипо­ксии клетки могут адаптироваться к ней, повреждаться или поги­бать.

    2. Физические агенты. К ним относят механическую травму, чрезмерное снижение или повышение температуры окружаю­щей среды, внезапные колебания атмосферного давления, радиа­цию и электрический шок.

    3. Химические агенты и лекарства. Даже простые химические соединения, такие как глюкоза и поваренная соль, в повышенных концентрациях могут вызвать повреждение клеток непосредст­венно или путем нарушения их электролитного гомеостаза. Кис­лород в высоких концентрациях очень токсичен.


    Следовые количества веществ, известных как яды (мышьяк, цианиды, соли ртути), могут разрушить достаточно большое ко­личество клеток в течение минут и часов.

    Разрушительным действием обладают также многие факто­ры окружающей среды: пыль, инсектициды и гербициды; про­мышленные и природные факторы, например уголь и асбест; со­циальные факторы: алкоголь, курение и наркотики; высокие до­зы лекарств.

    5. Иммунные реакции. Могут защищать организм, но могут вызвать и его смерть. Хотя иммунная система защищает орга­низм от воздействия биологических агентов, тем не менее иммун­ные реакции могут привести к повреждению клеток. Развитие некоторых иммунных реакций лежит в основе аутоиммунных бо­лезней.

    6. Генетические нарушения. Многие врожденные нарушения метаболизма связаны с энзимопатиями, чаще отсутствием фер­мента.

    7. Дисбаланс питания. Нередко является основной причиной повреждения клеток. Дефицит белковой пищи и витаминов оста­ется распространенным явлением.

    Сообщение

    Выполнил:

    студентка 3 курса

    лечебного факультета 10 группы

    Нестерова Наталья Игоревна

    Рязань, 2015

    Характеристика понятия повреждение (альтерация) как основы патологии клетки .

    Клетка – один из гистологических элементов организма. Для своего роста, дифференцировки (специализации), функционирования, приспособления и выживания она поддерживает собственный гомеостаз, осуществляет обмен веществ и энергии, реализует генетическую информацию, передает ее потомству, синтезирует компоненты межклеточного вещества и прямо или опосредованно участвует в выполнении всех функций организма.

    Нарушение жизнедеятельности организма человека всегда так или иначе связано с изменением функционирования клеток. Клетки организма выполняют определенные функции. В совокупности они способны удовлетворять физиологические потребности организма в поддержании нормального гомеостаза. При воздействии избыточных физиологических или патологических стимулов в клетках может развиться процесс адаптации, следствием которого является достижение нового стационарного состояния, позволяющего им нормально функционировать в изменившихся условиях. Если резерв адаптационного ответа исчерпан, а адаптация не достигнута, наступает повреждение клетки. До определенного предела повреждение клетки обратимо, но даже если это нарушение имеет временный и обратимый характер, оно ухудшает состояние организма в целом. Если неблагоприятный фактор действует длительно или интенсивность его действия очень велика, наступает необратимое повреждение клетки и ее гибель.

    Повреждение клетки – это такие изменения

    - ее структуры, метаболизма,

    -физико- химических свойств и функций, приводящие к многоликим расстройствам гомеостаза (постоянства рН, электролитов, воды, белков, углеводов, липидов, гормонов, витаминов и других ФАВ), а также снижению ее приспособляемости (к постоянно меняющимся условиям внешней и внутренней среды организма), резистентности (к действию разных повреждающих факторов) и продолжительности жизни.



    Тип (вид) повреждения клетки зависит от :

    • скорости развития основных проявлений нарушений функции клеток . Выделяют острое и хроническое повреждение клетки. Острое повреждение развивается быстро, и как правило, в результате однократного, но интенсивного повреждающего воздействия. Хроническое повреждение протекает медленно и является следствием многократного влияния, но менее интенсивного по силе повреждения агента;
    • жизненного цикла клетки, на период которого приходится воздействие повреждающего фактора. Различают митотические и интерфазные повреждения;
    • степени (глубины) нарушения клеточного гомеостаза – обратимые и необратимые повреждения;
    • характера взаимодействия повреждающего фактора с клеткой . Если патогенный агент действует непосредственно на клетку, то говорят о прямом (первичном) ее повреждении. В условиях целостного организма влияние причины может осуществляться и через формирование цепи вторичных реакций. Например, при механической травме непосредственно в месте воздействия этого агента образуются биологически активные вещества (БАВ) – это продукты распада погибших клеток, гистамин, оксидазы, простогландины и др. соединения, синтезируемые поврежденными клетками. БАВ, в свою очередь, вызывают нарушения функции клеток, ранее не попавших под влияние данного фактора. Такое повреждение получило название опосредованное или вторичное . Воздействие этиологического фактора может проявляться опосредованно и через изменения нервных и эндокринных регуляций (шок, стресс), при отклонениях физико-химического состояния организма (ацидоз, алколоз), при нарушениях системного кровообращения (сердечная недостаточность), гипоксии, гипо- и гипертермия, гипо- и гипегликемия и др.
    • характера повреждений вызванных определенным патогенным фактором . Рассматривают специфические и неспецифические повреждения.

    Выделяют два патогенетических варианта повреждения клеток:

    · 1. Насильственный. Развивается в случае действия на исходно здоровую клетку физических, химических и биологических факторов, интенсивность которых превышает обычные возмущающие воздействия, к которым клетка адаптирована. Наиболее чувствительны к данному варианту повреждения функционально малоактивные клетки, обладающие малой мощностью собственных гомеостатических механизмов.

    · 2. Цитопатический. Возникает в результате первичного нарушения защитно-компенсаторных гомеостатических механизмов клетки. В этом случае фактором, запускающим патогенетические механизмы повреждения, являются естественные для данной клетки возмущающие стимулы, которые в этих условиях становятся повреждающими. К цитопатическому варианту относятся все виды повреждения клетки, возникающего вследствие отсутствия каких-либо необходимых ей компонентов (гипоксическое, нервно-трофическое, при голодании, гиповитаминозах, недостаточности антиоксидантной системы, генетических дефектах и др.). К цитопатическому повреждению наиболее чувствительны те клетки, реактивность, а следовательно, и функциональная активность которых в естественных условиях очень высоки (нейроны, кардиомиоциты).

    Основные причины повреждения клетки

    В зависимости от происхождения выделяют следующие виды патогенных факторов:

    Экзогенные (первичные) и эндогенные (первичные в результате прямого, вторичные в результате опосредованного повреждения клеток);

    Инфекционные и неинфекционные

    Первое событие, которое в конце концов приводит к повреждению клетки, - это взаимодействие повреждающего агента с мишенями-молекулами (табл. 3-1). Так, мишенями для ультрафиолетовых лучей могут быть ароматические группы белков, ферментов и рецепторов или нуклеотиды в молекулах ДНК и РНК. Мишенью для окиси углерода служат различные гемсодержащие ферменты. Мишенью при действии гипоксии оказываются митохондрии, которые перестают запасать энергию в форме АТФ, и т.д.

    Примеры повреждающих агентов, действующих на клетку

    Взаимодействие повреждающего фактора c мишенью может приводить к повреждению самой мишени, что наблюдается, например, при действии ультрафиолетовых лучей на клетки. В других случаях мишень не повреждается действующим агентом, но временно перестает функционировать. Именно это приводит в конечном счете к повреждению клетки в целом. Например, при действии цианистого калия выключается функция цитохромоксидазы, которая в данном случае служит мишенью для яда. Но фермент не повреждается: если удалить цианид из окружающей среды, функция цитохромоксидазы восстановится. Причиной гибели клетки является последующее повреждение клеточных структур, вызванное длительным прекращением энергообеспечения.

    Таким образом, между моментом взаимодействия повреждающего агента с мишенью и процессом повреждения определенных клеточных структур может произойти целая цепь последовательных событий.

    Важно отметить, что фактором повреждения может быть как недостаток (абсолютный, относительный), так и избыток (абсолютный, относительный) веществ, необходимых для жизнедеятельности клеток и межклеточных структур, а также появление в организме веществ, не встречающихся в норме.

    Повреждение клетки - типический патологический процесс, основу которого составляют нарушения внутриклеточного гомеостаза, приводящие к нарушению структурной целостности клетки и ее функциональных способностей после удаления повреждающего агента. Так, например, на первом этапе нарушение функционирования клетки, вызванное действием неблагоприятных факторов, например недостатком кислорода или действием токсических соединений, может и не привести к повреждению клетки: как только восстановятся нормальные окружающие условия, клетка вновь вернется в состояние, близкое к исходному. Например, если в каком-нибудь участке миокарда кровоснабжение прекращается на короткий промежуток времени (не более 10-15 мин), а затем восстанавливается, то кардиомиоциты сохраняют способность к регенерации и нормальному функционированию. Если кровоснабжение не восстанавливается, то повреждение миокарда становится необратимым и кардиомиоциты на этом участке погибают.

    Различают непосредственное (первичное) и опосредованное (вторичное) повреждения. Последнее возникает как следствие первичных нарушений постоянства внутренней среды организма.

    В зависимости от скорости развития и выраженности основных проявлений повреждение клетки может быть острым и хроническим.

    Острое повреждение развивается быстро, как правило, в результате однократного, но интенсивного повреждающего воздействия, в то время как хроническое повреждение протекает медленно и является следствием многократных, но менее интенсивных патогенных влияний.

    В зависимости от периода жизненного цикла, на который приходится действие повреждающего агента, повреждение клетки может быть митотическим и интерфазным.

    В зависимости от степени нарушения внутриклеточного гомеостаза повреждение бывает обратимым и необратимым (см. выше).

    Выделяют два патогенетических варианта повреждения клеток:

    1. Насильственный. Развивается в случае действия на исходно здоровую клетку физических, химических и биологических факторов, интенсивность которых превышает обычные возмущающие воздействия, к которым клетка адаптирована. Наиболее чувствительны к данному варианту повреждения функционально малоактивные клетки, обладающие малой мощностью собственных гомеостатических механизмов.

    2. Цитопатический. Возникает в результате первичного нарушения защитно-компенсаторных гомеостатических механизмов клетки. В этом случае фактором, запускающим патогенетические механизмы повреждения, являются естественные для данной клетки возмущающие стимулы, которые в этих условиях становятся повреждающими. К цитопатическому варианту относятся все виды повреждения клетки, возникающего вследствие отсутствия какихлибо необходимых ей компонентов (гипоксическое, нервнотрофическое, при голодании, гиповитаминозах, недостаточности антиоксидантной системы, генетических дефектах и др.). К цитопатическому повреждению наиболее чувствительны те клетки, реактивность, а следовательно, и функциональная активность которых в естественных условиях очень высоки (нейроны, кардиомиоциты).

    Причинами повреждения клеток могут быть следующие факторы: гипоксия. Чрезвычайно важная и распространенная причина повреждения клеток. Уменьшение кровообращения (ишемия), возникающее при атеросклерозе, тромбозе, сдавлении артерий, является основной причиной гипоксии. Другой причиной может быть недостаточная оксигенация крови при сердечно-сосудистой или легочной патологии. Третьей причиной может являться нарушение транспорта кислорода, например при анемии, отравлении окисью углерода или действии метгемоглобинобразователей (нитраты и нитриты, хлорноватые и хлорноватистые соли, феррицианиды, лекарственные вещества - фенацетин, амидопирин, сульфаниламиды и др.) (подробнее см. раздел 16.2);

    Физические агенты - механическая травма, температурные воздействия, колебания барометрического давления, ионизирующая и ультрафиолетовая радиация, электрический ток;

    Химические агенты и лекарства. Повреждение клеток может быть вызвано как жизненно необходимыми химическими соединениями, такими, как, например, глюкоза или поваренная соль в гипертонических концентрациях, кислород в высоких концентрациях. Вещества, известные как яды (в частности, мышьяк, цианиды, соли ртути), могут вызывать гибель клеток в считанные минуты или часы. Гибель клеток может наступать при действии факторов внешней среды, «социальных» факторов - алкоголя, курения, наркотиков и др.;

    Иммунологические реакции. Хотя иммунные реакции защищают организм от воздействия биологических агентов, в ряде случаев (аллергия, аутоиммунные реакции) они могут обусловливать повреждение клеток;

    Генетические повреждения (например, наследственные мембранопатии, энзимопатии и др.);

    Дисбаланс питания.

    Первое событие, которое в конце концов приводит к повреждению клетки, - это взаимодействие повреждающего агента с мишенями-молекулами (табл. 3-1). Так, мишенями для ультрафиолетовых лучей могут быть ароматические группы белков, ферментов и рецепторов или нуклеотиды в молекулах ДНК и РНК. Мишенью для окиси углерода служат различные гемсодержащие ферменты. Мишенью при действии гипоксии оказываются митохондрии, которые перестают запасать энергию в форме АТФ, и т.д.

    Таблица 3-1. Примеры повреждающих агентов, действующих на клетку

    Окончание табл. 3-1

    * Увеличение разницы потенциалов между наружной и внутренней поверхностью клеточной мембраны.

    Взаимодействие повреждающего фактора c мишенью может приводить к повреждению самой мишени, что наблюдается, например, при действии ультрафиолетовых лучей на клетки. В других случаях мишень не повреждается действующим агентом, но временно перестает функционировать. Именно это приводит в конечном счете к повреждению клетки в целом. Например, при действии цианистого калия выключается функция цитохромоксидазы, которая в данном случае служит мишенью для яда. Но фермент не повреждается: если удалить цианид из окружающей среды, функция цитохромоксидазы восстановится. Причиной гибели клетки является последующее повреждение клеточных структур, вызванное длительным прекращением энергообеспечения.

    Таким образом, между моментом взаимодействия повреждающего агента с мишенью и процессом повреждения определенных клеточных структур может произойти целая цепь последовательных событий.

    Гибель клетки - это конечный результат ее повреждения. Существует два основных типа клеточной гибели - некроз и апоптоз. На сегодняшний день выделяют также третий тип смерти клеток - конечное дифференцирование, который, по мнению большинства современных ученых, является одной из форм апоптоза.

    Некроз (от греч. nekros - мертвый) - это патологическая форма гибели клетки вследствие ее необратимого химического или физического повреждения (высокая и низкая температура, органические растворители, гипоксия, отравление, гипотонический шок, ионизирующее излучение и др.). Некроз представляет собой спектр морфологических изменений, являющихся результатом разрушающего действия ферментов на поврежденную клетку. Развивается два конкурирующих процесса: ферментативное переваривание клетки

    (колликвационный, разжижающий некроз) и денатурация белков (коагуляционный некроз). Для проявления обоих этих процессов требуется несколько часов, поэтому в случае внезапной смерти, например, при инфаркте миокарда соответствующие морфологические изменения просто не успевают развиться. Этот вид гибели клеток генетически не контролируется.

    Некрозу могут предшествовать периоды паранекроза и некробиоза.

    Паранекроз - заметные, но обратимые изменения в клетке: помутнение цитоплазмы, вакуолизация, появление грубодисперсных осадков, увеличение проникновения в клетку различных красителей.

    Некробиоз - состояние «между жизнью и смертью» (от necros - мертвый и bios - живой); изменения в клетке, предшествующие ее смерти. При некробиозе в отличие от некроза возможно возвращение клетки в исходное состояние после устранения причины, вызвавшей некробиоз.

    Если некроз считается патологической формой клеточной гибели, возникающей в результате чрезмерного (резкого, сильного) повреждающего воздействия на клетку, то апоптоз противопоставляется ему как контролируемый процесс самоуничтожения клетки.

    Апоптоз (от греч. аро - отделение и ptosis - падение) - это генетически контролируемая физиологическая форма гибели клетки. Биологическое значение апоптоза заключается в поддержании внутреннего гомеостаза организма на клеточном, тканевом и системном уровнях. Апоптоз ответствен за многочисленные физиологические и патологические процессы в организме:

    1. Программированное разрушение клеток на стадии эмбриогенеза (автономный апоптоз). Различают три категории автономного апоптоза: морфогенетический, гистогенетический и филогенетический.

    Морфогенетический апоптоз участвует в разрушении различных тканевых зачатков, что обеспечивается:

    Гибелью клеток в межпальцевых промежутках;

    Гибелью клеток «избыточного» эпителия при слиянии нёбных отростков, когда формируется твердое нёбо;

    Гибелью клеток в дорсальной части нервной трубки во время смыкания, что необходимо для достижения единства эпителия двух сторон нервной трубки и связанной с ними мезодермы.

    Нарушение морфогенетического апоптоза в этих трех локализациях приводит, соответственно, к развитию синдактилии, расщеплению твердого нёба и spina bifida.

    Гистогенетический апоптоз имеет место при дифференцировке тканей и органов, например, при гормонально-зависимой дифференцировке половых органов из тканевых зачатков. Так, клетками Сертоли в яичках плода мужского пола синтезируется гормон, который вызывает путем апоптоза регрессию протоков Мюллера, из которых у женщин формируются маточные трубы, матка и верхняя часть влагалища.

    Филогенетический апоптоз участвует в удалении рудиментарных структур у эмбриона, например пронефроса.

    2. Гормонозависимая инволюция органов у взрослых, например отторжение клеток эндометрия во время менструального цикла, атрезия фолликулов в яичниках в менопаузе, регрессия молочной железы после прекращения лактации.

    3. Стабилизация численности клеток и их популяций в активно пролиферирующих тканях, например клеток эпителия кишечника, крови и иммунной системы; удаление стареющих клеток, прошедших свой жизненный цикл.

    4. Элиминация части опухолевых клеток во время спонтанной регрессии опухолей.

    5. Гибель клеток иммунной системы (В- и Т-лимфоцитов) при гипосекреции цитокинов, аутореактивных Т-клеток в тимусе - при их клональной делеции.

    6. Патологическая атрофия гормонозависимых органов, например атрофия предстательной железы после кастрации; истощение лимфоцитов в тимусе на фоне терапии глюкокортикоидами.

    7. Патологическая атрофия паренхиматозных органов после обтурации выводящих протоков, например, в поджелудочной и слюнных железах, почках.

    8. Гибель клеток, вызванная действием цитотоксических Т-лимфоцитов, в частности при отторжении трансплантата и болезни «трансплантат против хозяина».

    9. Элиминация клеток, инфицированных вирусами (например, при вирусном гепатите фрагменты апоптотических клеток обнаруживаются в печени в виде телец Каунсильмана).

    10. Элиминация поврежденных клеток при действии химических и физических факторов (высокая и низкая температура,

    ионизирующее излучение, противоопухолевые препараты и др.) в дозе, недостаточной для развития некроза.

    Апоптоз является активным процессом саморазрушения клетки, по морфологическим и другим признакам он существенно отличается от некроза (см. табл. 3-2). Наиболее характерные проявления апоптоза определяются тем, что первые события, связанные с его осуществлением, начинаются в ядре. К ним относятся конденсация хроматина с формированием скоплений (в виде ленты, комочков), прилежащих к ядерной мембране (маргинация хроматина), и появление вдавлений ядерной мембраны, приводящих к фрагментации ядра (кариорексису) и образованию апоптотических телец - внеклеточных фрагментов ядра, окруженных мембраной. В цитоплазме происходит конденсация и сморщивание гранул. Клеточная мембрана утрачивает ворсинчатость, образует пузыревидные вздутия, на ней экспрессируются различные молекулы, распознаваемые фагоцитами (фосфатидилсерин, тромбоспондин, десиалированные мембранные гликоконъюгаты). От поверхности апоптотической клетки отщепляются небольшие везикулы, наполненные содержимым цитоплазмы (митохондрии, рибосомы и др.) и окруженные мембранным липидным бислоем. Клетка постепенно уменьшается в объеме, округляется и теряет межклеточные контакты. Апоптотические клетки и их фрагменты (апоптотические тельца, везикулы) поглощаются макрофагами, нейтрофилами и другими соседними клетками, не являющимися «профессиональными» фагоцитами. В результате эндоцитоза содержимое апоптотических клеток не выделяется в межклеточное пространство, как это происходит при некрозе, при котором вокруг гибнущих клеток скапливаются их активные внутриклеточные компоненты, включая энзимы, закисляется среда, что способствует повреждению соседних клеток и развитию воспалительной реакции, т.е. апоптоз одиночной клетки не отражается на ее окружении.

    Признаки Некроз Апоптоз
    Пусковой фактор Разрушение мембраны под действием патологических стимулов Деградация ДНК под действием физиологических и патологических стимулов
    Распространенность Группа клеток Одиночная клетка
    Биохимические изменения в клетке Активация лизосомальных ферментов Активация эндонуклеаз, фрагментирующих ДНК
    Энергозависимость Нет Есть
    Целостность цитоплазматической и внутриклеточных мембран Нарушена Сохранена
    Морфологические изменения клетки Увеличение размеров клетки, разрыхление мембраны, набухание (окноз) цитоплазмы, митохондрий, лизис ядра и гранул Уменьшение размеров клетки, уплотнение и вздутие мембраны, кариопикноз, кариорексис, маргинация хроматина, конденсация и уплотнение гранул
    Воспалительный ответ Есть Нет
    Элиминация гибнущей клетки Лизис клетки, фагоцитоз Фрагментация клетки, поглощение фрагментов клетки (мембранных везикул, апоптотических телец) соседними клетками и фагоцитами

    Классическими индукторами экзогенного апоптоза являются стероидные гормоны (половые, тиреоидные, кальцитриол, минералокортикоиды, ретиноиды), антигены, антитела, митогены, цитокины (фактор некроза опухолей (TNF) α, интерлейкин (IL) 1, IL-10, интерферон (INF) γ, β-токоферол и др.). Их проапоптогенное действие осуществляется через ядерные рецепторы (например, GR - глюкокортикоидный рецептор), специализированные мембранные «рецепторы смерти» (Fas, TNF-RI, TNF-RII, DR-3, DR-5 и др.) и рецепторы, выполняющие иные функции, например функцию активации клетки (T-клеточный рецептор (TCR),

    цитокиновые рецепторы), что сопровождается развитием активационного апоптоза.

    Ситуация эндогенного запуска программы гибели клетки возможна при лишении ее ростовых факторов (IL-2, IL-3, IL-4, INF-α, колониестимулирующих факторов - гранулоцитарно-макрофагального (ГМ-КСФ), гранулоцитарного (Г-КСФ), эритропоэтина и др.), нарушении контактов с внеклеточным матриксом и другими клетками, накоплении нерепарируемых разрывов ДНК (например, при повреждении клетки вирусами, ионизирующей радиацией, ультрафиолетовым излучением, токсинами и др.). В последнем случае важная роль отводится ядерному белку р53 (см. ниже).

    В результате запуска апоптогенным (экзогенным или эндогенным) сигналом программы активации генов-индукторов апоптоза (Р53, BAX, PIG, FAS/APO-1, IGF-BP3 и др.) и/или угнетения апоптозингибирующих генов (генов семейства BCL-2) в клетке изменяется набор внутриклеточных РНК и белков, синтезируются и активируются ферменты, способные разрушать клеточные белки (протеазы - каспазы, катепсины, кальпаины, гранзимы) и нуклеиновые кислоты (нуклеазы - Са 2+ /Мg 2+ -зависимая эндонуклеаза и др.). Основным проявлением деструктивных изменений клетки при апоптозе является деградация хроматина, основой которого служит расщепление ДНК.

    В настоящее время выделены несколько основных механизмов реализации апоптоза:

    1) Рецепторный. Осуществляется с помощью «рецепторов смерти» (см. выше) при активирующем взаимодействии с соответствующими лигандами, большинство из которых относится к суперсемейству фактора некроза опухолей. Взаимодействие рецептора с лигандом приводит к активации адапторных белков, ассоциированных с «доменами смерти» (FADD - Fas-associated death domain, TRADD - TNF-R-associated death domain), и прокаспазы 8, продукт которой - каспаза 8 (инициаторная) активирует каспазу 3 (эффекторную), что, в свою очередь, обусловливает активацию эндонуклеаз, фрагментирующих ДНК.

    2) Митохондриальный. Участие митохондрий в апоптозе обеспечивается присутствием в их матриксе и межмембранном пространстве большого количества биологически активных веществ (цитохрома С (Cyt С); прокаспаз 2, 3, 9; апоптозиндуцирующего фактора (AIF), обладающих выраженным апоптогенным действием. Фактором активации апоптоза является выход данных веществ

    в цитоплазму при снижении трансмембранного потенциала митохондрий вследствие открытия гигантских митохондриальных пор (выполняют роль Ca 2 +-, рН-, потенциал-, НАДФ2Н/НАДФ+- и редоксзависимых каналов) и повышения проницаемости митохондриальных мембран. К раскрытию пор приводят истощение в клетках восстановленного глутатиона, НАДФН, АТФ и АДФ, образование активных форм кислорода, разобщение окислительного фосфорилирования, увеличение содержания Ca 2 + в цитоплазме. Поступление межмембранных белков и активация апоптоза возможны также при разрыве наружной мембраны митохондрий вследствие гиперполяризации внутренней мембраны.

    3) р53-опосредованный. p53 - многофункциональный белок, играющий важную роль в мониторинге сигналов о состоянии клетки, целостности ее генома, активности систем ДНК-репарации. Повреждение ДНК ведет к накоплению белка р53 в клетке. Это определяет остановку клеточного цикла в фазах G 1 и G 2 , предотвращает репликацию, активирует синтез и репарацию ДНК, а следовательно, создает условия для восстановления нативной структуры ДНК, препятствует появлению мутантных и анеуплоидных клеток в организме. В случае если имеется недостаточность систем ДНК-репарации и повреждения ДНК сохраняются, клетка подвергается апоптозу. В частности, белок р53 способен индуцировать транскрипцию таких апоптогенных факторов, как Bax, Fas- рецептор, DR-5 и др.

    4) Перфорин-гранзимовый. Цитотоксические Т-лимфоциты (Т-киллеры) вызывают апоптоз клеток-мишеней (например, инфицированных клеток) с помощью белка перфорина. Полимеризуясь, перфорин образует в цитоплазматической мембране клеткимишени трансмембранные каналы, по которым внутрь клетки поступают секретируемые Т-киллером гранзимы (фрагментины) - смесь сериновых протеаз. Основным компонентом этой смеси является гранзим В - протеолитический фермент, активирующий каспазу 3.

    Важную роль в процессе передачи апоптогенного сигнала и регуляции апоптоза играют следующие внутриклеточные факторы (мессенджеры):

    Концентрация ионов Ca (Ca 2 + активирует сериновые и цистеиновые протеазы, Ca 2+ /Mg 2+ -зависимую эндонуклеазу);

    Протеинкиназы А (медиатор апоптоза) и С (ингибитор апоптоза);

    Церамид (стимулирует киназы, фосфатазы);

    Активные формы кислорода (обусловливают снижение трансмембранного потенциала митохондрий, увеличение внутриклеточной концентрации Ca 2 +, образование цАМФ);

    Монооксид азота (опосредует изменение экспрессии р53, открытие гигантских пор в митохондриях и снижение митохондриального потенциала).

    При различных патологических процессах в организме (инфекция, воспаление, иммунодефициты, гипо- и апластическая анемии, опухоли и др.) могут наблюдаться как ускорение, так и замедление апоптоза.

    Примеры некоторых заболеваний, в патогенез которых включается апоптоз, представлены в табл. 3-3.

    Таблица 3-3. Примеры заболеваний, связанных с угнетением или усилением апоптоза

    Универсальный ответ клетки на повреждение. Особенностью развития патологических изменений в клетках в ответ на самые различные неблагоприятные воздействия является сходство этих изменений, которое позволило Д.Н. Насонову и В.Я. Александрову выдвинуть в 1940 г. теорию о неспецифической реакции клеток на повреждение. Ее суть сводится к следующему - каким бы ни был повреждающий агент и на какие бы клетки он ни действовал, ответ клеток по ряду показателей является одинаковым. К числу таких показателей относятся:

    1) уменьшение дисперсности коллоидов цитоплазмы и ядра;

    2) увеличение вязкости цитоплазмы, которому иногда предшествует ее некоторое уменьшение;

    3) увеличение сродства цитоплазмы и ядра к ряду красителей. Во многих случаях обнаруживаются также набухание клетки,

    изменение ионной проницаемости плазматической и внутриклеточных мембран, выход метаболитов из клетки, изменение флуоресценции, повышение кислотности цитоплазмы и т.д. Существование такого стереотипа изменений физико-химических свойств клеток при их повреждении связано с тем, что молекулярноклеточные механизмы повреждения сходны, хотя причины, вызвавшие повреждение, могут быть самыми разными. Практически у всех клеток при действии повреждающих агентов наблюдается резкое увеличение проницаемости клеточных мембран для ионов кальция. Это сопровождается активацией различных внутриклеточных ферментов и процессов: протеинкиназ, фосфолипаз, фосфодиэстеразы циклических нуклеотидов, системы биосинтеза белков и т.д. Эти изменения могут быть обратимыми, но в конце концов при сильном и длительном воздействии повреждающего фактора происходит стойкое нарушение функций клеток, а следовательно, ткани и органа в целом.