Секреторная функция пищеварительных желез заключается в выделении в просвет желудочно-кишечного тракта секретов, принимающих участие в обработке пищи. Для их образования клетки должны получать определенные количества крови, с током которой поступают все необходимые вещества. Секреты желудочно-кишечного тракта – пищеварительные соки. Любой сок состоит на 90–95 % воды и сухого остатка. В сухой остаток входят органические и неорганические вещества. Среди неорганических наибольший объем занимают анионы и катионы, соляная кислота. Органические представлены:

1) ферментами (главный компонент – протеолитические ферменты, расщепляющие белки до аминокислот, полипептидов и отдельных аминокислот, глюколитические ферменты преобразуют углеводы до ди– и моносахаров, липолитические ферменты превращают жиры в глицерин и жирные кислоты);

2) лизином. Основной компонент слизи, придающий вязкость и способствующий образованию пищевого комка (болеоса), в желудке и кишечнике взаимодействует с бикарбонатами желудочного сока и образует мукозобикарбонатный комплекс, который выстилает слизистую оболочку и предохраняет ее от самопереваривания;

3) веществами, которые обладают бактерицидным действием (например, муропептидазой);

4) веществами, которые подлежат удалению из организма (например, азотосодержащие – мочевина, мочевая кислота, креатинин и т. д.);

5) специфическими компонентами (это желчные кислоты и пигменты, внутренний фактор Кастла и др.).

На состав и количество пищеварительных соков оказывает влияние рацион питания.

Регуляция секреторной функции осуществляется тремя способами – нервным, гуморальным, местным.

Рефлекторные механизмы представляют собой отделение пищеварительных соков по принципу условного и безусловного рефлексов.

Гуморальные механизмы включают три группы веществ:

1) гормоны желудочно-кишечного тракта;

2) гормоны желез внутренней секреции;

3) биологически активные вещества.

Гормоны желудочно-кишечного тракта относятся к простым пептидам, которые вырабатываются клетками APUD-системы. Большинство действует эндокринным путем, но некоторые из них осуществляют свое действие параэндокринным способом. Поступая в межклеточные пространства, они действуют на находящиеся рядом клетки. Так, например, гормон гастрин вырабатывается в пилорической части желудка, двенадцатиперстной кишке и верхней трети тонкого кишечника. Он стимулирует секрецию желудочного сока, особенно соляной кислоты и поджелудочных ферментов. Бамбезин образуется в том же месте и является активатором для синтеза гастрина. Секретин стимулирует отделение сока поджелудочной железы, воды и неорганических веществ, подавляет секрецию соляной кислоты, оказывает незначительное влияние на другие железы. Холецистокинин-панкреозинин вызывает отделение желчи и поступление ее в двенадцатиперстную кишку. Тормозное действие оказывают гормоны:

1) гастрон;

2) гастроингибирующий полипептид;

3) панкреатический полипептид;

4) вазоактивный интестинальный полипептид;

5) энтероглюкагон;

6) соматостатин.

Среди биологически активных веществ усиливающим действием обладают серотонин, гистамин, кинины и др. Гуморальные механизмы появляются в желудке и наиболее выражены в двенадцатиперстной кишке и в верхнем отделе тонкого кишечника.

Местная регуляция осуществляется:

1) через метсимпатическую нервную систему;

2) через непосредственное воздействие пищевой кашицы на секреторные клетки.

Стимулирующее влияние оказывают также кофе, пряные вещества, алкоголь, жидкая пища и т. д. Местные механизмы наиболее выражены в нижних отделах тонкого кишечника и в толстом кишечнике.

Оглавление темы "Функции пищеварительной системы (жкт). Типы пищеварения. Гормоны желудочно-кишечного тракта. Моторная функция желудочно-кишечного тракта.":
1. Физиология пищеварения. Физиология пищеварительной системы. Функции пищеварительной системы (жкт).
2. Состояние голода и насыщения. Чувство голода. Чувство насыщения. Гиперфагия. Афагия.

4. Типы пищеварения. Собственный тип пищеварения. Аутолитический тип. Внутриклеточное пищеварение. Внеклеточное пищеварение.
5. Гормоны желудочно-кишечного тракта. Место образования гормонов жкт. Эффекты вызываемые гормонами желудочно - кишечного тракта.
6. Моторная функция желудочно-кишечного тракта. Гладкая мускулатура пищеварительного тракта. Cфинктеры жкт. Сократительная деятельность кишечника.
7. Координация сократительной деятельности. Медленные ритмические колебания. Продольный мышечный слой. Влияние катехоламинов на миоциты.

Секреторная функция - деятельность пищеварительных желез, вырабатывающих секрет (пищеварительный сок), с помощью ферментов которого в желудочно-кишечном тракте осуществляется физико-химическое преобразование принятой пищи.

Секреция - процесс образования из веществ, поступивших из крови в секреторные клетки (гландулоциты), секрета определенного функционального назначения и выделения его из железистых клеток в протоки пищеварительных желез.

Секреторный цикл железистой клетки состоит из трех последовательных и взаимосвязанных этапов - поглощения веществ из крови, синтеза из них секреторного продукта и секретовыделени я. Клетки пищеварительных желез по характеру продуцируемого секрета подразделяются на белок-, мукоид- и минералсекретирующие.

Пищеварительные железы отличаются обильной васкуляризацией. Из крови, протекающей по сосудам железы, секреторные клетки поглощают воду, неорганические и органические низкомолекулярные вещества (аминокислоты, моносахариды, жирные кислоты). Этот процесс осуществляется за счет активности ионных каналов, базальных мембран эндотелиоцитов капилляров, мембран самих секреторных клеток. Из поглощенных веществ на рибосомах гранулярного эндоплазматического ретикулума синтезируется первичный секреторный продукт , который подвергается дальнейшим биохимическим превращениям в аппарате Гольджи и накапливается в конденсирующих вакуолях глан-дулоцитов. Вакуоли превращаются в гранулы зимогена (профермента), покрытые липопротеиновой оболочкой, с помощью которой окончательный секреторный продукт транспортируется через мембрану гландулоцита в протоки железы.

Гранулы зимогена выводятся из секреторной клетки по механизму экзоцитоза: после перемещения гранулы к апикальной части гландулоцита происходит слияние двух мембран (гранулы и клетки), и через образовавшиеся отверстия содержимое гранул поступает в ходы и протоки железы.

По характеру выделения секрета этот тип клеток относят к мерокриновым .

Для голокриновых клеток (клеток поверхностного эпителия желудка) характерно превращение всей массы клетки в секрет в результате ее ферментативной деструкции. Апокриновые клетки вьщеляют секрет с апикальной (верхушечной) частью своей цитоплазмы (клетки протоков слюнных желез человека в период эмбриогенеза).

Секреты пищеварительных желез состоят из воды, неорганических и органических веществ. Наибольшее значение для химической трансформации пищевых веществ имеют ферменты (вещества белковой природы), являющиеся катализаторами биохимических реакций. Они относятся к группе гидролаз, способных присоединять к перевариваемому субстрату Н+ и ОН", превращая высокомолекулярные вещества в низкомолекулярные. В зависимости от способности расщеплять определенные вещества ферменты подразделяются на 3 группы : глюколитические (гидролизующие углеводы до ди- и моносахаридов), протеолитические (гидролизующие белки до пептидов, пептонов и аминокислот) и липолитические (гидролизующие жиры до глицерина и жирных кислот). Гидролитическая активность ферментов возрастает в известных пределах при повышении температуры перевариваемого субстрата и наличия в ней активаторов, их активность снижается под влиянием ингибиторов.

Максимальная гидролитическая активность ферментов слюны, желудочного и кишечного соков обнаруживается при разном оптимуме рН среды.

Ежедневно в тонком кишечнике образуется до 2 л секрета (кишечный сок ) с pH от 7,5 до 8,0. Источники секрета - железы подслизистой оболочки двенадцатиперстной кишки (бруннеровы железы) и часть эпителиальных клеток ворсинок и крипт.

Бруннеровы железы секретируют слизь и бикарбонаты. Слизь, выделяемая бруннеровыми железами, защищает стенку двенадцатиперстной кишки от действия желудочного сока и нейтрализует соляную кислоту, поступающую из желудка.

Эпителиальные клетки ворсинок и крипт (рис. 22–8). Их бокаловидные клетки секретируют слизь, а энтероциты выделяют в просвет кишки воду, электролиты и ферменты.

Ферменты . На поверхности энтероцитов в ворсинках тонкой кишки находятсяпептидазы (расщепляют пептиды до аминокислот),дисахаридазы сукраза, мальтаза, изомальтаза и лактаза (расщепляют дисахариды на моносахариды) икишечная липаза (расщепляет нейтральные жиры до глицерина и жирных кислот).

Регуляция секреции . Секрециюстимулируют механическое и химическое раздражение слизистой оболочки (местные рефлексы), возбуждение блуждающего нерва, гастроинтестинальные гормоны (особенно холецистокинин и секретин). Секрецию тормозят влияния со стороны симпатической нервной системы.

Секреторная функция толстой кишки . Крипты толстой кишки выделяют слизь и бикарбонаты. Величину секреции регулируют механическое и химическое раздражение слизистой оболочки и локальные рефлексы энтеральной нервной системы. Возбуждение парасимпатических волокон тазовых нервов вызывает увеличение отделения слизи с одновременной активацией перистальтики толстой кишки. Сильные эмоциональные факторы могут стимулировать акты дефекации с периодическим выделением слизи без фекального содержимого («медвежья болезнь»).

Переваривание пищи

Белки, жиры и углеводы в пищеварительном тракте превращаются в продукты, способные всасываться (пищеварение, переваривание). Продукты пищеварения, витамины, минералы и вода проходят сквозь эпителий слизистой оболочки и поступают в лимфу и кровь (всасывание). Основу пищеварения составляет химический процесс гидролиза, осуществляемый пищеварительными ферментами.

Углеводы . В пище содержатсядисахариды (сахароза и мальтоза) иполисахариды (крахмалы, гликоген), а также другие органические соединения углеводного характера.Целлюлоза в пищеварительном тракте не переваривается, так как у человека нет ферментов, способных её гидролизовать.

Ротовая полость и желудок .-Амилаза расщепляет крахмал до дисахарида - мальтозы. За короткое время пребывания пищи в ротовой полости переваривается не более 5% всех углеводов. В желудке углеводы продолжают перевариваться в течение часа, прежде чем пища полностью перемешается с желудочным соком. За этот период до 30% крахмалов гидролизуется до мальтозы.

Тонкая кишка .-Амилаза панкреатического сока заканчивает расщепление крахмалов до мальтозы и других дисахаридов. Содержащиеся в щёточной каёмке энтероцитов лактаза, сахараза, мальтаза и-декстриназа гидролизуют дисахариды. Мальтоза расщепляется до глюкозы; лактоза - до галактозы и глюкозы; сахароза - до фруктозы и глюкозы. Образовавшиеся моносахариды всасываются в кровь.

Белки

Желудок . Пепсин, активный при pH от 2,0 до 3,0, превращает 10–20% белков в пептоны и некоторое количество полипептидов.

Тонкая кишка (рис. 22–8)

 Ферменты поджелудочной железы трипсин и химотрипсин в просвете кишки расщепляют полипептиды на ди– и трипептиды, карбоксипептидаза отщепляет аминокислоты от карбоксильного конца полипептидов. Эластаза переваривает эластин. В целом образуется немного свободных аминокислот.

 На поверхности микроворсинок каёмчатых энтероцитов в двенадцатиперстной и тощей кишке находится трёхмерная густая сеть - гликокаликс, в котором расположены многочисленные пептидазы. Именно здесь эти ферменты осуществляют так называемое пристеночное пищеварение . Аминополипептидазы и дипептидазы расщепляют полипептиды на ди- и трипептиды, а ди- и трипептиды превращают в аминокислоты. Затем аминокислоты, дипептиды и трипептиды легко транспортируются внутрь энтероцитов через мембрану микроворсинок.

 В каёмчатых энтероцитах имеется множество пептидаз, специфичных для связей между конкретными аминокислотами; в течение нескольких минут все оставшиеся ди- и трипептиды превращают в отдельные аминокислоты. В норме более 99% продуктов переваривания белков всасывается в виде отдельных аминокислот. Очень редко всасываются пептиды.

Рис .22–8 .Ворсинка и крипта тонкого кишечника . Слизистая оболочка покрыта однослойным цилиндрическим эпителием. Каёмчатые клетки (энтероциты) участвуют в пристеночном пищеварении и всасывании. Панкреатические протеазы в просвете тонкого кишечника расщепляют поступающие из желудка полипептиды на короткие пептидные фрагменты и аминокислоты с последующим их транспортом внутрь энтероцитов. Расщепление коротких пептидных фрагментов до аминокислот происходит в энтероцитах. Энтероциты передают аминокислоты в собственный слой слизистой оболочки, откуда аминокислоты поступают в кровеносные капилляры. Связанные с гликокаликсом щеточной каёмки дисахаридазы расщепляют сахара до моносахаридов (главным образом, глюкозы, галактозы и фруктозы), которые всасываются энтероцитами с последующим выходом в собственный слой и поступлением в кровеносные капилляры. Продукты пищеварения (кроме триглицеридов) после всасывания через капиллярную сеть в слизистой оболочке направляются в воротную вену и далее в печень. Триглицериды в просвете пищеварительной трубки эмульгируются жёлчью и расщепляются панкреатическим ферментом липазой. Образовавшиеся свободные жирные кислоты и глицерин поглощают энтероциты, в гладкой эндоплазматической сети которых происходит ресинтез триглицеридов, а в комплексеГольджи- формирование хиломикронов - комплекса триглицеридов и белков. Хиломикроны подвергаются экзоцитозу на боковой поверхности клетки, проходят через базальную мембрану и поступают в лимфатические капилляры. В результате сокращения ГМК, расположенных в соединительной ткани ворсинки, лимфа продвигается в лимфатическое сплетение подслизистой оболочки. Кроме энтероцитов, в каёмчатом эпителии присутствуют бокаловидные клетки, вырабатывающие слизь. Их количество нарастает от двенадцатиперстной к подвздошной кишке. В криптах, особенно в области их дна, расположены энтероэндокринные клетки, вырабатывающие гастрин, холецистокинин, желудочный ингибирующий пептид, мотилин и другие гормоны.

Жиры находятся в пище преимущественно в виде нейтральных жиров (триглицеридов), а также фосфолипидов, холестерола и эфиров холестерола. Нейтральные жиры входят в состав пищи животного происхождения, их значительно меньше в растительной пище.

Желудок . Липазы расщепляют менее 10% триглицеридов.

Тонкая кишка

 Переваривание жиров в тонкой кишке начинается с превращения крупных жировых частиц (глобул) в мельчайшие глобулы - эмульгирование жиров (рис. 22–9А). Этот процесс начинается в желудке под влиянием перемешивания жиров с желудочным содержимым. В двенадцатиперстной кишке жёлчные кислоты и фосфолипид лецитин эмульгируют жиры до размеров частиц в 1 мкм, увеличивая общую поверхность жиров в 1000 раз.

 Панкреатическая липаза расщепляет триглицериды на свободные жирные кислоты и 2-моноглицериды и способна в течение 1 минуты переварить все триглицериды химуса, если они находятся в эмульгированном состоянии. Роль кишечной липазы в переваривании жиров невелика. Накопление моноглицеридов и жирных кислот в местах переваривания жиров останавливает процесс гидролиза, но этого не происходит, потому что мицеллы, состоящие из нескольких десятков молекул жёлчных кислот, удаляют моноглицериды и жирные кислоты в момент их образования (рис. 22–9А). Мицеллы холатов транспортируют моноглицериды и жирные кислоты к микроворсинкам энтероцитов, где они всасываются.

 Фосфолипиды содержат жирные кислоты. Эфиры холестерола и фосфолипиды расщепляются специальными липазами поджелудочного сока: холестерол–эстераза гидролизует эфиры холестерола, а фосфолипаза A 2 расщепляет фосфолипиды.

Секреция в ротовой полости

В ротовой полости слюну вырабатывают 3 пары крупных и множество мелких слюнных желез. Подъязычная и мелкие железы выделяют секрет постоянно. Околоушная и подчелюстная - при стимуляции.

1) Время нахождения пищи в ротовой полости в среднем - 16-18 секунд.

2) Объем суточной секреции - 0,5-2 литра. Пищеварение полостное

3) Скорость секреции - от 0,25 мл/мин. до 200 мл/мин.

4) рН - 5,25-8,0. Оптимальная среда для действия ферментов - слабо щелочная.

Состав слюны:

А). Вода - 99,5%.

Б). Ионы К, Na, Ca, Mg, Fe, Cl, F, PO4, SO4, CO3.

В). Белки (альбумины, глобулины, свободные аминокислоты), азотсодержащие соединения небелковой природы (аммиак, мочевина, креатинин). Их содержание увеличивается при почечной недостаточности.

Г). Специфические вещества:

Муцин (мукополисахарид), придает слюне вязкость, формирует пищевой комок.

Лизоцим (муромидаза) вещество, обеспечивающее бактерицидным действием (собаки зализывают рану),

Нуклеаза слюны - антивирусное действие,

Иммуноглобулин А - связывает экзотоксины.

Д) активные лейкоциты - фагоцитоз (в см3 слюны - 4000 шт.).

Е) нормальная микрофлора ротовой полости, которая угнетает патологическую.

Ж). Ферменты слюны. Относятся к карбогидразам :

1. Альфа-амилаза - расщепляет крахмал на дисахариды.

2. Альфа-глюкозидаза - на сахарозу и мальтозу - расщепляют до моносахаров (активны в слабощелочной среде).

Секреция в желудке

Время нахождения пищи в желудке - 3-10 часов. Натощак в желудке находит ся около 50 мл содержимого (слюна, желудочный секрет и содержимое 12-перстной кишки) нейтральной рН (6,0).Объем суточной секреции - 1,5 - 2,0 л/сутки, рН - 0,8-1,5.

Железы желудка состоят из трех видов клеток : Главные клетки – вырабатывают ферменты; Париетальные (обкладочные) - НCl; Добавочные - слизь.

Клеточный состав желез изменяется в различных отделах желудка (в антральном - нет главных клеток, в пилорическом - нет обкладочных).

Пищеварение в желудке преимущественно полостное.

Состав желудочного сока

1. Вода - 99 - 99,5%. 2. Специфические вещества: Основной неорганический компонент - HCl (м.б. в свободном состоянии и связанная с белками). Роль HCl в пищеварении: 1. Стимулирует секрецию желез желудка.2. Активирует превращение пепсиногена в пепсин.3. Создает оптимальную рН для ферментов. 4. Вызывает денатурацию и набухание белков (легче расщепляются ферментами). 5. Обеспечивает антибактериальное действие желудочного сока, а следовательно, и консервирующий эффект пищи (нет процессов гниения и брожения). 6. Стимулирует моторику желудка.7. Участвует в створаживании молока.8. Стимулирует выработку гастрина и секретина (интестинальные гормоны). 9. Стимулирует секрецию энтерокиназы стенкой 12-перстной кишки.


3. Органические специфические вещества: 1. Муцин - предохраняет желудок от самопереваривания. Формы муцина (выделяется в 2-х формах):

а) прочно связанная с клеткой, предохраняет слизистую от самопереваривания;

б) непрочно связанная , покрывает пищевой комок.2. Гастромукопротеид (внутренний фактор Кастла ) - необходим для всасывания витамина В12.

3. Мочевина, мочевая кислота, молочная кислота .4. Антиферменты .

Ферменты желудочного сока:

1)В основном - протеазы, обеспечивают начальный гидролиз белков (до пептидов и небольшого количества аминокислот). Общее название - пепсины.

Вырабатываются в неактивной форме (в виде пепсиногенов). Активация происходит в просвете желудка с помощью HCl, которая отщепляет ингибирующий белковый комплекс. Последующая активация идет аутокаталитически (пепсином). Поэтому больные анацидным гастритом вынуждены до приема пищи принимать раствор HCl для запуска пищеварения. Пепсины расщепляют связи , образованные фенилаланином, тирозином, триптофаном и рядом других аминокислот.

1. Пепсин А - (оптимум рН - 1,5-2,0) расщепляет крупные белки на пептиды. Не вырабатывается в антральной части желудка. 2. Пепсин В (желатиназа)- расщепляет белок соединительной ткани - желатин (активен при рН меньше 5,0). 3. Пепсин С (гастриксин) - фермент, расщепляющий животные жиры, особенно гемоглобин (оптимум рН - 3,0-3,5). 4. Пепсин D (реннин) - створаживает казеин молока. В основном - у КРС, особенно много у телят - используется при изготовлении сыра (поэтому сыр на 99% усваивается организмом) У человека -химозин (вместе с соляной кислотой (створаживает молоко)). У детей - фетальный пепсин (оптимум рН -3,5), в 1,5 раза активнее створаживает казеин, чем у взрослых. Створоженные белки молока легче подвергаются дальнейшему перевариванию.

2)Липаза. В желудочном соке содержится липаза, активность которой невелика, она действует только на эмульгированные жиры (например, молока, рыбьего жира). Расщепляются жиры на глицерин и ВЖК при рН 6-8 (в нейтральной среде). У детей желудочная липаза расщепляет до 60% жиров молока.

3)Углеводы в желудке расщепляются за счет ферментов слюны (до их инактивации в кислой среде). Собственных карбогидраз желудочный сок не содержит.

Моторная функция желудка

В состоянии покоя через каждые 45-90 минут покоя наблюдаются периодические сокращения - по 20-50 минут (тощаковая периодическая деятельность ). Во время приема пищи и спустя некоторое время - стенка расслаблена ("рецептивное расслабление ").

В желудке есть кардиальный водитель ритма, откуда и идут перистальтические волны (скорость- 1 см/с, время - 1,5 с, волна охватывает - 1-2 см желудочной стенки).

В моторике желудка выделяют в основном 4 вида:1. Тонус. 2. Перистальтика. 3. Ритмическая сегментация. 4. Маятникообразные движения

1. Тонус - благодаря тонусу желудок охватывает пищевой комок, каким бы маленьким он не был (за счет раздражения механорецепторов желудка).

2. Перистальтика - за счет сокращения продольной и циркулярной мускулатуры желудка пища передвигается из области кардии к пилѐрусу.

3. Ритмическая сегментация - сокращение циркулярной мускулатуры делит содержимое желудка на 3-4 сегмента. В каждом из них пищеварение идет во многом обособленно.

4. Маятникообразные движения - осуществляются в пределах сегмента за счет сокращения продольных и косых мышц желудка (участвуют в перемешивании пищи).

Благодаря сочетанию сокращений различных мышц желудка осуществляется перемешивание содержимого желудка и передвижение пищи.

Механизм перехода пищи из желудка в 12-перстную кишку

Для открытия пилорического сфинктера необходимы следующие условия:

раздражение механорецепторов перед сфинктером; отсутствие раздражения механорецепторов за сфинктером (основная причина); щелочная среда за сфинктером. При изменении этих условий (поступление порции кислого содержимого из желудка) сфинктер закрывается.

Сок поджелудочной железы

Железа смешанной секреции. Сок выделяет в 12-перстную кишку. Пищеварение в 12-перстной кишке преимущественно полостное. За сутки - 1,5-2,5 л панкреатического сока, рН - 7,5-8,8. Из солей - высокое содержание бикарбоната - обеспечивают нейтрализацию кислого желудочного содержимого.

Специфические вещества поджелудочного сока:

1. Панкреатический калликреин - близок по свойствам к плазменному, высвобождает каллидин, идентичный брадикинину, т.е. активируется моторика, расширяются сосуды тонкого кишечника. 2. Ингибитор трипсина - блокирует активацию трипсина внутри железы.

Ферменты панкреатического сока.

Панкреатический сок содержит все группы ферментов , воздействующих на белки, жиры, углеводы и нуклеиновые кислоты, т.е. уже в 12-п.к. идет глубокое расщепление пищи.

Пищеварительные ферменты поджелудочного сока

Протеазы поджелудочного сока (эндо- и экзопептидазы):

а) Эндопептидазы - действуют на молекулу изнутри, расщепляя внутренние пептидные связи.

1. Трипсин - расщепляет связи между аргинином и лизином.

Вырабатывается в виде неактивного трипсиногена, который активируется ферментом кишечного сока - энтерокиназой . В последующем активация трипсиногена и остальных протеаз поджелудочного сока с - за счет трипсина.

2. Химотрипсин - расщепляет связи тирозина, триптофана, фенилаланина. Вырабатывается в неактивной форме и в кишечнике активируется трипсином.

3. Панкреопептидаза Е (эластаза) - расщепляет эластические белки.

б) Экзопептидазы расщепляют конечные связи, освобождая аминокислоты одну за другой.

1. Карбоксипептидаза -отщепляет аминокислоты с "С"-конца пептида (СООН).

2. Аминопептидаза - отщепляет аминокислоты с "N"-конца пептида (NH3).

Т.о. уже в 12-п.к. происходит расщепление большого количества белка до аминокислот.

Липазы поджелудочного сока:

Липаза поджелудочной железы является основной липазой желудочно-кишечного тракта.

1. вырабатывается в неактивном состоянии,

2.активируется желчью (желчными кислотами); 3.действует на эмульгированные жиры, расщепляя их до глицерина и высших жирных кислот.

В отличие от желудка, где нет эмульгаторов, здесь есть желчь, которая хорошо эмульгирует жиры, т.е. 12-п.к. - основное место расщепления жиров.

Фосфолипаза А расщепляет фосфолипиды до жирных кислот.

Карбогидразы поджелудочного сока

1. Альфа-амилаза - расщепляет гликоген и крахмал до дисахаридов.

2. Альфа -глюкозидаза - расщепляет дисахариды до моносахаридов, то есть продолжается процесс, начатый в ротовой полости.

Нуклеазы (класс фосфодиэстераз):

1. Рибонуклеаза.

2. Дезоксирибонуклеаза.

Представляет собой сочетание секрета и экскрета. Объем суточной секреции - 0,5-1 л. рН - 7,8-8,6. Состав желчи:

1. Желчь не содержит ферментов .

2. Специфические вещества: желчные кислоты и желчные пигменты: билирубин - основной пигмент у человека, придает коричневую окраску; биливердин - в основном в желчи травоядных животных (зеленый цвет).

Роль желчи в пищеварении:

1. Участвует в смене желудочного пищеварения на кишечное (инактивация пепсина и кислого содержимого).

2. Создает оптимальную рН для ферментов pancreas, особенно - липаз.

3. Регулирует работу пилорического сфинктера (за счет щелочной рН).

4. Стимулирует моторику тонкого кишечника и деятельность кишечных ворсинок, что увеличивает скорость адсорбции веществ.

5. Участвует в пристеночном пищеварении, создавая благоприятные условия для фиксации ферментов на поверхности кишки.

6. Стимулирует секрецию pancreas.

7. Стимулирует желчеобразовательную функцию печени (положительная обратная связь).

8. Предупреждает развитие гнилостных процессов (бактериостатическое действие на кишечную микрофлору).

9.Желчные кислоты, как компонент желчи, играют в пищеварении ведущую роль: эмульгируют жиры, активируют поджелудочную липазу, обеспечивают всасывание нерастворимых в воде веществ, образуя с ними комплексы (жирные кислоты, холестерин, жирорастворимые витамины (А, D, Е, К) и соли Са+2), способствуют ресинтезу триглицеридов в энтероцитах.

Влияние блуждающих и симпатических нервов на деятельность сердца (хронотропное, инотропное, батмотропное, дромотропное и тонотропное влияния).Особенности тонического влияния центров блуждающих и симпатических нервов на деятельность сердца.

Эффекты, наблюдаемые при нервных или гуморальных влияниях на сердечную мышцу:

1. Хронотропный (влияние на частоту сердечных сокращений).

2. Инотропный (влияние на силу сердечных сокращений).

3. Батмотропный (влияние на возбудимость сердца).

4. Дромотропный (влияние на проводимость), может быть как положительным, так и отрицательным.

Влияние вегетативной нервной системы.

1. Парасимпатическая нервная система:

а) перерезка волокон ПСНС, иннервирующих сердце - «+» хронотропный эффект (устранение тормозящего вагусного влияния, центры n.vagus исходно находятся в тонусе);

б) активация ПСНС, иннервирующих сердце - «-» хроно- и батмотропный эффект, вторичный «-» инотропный эффект.

2. Симпатическая нервная система:

а) перерезка волокон СНС - нет изменений в деятельности сердца (симпатические центры, иннервирующие сердце, исходно не обладают спонтанной активностью);

б) активация СНС - «+» хроно-, ино-, батмо- и дромотропный эффект.

Рефлекторная регуляция сердечной деятельности.

Особенность: изменение деятельности сердца происходит при воздействии раздражителя на любую рефлексогенную зону. Это связано с тем, что сердце, как центральный, наиболее лабильный компонент системы кровообращения, принимает участие при любой срочной адаптации.

Рефлекторная регуляция сердечной деятельности осуществляется за счет собственных рефлексов, формируемых с рефлексогенных зон сердечно-сосудистой системы, и сопряженных рефлексов, формирование которых связано с воздействием на другие, не связанные с системой кровообращения рефлексогенные зоны.

1.Основные рефлексогенные зоны сосудистого русла:

1) дуга аорты (барорецепторы);

2) каротидный синус (место разветвления общей сонной артерии на наружную и внутреннюю) (хеморецепторы);

3) устье полых вен (механорецепторы);

4) емкостные кровеносные сосуды (волюморецепторы).

2.Внесосудистые рефлексогенные зоны. Основные рецепторы рефлексогенных зон сердечнососудистой системы:

Барорецепторы и волюморецепторы, реагирующие на изменение АД и объема крови (относятся к группе медленно адаптирующихся рецепторов, реагируют на деформацию стенки сосуда, вызванную изменением АД и/или объема крови).

Барорефлексы. Повышение АД приводит к рефлекторному урежению сердечной деятельности, снижению ударного объема (парасимпатическое влияние). Падение давления вызывает рефлекторное увеличение ЧСС и повышение УО (симпатическое влияние).

Рефлексы с волюморецепторов. Уменьшение ОЦК ведет к увеличению ЧСС (симпатическое влияние).

1.Хеморецепторы, реагирующие на изменение концентрации кислорода и углекислого газа крови. При гипоксии и гиперкапнии ЧСС увеличивается (симпатическое влияние). Избыток кислорода вызывает уменьшение ЧСС.

2.Рефлекс Бейнбриджа. Растяжение устий полых вен кровью вызывает рефлекторное увеличение ЧСС (торможение парасимпатического влияния).

Рефлексы с внесосудистых рефлексогенных зон.

Классические рефлекторные влияния на сердце.

1.Рефлекс Гольца. Раздражение механорецепторов брюшины вызывает урежение сердечной деятельности. Такой же эффект при механическом воздействии на солнечное сплетение, сильном раздражении Холодовых рецепторов кожи, сильных болевых воздействиях (парасимпатическое влияние).

2.Рефлекс Данини-Ашнера. Надавливание на глазные яблоки вызывает урежение сердечной деятельности (парасимпатическое влияние).

3. Двигательная активность, несильные болевые раздражения, активация тепловых рецепторов вызывают увеличение ЧСС (симпатическое влияние).

Секреция различных соков – важнейшая функция желудочно-кишечного тракта (ЖКТ). Существуют множество железистых клеток, которые находятся в толще слизистой ротовой полости, желудка, тонкого и толстого кишечника, в которых осуществляется секреция, продукты которой выделяются в полость ЖКТ через специальные мелкие выводные протоки. Это крупные и мелкие слюнные железы, желудочные железы, бруннеровы железы 12-ти перстной кишки, либеркрюновы крипты тонкой кишки, бокаловидные клетки тонкого и толстого кишечника. Отдельное место занимает печень: ее гепатоциты, выполняя множество других функций, вырабатывают желчь, которая необходима для переваривания жиров как активатор и эмульгатор.

Процессы секреции протекают в три фазы: 1) поступление исходного материала (воды, аминокислот, моносахаридов, жирных кислот); 2) синтез первичного секреторного продукта и его транспорт для секреции. Согласно Коротько Г.Ф. (1987), в панкреатических клетках в эту фазу из поступивших в клетку аминокислот на рибосомах эндоплазматического ретикулума в течение 3-5 мин происходит синтез белка-фермента. Затем этот белок в составе пузырьков переносится в аппарат Гольджи (7 - 17 мин), где он пакуется в вакуоли, в которых гранулы профермента транспортируются до апикальной части секреторной клетки, где совершается следующая фаза; 3) выделение секрета (экзоцитоз) . От начала синтеза до выхода секрета проходит в среднем 40-90 минут.

Регуляция всех трех фаз секреции осуществляется двумя способами: 1) гуморальным – в основном за счет интестинальных гормонов и парагормонов. Гормоны действуют через кровь, парагормоны – через интерсцитий. Они продуцируются клетками, разбросанными в различных отделах ЖКТ (желудок, 12-ти перстная кишка, тощая и подвздошная) и относятся к системе АПУД. Их называют гастроинтесцитиальными гормонами, регуляторными пептидами, гормонами. Из них в роли гормонов выступают гастрин, секретин, холицистокинин-панкреозимин, гастральный ингибитор пептидаз (ГИП), энтероглюкагон, энтерогастрин, энтерогастрон, мотилин . К парагормонам, или паракринным гормонам относятся панкреатический полипептид (ПП), соматостатин, ВИП (вазоактивный интестинальный полипептид), субстанция Р, эндорфины.

Гастрин усиливает секрецию желудочного сока с большим содержанием ферментов. Гистамин также усиливает желудочную секрецию с большим содержанием соляной кислоты. Секретин образуется в 12-ти перстной кишке в не активной форме просекретина, который активируется за счет соляной кислоты. Этот гормон тормозит функцию обкладочных клеток желудка (прекращается выработка соляной кислоты) и возбуждает секрецию поджелудочной железы за счет секреции бикарбонатов. Холицистокинин-панкреозимин усиливает холекинез (выделение желчи), повышается секреция ферментов поджелудочной железы и тормозит образование соляной кислоты в желудке. ГИП тормозит секрецию желудка за счет торможения высвобождения гастрина. ВИП тормозит секрецию желудка, усиливает продукцию бикарбонатов поджелудочной железой и кишечную секрецию. ПП является антагонистом холицистокинина. Субстанция Р усиливает слюноотделение и секрецию поджелудочного сока.

Гуморальный механизм осуществляется за счет посредников (цАМФ или цГМФ) или за счет изменения внутриклеточной концентрации кальция. Следует отметить, гормоны ЖКТ играют важную роль в регуляции деятельности ЦНС. Уголев А.М. показал, что удаление у крыс 12-ти перстной кишки, несмотря на сохранение процессов пищеварения, приводит к гибели животного; 2) нервным – со стороны местных рефлекторных дуг, локализованных в мейсенеровом сплетении (метасимпатической нервной системы) и влияний со стороны ЦНС, которые реализуются через вагус и симпатические волокна. На нервные воздействия секреторная клетка отвечает изменением мембранного потенциала. Факторы, усиливающие секрецию вызывают деполяризацию клетки, а тормозящие секрецию – гиперполяризацию . Деполяризация обусловлена повышением натриевой и понижением калиевой проницаемости мембраны секреторной клетки, а гиперполяризация – повышением хлорной или калиевой проницаемости. Средний мембранный потенциал у секреторной клетки вне периода секреции составляет –50 мВ. Следует отметить, что МПП апикальной и базальной мембран разный, что имеет значение для направленности диффузионных потоков.

Центральные механизмы регуляции осуществляются за счет нейронов КБП (существует множество условных пищевых рефлексов), лимбической системы, ретикулярной формации, гипоталамуса (передние и задние ядра), продолговатого мозга . В продолговатом мозге среди парасимпатических нейронов вагуса имеется скопление нейронов, которые реагируют на афферентные и эфферентные (от КБП, РФ, лимбической системы и гипоталамуса) потоки импульсов и посылают эфферентные импульсы к симпатическим нейронам (расположенным в спинном мозге) и к секреторным клеткам ЖКТ. Следует отметить, что большая часть волокон вагуса взаимодействует с секреторными клетками опосредованно , через взаимодействие с эфферентными нейронами метасимпатической нервной системы . Меньшая часть волокон вагуса взаимодействует – непосредственно с секреторными клетками.

Все виды регуляции базируются на сигналы, поступающие от рецепторов пищеварительного канала. Механо-, хемо-, термо- и осморецепторы по афферентным волокнам вагуса, языкоглоточного нерва, а также по местным рефлекторным дугам посылают импульсы в ЦНС и метасимпатическую нервную систему об объеме, консистенции, степени наполнения, давлении, рН, осмотическом давлении, температуре, концентрации промежуточных и конечных продуктов гидролиза питательных веществ, а также концентрации некоторых ферментов.

Выявлено, что в процессе регуляции секреторной активности ЖКТ центрально-нервные влияния наиболее характерны для слюнных желез, в меньшей степени – для желудка, еще в меньшей степени – для кишечника.

Гуморальные влияния выражены достаточно хорошо в отношении желез желудка и особенно кишечника, а местные , или локальные , механизмы играют существенную роль в тонком и толстом кишечнике.

Конец работы -

Эта тема принадлежит разделу:

Электронная версия лекций по нормальной физиологии все многообразие раздражителей можно выделить в отдельные группы. Классификация раздражителей зависит от того, что берется за основу

Раздражители их классификация понятие о раздражении раздражимости.. все живые клетки и ткани способны реагировать на различного рода воздействия и изменять под их влиянием свое функциональное состояние различают три..

Если Вам нужно дополнительный материал на эту тему, или Вы не нашли то, что искали, рекомендуем воспользоваться поиском по нашей базе работ:

Что будем делать с полученным материалом:

Если этот материал оказался полезным ля Вас, Вы можете сохранить его на свою страничку в социальных сетях:

Все темы данного раздела:

Перехвата Ранвье к другому; 2) по всей мембране; 3) за счет круговых токов; 4) за счет местных токов
8. Скорость передачи возбуждения в миелиновых нервах колеблется в пределах: 1) 70-120 м/с; 2) 90 м/с; 3) 10-15 м/с; 4) 20 м/с. 9. Скорость передачи возбуждения в б

Особенности проведения возбуждения
Структурно-функциональной единицей ЦНС является нейрон (нервная клетка). Он состоит из тела (сомы) и отростков – многочисленных дендритов и одного аксона. Дендриты (короткие о

Принципы координационной деятельности и
ТОРМОЖЕНИЕ В ЦНС Координация – это объединение действия в единное целое, объединение различных нейронов в единный функциональный ансамбль, решающий конкретную задачу

Торможение в цнс
Впервые о торможение в ЦНС высказал И.М. Сеченов. Исследуя рефлекторную деятельность лягушки с сохраненными зрительными буграми, И.М. Сеченов определял время сгибательного рефлекса – в отве

Регуляция физиологических функций
Регуляция, или управление – это такие воздействия на систему, при которых система переходит из одного уровня функционирования на другой – заранее предусмотре

Функциональные системы организма
Еще в 30-е годы ученик И.П. Павлова – Петр Кузьмич Анохин, в последующим академик АН СССР – поставил вопрос: каким образом живой организм как совокупность отдельных органов и систем

Благодаря импульсам по обратной связи ЦНС получает
информацию о: 1) степени отклонения конечного результата от оптимального уровня; 2) степени рассогласования; 3) фактическом результате; 4) действии внешних факторов на организм.

ВВВ; 2)НВВ; 3)ВНВ; 4)ВВН
83.В результате АС ЦНС отвечает на вопрос «что делать?», потому что здесь происходит синтез обстановочных, пусковых сигналов и импульсов, поступающих из ДО: 1)ВВВ; 2)ВВН; 3)ВНН; 4)ВНВ.

Экстрасистола и компенсаторная пауза
Экстрасистола (рис. 74, 75), или внеочередная систола, возникает при следующих условиях: 1) необходимо наличие дополнительного источника раздражения (в организме человека этот допол

Закон гагена-пуазейля в гемодинамики
Гемодинамика – это раздел науки, изучающий механизмы движения крови в сердечно-сосудистой ситеме. По закону Гагена количество протекающей жидкости через определенный участок

Микроциркуляторное русло. Регионарное кровообращение
Это русло включает все сосуды, диаметр которых не превышает 2мм. Сюда относятся: артериолы, прекапиллярные сфинктеры, капилляры, посткапиллярные сфинктеры, венулы и артери

Основные функции крови
I. Транспортная – в зависимости от того, что транспортирует кровь, мы различаем следующие разновидности транспортных функций: Дыхательная функция – при этом к

Основные физиологические константы крови
Количество крови – в норме у человека количество крови составляет 13-ю часть веса. Например, у человека весом 65 кг должно быть 5 литров крови, а у человека весом 91 кг – 7 л

Резус-несовместимость в системе мать-плод
Следует отметить, что каждая 10-я женщина резус-отрицательная. Если у матери с резус-отрицательной кровью развивается резус-положительный плод, то при первой беременности вероятност

Функциональная система, обеспечивающая
ОПТИМАЛЬНОЕ НАПРЯЖЕНИЕ УГЛЕКИСЛОГО ГАЗА И КИСЛОРОДА. Данная система состоит из следующих звеньев: 1) конечный полезный приспособительный результат (КППР) - это оптим

Пищеварение в полости рта
Секреторную функцию в полости рта обеспечивают три большие парные железы – околоушная (продуцирует серозную слюну, богатую ферментами, но с малым содержанием слизи – муцина),

Желчеотделение и желчевыделение
Желчь образуется в печени и выполняет следующие функции в пищеварении: 1) эмульгирует жиры, увеличивая поверхность, на которой осуществляется их гидролиз; 2) растворяет продукты гид

Пищеварение в тонком кишечнике
За сутки продуцируется 2 – 2,5 л кишечного сока. В 12-ти перстной кишке продукция кишечного сока осуществляется за счет бруннеровых желез, а в дистальной части этой кишки, на протяж

Пищеварение в толстом кишечнике
Из тонкой кишки химус порциями переходит в толстую кишку через илеоцекальный клапан (илеоцекальный сфинктер, баугиниева заслонка). Вне пищеварения илеоцекальный сфинктер закрыт и, с

Физиологические основы питания
Питание – процесс поступления, пере-варивания, всасывания и усвоения в организме пищевых веществ (нутриентов), необходимых для покрытия пластических и энергетических нужд организма,

Гипотермия и гпертермия
Гипотермия – состояние, при котором температура тела ниже 350С. Быстрее всего гипотермия возникает при погружениии в холодную воду. В последние годы искусственную гипотер