Принято рассматривать для пучка лучей, выходящего из точки предмета, расположенной на оптической оси. Однако, сферическая аберрация имеет место и для других пучков лучей, выходящих из точек предмета, удаленных от оптической оси, но в таких случаях она рассматривается как составная часть аберраций всего наклонного пучка лучей. Причём, хотя эта аберрация и называется сферической , она характерна не только для сферических поверхностей.

В результате сферической аберрации цилиндрический пучок лучей, после преломления линзой (в пространстве изображений) получает вид не конуса, а некоторой воронкообразной фигуры, наружная поверхность которой, вблизи узкого места, называется каустической поверхностью. При этом изображение точки имеет вид диска с неоднородным распределением освещённости, а форма каустической кривой позволяет судить о характере распределения освещённости. В общем случае, фигура рассеяния, при наличии сферической аберрации, представляет собой систему концентрических окружностей с радиусами пропорциональными третьей степени координат на входном (или выходном) зрачке.

Расчётные значения

Расстояние δs" по оптической оси между точками схода нулевых и крайних лучей называется продольной сферической аберрацией .

Диаметр δ" кружка (диска) рассеяния при этом определяется по формуле

  • 2h 1 - диаметр отверстия системы;
  • a" - расстояние от системы до точки изображения;
  • δs" - продольная аберрация.

Для объектов расположенных в бесконечности

Комбинируя такие простые линзы, можно значительно исправить сферическую аберрацию.

Уменьшение и исправление

В отдельных случаях небольшая величина сферической аберрации третьего порядка может быть исправлена за счёт некоторой дефокусировки объектива. При этом плоскость изображения смещается к, так называемой, «плоскости лучшей установки» , находящейся, как правило, посередине, между пересечением осевых и крайних лучей, и не совпадающей с самым узким местом пересечения всех лучей широкого пучка (диском наименьшего рассеяния) . Это несовпадение объясняется распределением световой энергии в диске наименьшего рассеяния, образующей максимумы освещённости не только в центре, но и на краю. То есть, можно сказать, что «диск» представляет из себя яркое кольцо с центральной точкой. Поэтому, разрешение оптической системы, в плоскости совпадающей с с диском наименьшего рассеяния, будет ниже, несмотря на меньшую величину поперечной сферической аберрации. Пригодность этого метода зависит от величины сферической аберрации, и характера распределения освещённости в диске рассеяния.

Строго говоря, сферическая аберрация может быть вполне исправлена только для какой-нибудь пары узких зон, и притом лишь для определенных двух сопряженных точек. Однако, практически исправление может быть весьма удовлетворительным даже для двухлинзовых систем.

Обычно сферическую аберрацию устраняют для одного значения высоты h 0 соответствующего краю зрачка системы. При этом наибольшее значение остаточной сферической аберрации ожидается на высоте h e определяемой по простой формуле

Остаточная сферическая аберрация приводит к тому, что изображение точки так и не станет точечным. Оно останется диском, хотя и значительно меньшего размера, чем в случае не исправленной сферической аберрации.

Для уменьшения остаточной сферической аберрации часто прибегают к рассчитанному «переисправлению» на краю зрачка системы, придавая сферической аберрации краевой зоны положительное значение (δs" > 0). При этом, лучи, пересекающие зрачок на высоте h e , перекрещиваются ещё ближе к точке фокуса, а краевые лучи, хотя и сходятся за точкой фокуса, не выходят за границы диска рассеяния. Таким образом, размер диска рассеяния уменьшается и возрастает его яркость. То есть улучшается, как детальность, так и контраст изображения. Однако, в силу особенностей распределения освещённости в диске рассеяния, объективы с «переисправленной» сферической аберрацией, часто, обладают «двоящим» размытием вне зоны фокуса.

В отдельных случаях допускают значительное «переисправление». Так, например, ранние «Планары» фирмы Carl Zeiss Jena имели положительное значение сферической аберрации (δs" > 0), как для краевых, так и для средних зон зрачка. Это решение несколько снижает контраст при полном отверстии, но заметно увеличивает разрешение при незначительном диафрагмировании.

Примечания

Литература

  • Бегунов Б. Н. Геометрическая оптика, Изд-во МГУ, 1966.
  • Волосов Д. С., Фотографическая оптика. М., «Искусство», 1971.
  • Заказнов Н. П. и др., Теория оптических систем, М., «Машиностроение», 1992.
  • Ландсберг Г. С. Оптика. М.,ФИЗМАТЛИТ, 2003.
  • Чуриловский В. Н. Теория оптических приборов, Л., «Машиностроение», 1966.
  • Smith, Warren J. Modern optical engineering, McGraw-Hill, 2000.

Wikimedia Foundation . 2010 .

Физическая энциклопедия

Один из типов аберраций оптических систем (См. Аберрации оптических систем); проявляется в несовпадении Фокусов для лучей света, проходящих через осе симметрическую оптическую систему (линзу (См. Линза), Объектив) на разных расстояниях от … Большая советская энциклопедия

Искажение изображения в оптических системах, связанное с тем, что световые лучи от точечного источника, расположенного на оптической оси, не собираются в одну точку с лучами, прошедшими через удалённые от оси части системы. * * * СФЕРИЧЕСКАЯ… … Энциклопедический словарь

сферическая аберрация - sferinė aberacija statusas T sritis fizika atitikmenys: angl. spherical aberration vok. sphärische Aberration, f rus. сферическая аберрация, f pranc. aberration de sphéricité, f; aberration sphérique, f … Fizikos terminų žodynas

СФЕРИЧЕСКАЯ АБЕРРАЦИЯ - См. аберрация, сферическая … Толковый словарь по психологии

сферическая аберрация - обусловлена несовпадением фокусов лучей света, проходящих на разных расстояниях от оптической оси системы, приводит к изображению точки в виде кружка разной освещенности. Смотри также: Аберрация хроматическая аберрация … Энциклопедический словарь по металлургии

Одна из аберраций оптических систем, обусловленная несовпадением фокусов для лучей света, проходящих через осесимметричную оптич. систему (линзу, объектив) на разных расстояниях от оптической осы этой системы. Проявляется в том, что изображение… … Большой энциклопедический политехнический словарь

Искажение изображения в оптич. системах, связанное с тем, что световые лучи от точечного источника, расположенного на оптич. оси, не собираются в одну точку с лучами, прошедшими через удалённые от оси части системы … Естествознание. Энциклопедический словарь

1. Введение в теорию аберраций

Когда речь идет о характеристиках объектива, очень часто приходится слышать слово аберрации . «Это отличный объектив, в нем практически исправлены все аберрации!», - тезис, который очень часто можно встретить в обсуждениях или обзорах. Гораздо реже можно услышать и диаметрально противоположное мнение, к примеру: «Это замечательный объектив, его остаточные аберрации хорошо выражены и формируют необыкновенно пластичный и красивый рисунок»…

Почему же возникают такие разные мнения? Я попробую дать ответ на этот вопрос: насколько это явление действительно хорошо/плохо для объективов и для жанров фотографии в целом. Но для начала, давайте попробуем разобраться, что, же такое аберрации фотографического объектива. Начнем мы с теории и некоторых определений.

В общем применении термин Аберрация (лат. ab- «от» + лат. errare «блуждать, заблуждаться») - это отклонение от нормы, ошибка, некое нарушение нормальной работы системы.

Аберрация объектива - ошибка, или погрешность изображения в оптической системе. Она вызвана тем, что в реальной среде может возникать существенное отклонение лучей от того направления, по которому они идут в расчетной «идеальной» оптической системе.

В итоге страдает общепринятое качество фотографического изображения: недостаточная резкость в центре, потеря контраста, сильная нерезкость по краям, искривление геометрии и пространства, цветные ореолы и т.п.

Основные аберрации, характерные для фотографических объективов, следующие:

  1. Коматическая аберрация.
  2. Дисторсия.
  3. Астигматизм.
  4. Кривизна поля изображения.

Перед тем как познакомиться поближе с каждой из них, давайте вспомним из статьи , как происходит прохождение через линзу лучей в идеальной оптической системе:

Илл. 1. Прохождение лучей в идеальной оптической системе.

Как мы видим, все лучим при этом собираются в одной точке F - главном фокусе. Но в реальности, все обстоит намного сложнее. Сущность оптических аберраций в том, что лучи, падающие на линзу из одной светящейся точки, не собираются тоже в одной точке. Итак, давайте посмотрим, какие отклонения происходят в оптической системе при воздействии различных аберраций.

Тут еще надо сразу отметить, что и в простой линзе и в сложном объективе все далее описываемые аберрации действуют совместно.

Действие сферической аберрации состоит в том, что лучи, падающие на края линзы, собираются ближе к линзе, чем лучи, падающие на центральную часть линзы. Вследствие этого, изображение точки на плоскости получается в виде размытого кружка или диска.

Илл. 2. Сферическая аберрация.

В фотографиях действие сферической аберрации проявляется в виде смягченного изображения. Особенно часто эффект заметен на открытых диафрагмах, причем объективы с большей светосилой больше подвержены этой аберрации. Если при этом сохраняется и резкость контуров, такой софт-эффект может быть весьма полезным для некоторых видов съемки, например, портретной.

Илл.3. Софт-эффект на открытой диафрагме обусловленный действием сферической аберрации.

В объективах построенных полностью из сферических линз практически невозможно полностью устранить этот вид аберраций. В сверхсветосильных объективах единственный эффективный способ ее существенной компенсации - использование асферических элементов в оптической схеме.

3. Коматическая аберрация, или «Кома»

Это частный вид сферической аберрации для боковых лучей. Действие ее заключается в том, что лучи, приходящие под углом к оптической оси не собираются в одной точке. При этом изображение светящейся точки на краях кадра получается в виде «летящей кометы», а не в форме точки. Кома также может привести к засвечиванию участков изображения в зоне нерезкости.

Илл. 4. Кома.

Илл. 5. Кома на фотоизображении

Является прямым следствием дисперсии света. Суть ее состоит в том, что луч белого света, проходя через линзу, разлагается на составляющие его цветные лучи. Коротковолновые лучи (синие, фиолетовые) преломляются в линзе сильнее и сходятся ближе к ней, чем длиннофокусные (оранжевые, красные).

Илл. 6. Хроматическая аберрация. Ф - фокус фиолетовых лучей. К - фокус красных лучей.

Здесь, как и в случае сферической аберрации, изображение светящейся точки на плоскости, получается в виде размытого кружка/диска.

На фотографиях хроматическая аберрация проявляется в виде посторонних оттенков и цветных контуров у объектов съемки. Особенно заметно влияние аберрации в контрастных сюжетах. В настоящее время ХА достаточно легко исправляется в RAW-конверторах, если съемка велась в RAW-формате.

Илл. 7. Пример проявления хроматической аберрации.

5. Дисторсия

Дисторсия проявляется в искривлении и искажении геометрии фотоснимка. Т.е. масштаб изображения меняется с удалением от центра поля к краям, вследствие чего прямые линии искривляются к центру или к краям.

Различают бочкообразную или отрицательную (наиболее характерна для широкого угла) и подушкообразную или положительную дисторсию (чаще проявляется на длинном фокусе).

Илл. 8. Подушкообразная и бочкообразная дисторсия

Дисторсия намного сильнее обычно выражена у объективов с переменным фокусным расстоянием (зумы), чем у объективов с постоянным фокусным (фиксы). У некоторых эффектных объективов, например Fish Eye (Рыбий глаз), намеренно не исправляется и даже подчеркивается дисторсия.

Илл. 9. Ярко-выраженная бочкообразная дисторсия объектива Zenitar 16 mm FishEye.

В современных объективах, в том числе с переменным фокусным расстоянием, дисторсия достаточно эффективно корректируется введением в оптическую схему асферической линзы (или нескольких линз).

6. Астигматизм

Астигматизм (от греч. Stigma - точка) характеризуется в невозможности получить на краях поля изображения светящейся точки и в виде точки и даже в виде диска. При этом светящаяся точка, находящаяся на главной оптической оси, передается как точка, но если точка вне этой оси - как затемнение, скрещенные линии и т.д.

Это явление чаще всего наблюдается по краям изображения.

Илл. 10. Проявление астигматизма

7. Кривизна поля изображения

Кривизна поля изображения - это аберрация, в результате которой изображение плоского объекта, перпендикулярного к оптической оси объектива, лежит на поверхности, вогнутой либо выпуклой к объективу. Эта аберрация вызывает неравномерную резкость по полю изображения. Когда центральная часть изображения фокусирована резко, то его края будут лежать не в фокусе, и изобразятся не резко. Если установку на резкость производить по краям изображения, то его центральная часть будет нерезкой.

И астигматизма). Различают сферическую аберрацию третьего, пятого и высшего порядков .

Энциклопедичный YouTube

  • 1 / 5

    Расстояние δs" по оптической оси между точками схода нулевых и крайних лучей называется продольной сферической аберрацией .

    Диаметр δ" кружка (диска) рассеяния при этом определяется по формуле

    δ ′ = 2 h 1 δ s ′ a ′ {\displaystyle {\delta "}={\frac {2h_{1}\delta s"}{a"}}} ,

    • 2h 1 - диаметр отверстия системы;
    • a" - расстояние от системы до точки изображения;
    • δs" - продольная аберрация.

    Для объектов расположенных в бесконечности

    A ′ = f ′ {\displaystyle {a"}={f"}} ,

    Для построения характеристической кривой продольной сферической аберрации по оси абсцисс откладывают продольную сферическую аберрацию δs", а по оси ординат - высоты лучей на входном зрачке h . Для построения аналогичной кривой для поперечной аберрации по оси абсцисс откладывают тангенсы апертурных углов в пространстве изображений, а по оси ординат радиусы кружков рассеяния δg"

    Комбинируя такие простые линзы, можно значительно исправить сферическую аберрацию.

    Уменьшение и исправление

    В отдельных случаях небольшая величина сферической аберрации третьего порядка может быть исправлена за счёт некоторой дефокусировки объектива. При этом плоскость изображения смещается к, так называемой, «плоскости лучшей установки» , находящейся, как правило, посередине, между пересечением осевых и крайних лучей, и не совпадающей с самым узким местом пересечения всех лучей широкого пучка (диском наименьшего рассеяния) . Это несовпадение объясняется распределением световой энергии в диске наименьшего рассеяния, образующей максимумы освещённости не только в центре, но и на краю . То есть, можно сказать, что «диск» представляет из себя яркое кольцо с центральной точкой. Поэтому, разрешение оптической системы, в плоскости совпадающей с с диском наименьшего рассеяния, будет ниже, несмотря на меньшую величину поперечной сферической аберрации. Пригодность этого метода зависит от величины сферической аберрации, и характера распределения освещённости в диске рассеяния.

    Достаточно успешно сферическая аберрация исправляется при помощи комбинации из положительной и отрицательной линз . Причём, если линзы не склеиваются, то, кроме кривизны поверхностей компонентов, на величину сферической аберрации будет влиять и величина воздушного зазора (даже в том случае, если поверхности, ограничивающие этот воздушный промежуток, имеют одинаковую кривизну). При этом способе коррекции, как правило исправляются и хроматические аберрации .

    Строго говоря, сферическая аберрация может быть вполне исправлена только для какой-нибудь пары узких зон, и притом лишь для определенных двух сопряженных точек. Однако, практически исправление может быть весьма удовлетворительным даже для двухлинзовых систем.

    Обычно сферическую аберрацию устраняют для одного значения высоты h 0 соответствующего краю зрачка системы. При этом наибольшее значение остаточной сферической аберрации ожидается на высоте h e определяемой по простой формуле
    h e h 0 = 0.707 {\displaystyle {\frac {h_{e}}{h_{0}}}={0.707}}

    Рис.1 Иллюстрация недоисправленных сферической аберрации. Поверхрность на периферии линзы имеет фокусное расстояние короче, чем в центре.

    Большинство фотографических объективов состоят из элементов со сферическими поверхностями. Такие элементы относительно легко изготовить, но их форма неидеальна для формирования изображения.

    Сферическая аберрация - это один из дефектов при формировании изображения, возникающий из-за сферической формы линзы. Рис. 1 иллюстрирует сферическую аберрацию для положительной линзы.

    Лучи, которые проходят сквозь линзу дальше от оптической оси, сфокусированы в позиции с . Лучи, которые проходят ближе к оптической оси, сфокусированы в позиции a , они находятся ближе к поверхности линзы. Таким образом положение фокуса зависит от места, в котором проходят лучи сквозь линзу.

    Если краевой фокус ближе к линзе, чем осевой фокус, как происходит с положительной линзой Рис. 1, тогда говорят, что сферическая аберрация недоисправленная . И наоборот, если краевой фокус находится за осевым фокусом, то говорят, что сферическая аберрация переисправленная .

    Изображение точки, сделанное объективом со сферическими аберрациями обычно получаются точками, окруженными ореолом света. Сферическая аберрация обычно проявляются на фотографиях смягчением контраста и размытием мелких деталей.

    Сферическая аберрация однородна по полю, это значит, что продольный фокус между краями линзы и центром не зависит от наклона лучей.

    Из Рис.1 кажется, что на линзе со сферической аберрацией невозможно добиться хорошей резкости. В любом положении сзади линзы на светочувствительном элементе (пленка или матрица) вместо четкой точки будет проецироваться диск размытия.

    Тем не менее, существует геометрически "лучший" фокус, который соответствует диску наименьшего размытия. Это своеродный ансамбль световых конусов имеет минимальное сечение, в положении b .

    Смещение фокуса (Focus shift)

    Когда диафрагма находится за линзой, наблюдается интересное явление. Если диафрагма прикрыта таким образом, что срезает лучи на периферии линзы, то фокус сдвигается вправо. При сильно прикрытой диафрагме наилучший фокус будет наблюдаться в положении c , то есть положения дисков наименьшего размытия при прикрытой диафрагме и при открытой диафрагме будут различаться.

    Чтобы получить наилучшую резкость на прикрытой диафрагме, матрица (пленка) должна размещаться в положении c . Этот пример четко показывает, что существует вероятность того, что наилучшая резкость не будет достигнута, поскольку большинство фотографических систем рассчитываются на работу с открытой диафрагмой.

    Фотограф фокусируется при полностью открытой диафрагме, и проецирует на матрицу диск наименьшего размытия в позиции b , затем при съемке диафрагма автоматически закрывается до установленного значения, и он ничего не подозревает о последующем в этот момент сдвиге фокуса , что не позволяет ему добиться наилучшей резкости.

    Конечно, прикрытая диафрагма уменьшает сферические аберрации также и в точке b , но все же в ней будет не наилучшая резкость.

    Пользователи зеркальных фотоаппаратов могут закрыть диафрагму для предварительного просмотра , чтобы сфокусироваться при реальной диафрагме.

    Автоматическую компенсацию смещения фокуса предложил Норман Гольдберг. Фирма Zeiss запустила линию дальномерных объективов для фотоаппаратов Zeiss Ikon, которые имеют специально разработанную схему для минимизации смещения фокуса с изменением значений диафрагмы. При этом сферические аберрации у объективов для дальномерных фотоаппаратов существенно снижаются. Вы спросите насколько смещение фокуса существенно для объективов дальномерных фотоаппаратов? По заявлению производителя объектива LEICA NOCTILUX-M 50mm f/1, это значение порядка 100 мкм.

    Характер размытия вне зоны фокуса

    Влияние сферических аберраций на изображение в фокусе трудно различить, но их можно четко увидеть в изображении, которое находится в легком расфокусе. Сферическая аберрация оставляет видимый след в зоне нерезкости.

    Возвращаясь к Рис.1 можно отметить, что распределение интенсивности света в диске размытия при наличии сферической аберрации не является равномерным.

    В положении c диск размытия характеризуется яркой сердцевиной, окруженной слабым ореолом. В то время как диск размытия в положении a имеет более темную сердцевину, окруженную ярким кольцом света. Такие аномальные распределения света могут проявляться в зоне нерезкости изображения.

    Рис. 2 Изменения размытия перед и за точкой в фокусе

    Пример на Рис. 2 показывает точку в центре кадра, снятую в режиме макро 1:1 объективом 85/1.4, установленным на макромех. Когда матрица находится на 5 мм сзади наилучшего фокуса (точка посредине), диск размытия показывает эффект яркого кольца (левое пятно), подобные диски размытия получаются у зеркально-менисковых объективов.

    А когда матрица находится на 5 мм впереди наилучшего фокуса, (т.е. ближе к объективу), характер размытия изменился в сторону яркого центра, окуженного слабым ореолом. Как видно, у объектива переисправлена сферическая аберрация, поскольку он ведет себя противоположно примеру на Рис. 1.

    Следующий пример иллюстрирует действие двух аберраций, на изображениях вне фокуса.

    На Рис. 3 изображен крестик, который сфотографирован по центру кадра, тем же объективом 85/1.4. Макромех вытянут примерно на 85 мм, что дает увеличение примерно 1:1. Фотоаппарат (матрица) перемещался с шагом 1 мм в обе стороны от максимального фокуса. Крестик является более сложным изображением чем точка, а показатели цвета дают наглядные иллюстрации его размытий.

    Рис. 3 Цифры на иллюстрациях указывают на изменения дистанции от объектива до матрицы, это миллиметры. камера двигается от -4 до +4 мм с шагом 1 мм от положения наилучшего фокуса (0)

    Сферическая аберрация отвечает за жесткий характер размытия при отрицательных расстояниях и за переход к мягкому размытию при положительных. Также интерес представляют цветовые эффекты, которые возникают из-за продольной хроматической аберрации (осевой цвет). Если объектив плохо собран, то сферическая аберрация и осевой цвет это единственные аберрации, которые проявляются в центре изображения.

    Чаще всего сила а иногда и характер сферической аберрации зависит от длинны волны света. В таком случае совместное воздействие сферической аберрации и осевого цвета называется . Из этого становится ясно, что явление, проиллюстрированное на Рис. 3 показывает, что данный объектив не предназначен для использовании в качестве макрообъектива. Большинство объективов оптимизированы для использования в ближнем поле фокусировки а также для фокусировки на бесконечность, но не для макро 1:1. При таком приближении обычные объективы будут вести себя хуже чем макрообъективы, которые используются специально на ближних дистанциях.

    Тем не менее, даже если объектив используется для стандартного применения, сферохроматизм может проявляться в зоне нерезкости при обыкновенной съемке и влиять на качество .

    Выводы
    Конечно, иллюстрация на Рис. 1 является преувеличением. В реальности количество остаточных сферических аберраций в фотографических объективах мало. Этот эффект значительно уменьшен благодаря комбинированию элементов объектива в следствии чего компенсируются суммы противоположных сферических аберраций, использованию высококачественного стекла, тщательно продуманной геометрией линз и использованием асферических элементов. Кроме того, могут быть использованы плавающие элементы для уменьшения сферических аберраций в определенном диапазоне рабочих расстояний.

    В случае объективов, с недоисправленой сферической аберрацией эффективный способ улучшить качество изображения это прикрыть диафрагму. Для недоисправленного элемента на Рис. 1 диаметр дисков размытия уменьшается пропорционально кубу диаметра диафрагмы.

    Эта зависимость может отличаться для остаточных сферических аберраций в сложных схемах объективов, но, как правило закрытие диафрагмы на одну ступень уже дает заметное улучшение изображения.

    Альтернативно, вместо того, чтобы бороться со сферической аберрацией, фотограф может намеренно ее использовать. Смягчающие фильтры Zeiss, несмотря на плоскую поверхность добавляют в изображение сферические аберрации. Они популярны среди фотографов-портретистов для получения софт-эффекта и импрессивного характера изображения.

    © Paul van Walree 2004–2015
    Перевод: Иван Косареков

    Рассмотрим даваемое оптической системой изображение Точки, расположенной на оптической оси. Так как оптическая система обладает круговой симметрией относительно оптической оси, то достаточно ограничиться выбором лучей, лежащих в меридиональной плоскости. На рис. 113 показан ход лучей, характерный для положительной одиночной линзы. Положение

    Рис. 113. Сферическая аберрация положительной лннзы

    Рис. 114. Сферическая аберрация для точки вне оси

    идеального изображения предметной точки А определяется параксиальным лучом, пересекающим оптическую ось на расстоянии от последней поверхности. Лучи, образующие с оптической осью конечные углы не приходят в точку идеального изображения. Для одиночной положительной линзы, чем больше абсолютное значение угла тем ближе к линзе луч пересекает оптическую ось. Это объясняется неодинаковой оптической силой линзы в ее различных зонах, которая увеличивается по мере удаления от оптической оси.

    Указанное нарушение гомоцентричности вышедшего пучка лучей можно характеризовать разностью продольных отрезков для параксиальных лучей и для лучей, проходящих через плоскость входного зрачка на конечных высотах: Эта разность называется продольной сферической аберрацией.

    Наличие сферической аберрации в системе приводит к тому, что вместо резкого изображения точки в плоскости идеального изображения получается кружок рассеяния, диаметр которого равен удвоенному значению Последнее связано с продольной сферической аберрацией соотношением

    и называется поперечной сферической аберрацией.

    Следует отметить, что при сферической аберрации сохраняется симметрия в вышедшем из системы пучке лучей. В отличие от других монохроматических аберраций сферическая аберрация имеет место во всех точках поля оптической системы, причем при отсутствии других аберраций для точек вне оси вышедший из системы пучок лучей будет оставаться симметричным относительно главного луча (рис. 114).

    Приближенное значение сферической аберрации можно определить по формулам аберраций третьего порядка через

    Для предмета, расположенного на конечном расстоянии, как следует из рис. 113,

    В пределах действенности теории аберраций третьего порядка можно принять

    Если положить, что то согласно условиям нормировки получим

    Тогда по формуле (253) найдем, что поперечная сферическая аберрация третьего порядка для предметной точки, расположенной на конечном расстоянии,

    Соответственно для продольной сферической аберраций третьего лорядка при допущении согласно (262) и (263) получим

    Формулы (263) и (264) справедливы и для случая предмета, расположенного в бесконечности, если вычислена при условиях нормировки (256), т. е. при реальном фокусном расстоянии.

    В практике аберрационного расчета оптических систем при вычислении сферической аберрации третьего порядка удобно пользоваться формулами, содержащими координату луча на входном зрачке. Тогда при согласно (257) и (262) получим:

    если вычислена при условиях нормировки (256).

    Для условий нормировки (258), т. е. для приведенной системы, согласно (259) и (262) будем иметь:

    Из приведенных выше формул следует, что при данной сферическая аберрация третьего порядка тем больше, чем больше координата луча на входном зрачке.

    Так как сферическая аберрация присутствует для всех точек поля, то при аберрационной коррекции оптической системы первостепенное внимание уделяют исправлению сферической аберрации. Наиболее простой оптической системой со сферическими поверхностями, в которой можно уменьшить сферическую аберрацию, является комбинация положительной и отрицательной линз. Как у положительной, так и у отрицательной линз крайние зоны преломляют лучи сильнее, чем зоны, расположенные вблизи оси (рис. 115). Отрицательная линза имеет положительную сферическую аберрацию. Поэтому комбинация положительной линзы, имеющей отрицательную сферическую аберрацию, с отрицательной линзой позволяет получить систему с исправленной сферической аберрацией. К сожалению, устранить сферическую аберрацию можно только для некоторых лучей, но нельзя ее полностью исправить в пределах всего входного зрачка.

    Рис. 115. Сферическая аберрация отрицательной линзы

    Таким образом, любая оптическая система всегда имеет остаточную сферическую аберрацию. Остаточные аберрации оптической системы обычно представляют в виде таблиц и иллюстрируют графиками. Для предметной точки, расположенной на оптической оси, приводятся графики продольной и поперечной сферических аберраций, представленные в виде функций координат, или

    Кривые продольной и соответствующей ей поперечной сферической аберрации показаны на рис. 116. Графики на рис. 116, а соответствуют оптической системе с недоисправленной сферической аберрацией. Если для такой системы ее сферическая аберрация определяется только аберрациями третьего порядка, то согласно формуле (264) кривая продольной сферической аберрации имеет вид квадратичной параболы, а кривая поперечной аберрации - кубической параболы. Графики на рис. 116, б соответствуют оптической системе, у которой сферическая аберрация исправлена для луча, проходящего через край входного зрачка, а графики на рис. 116, в - оптической системе с перенаправленной сферической аберрацией. Исправление или переисправление сферической аберрации можно получить, например, комбинируя положительную и отрицательную линзы.

    Поперечная сферическая аберрация характеризует кружок рассеяния, который получается вместо идеального изображения точки. Диаметр кружка рассеяния для данной оптической системы зависит от выбора плоскости изображения. Если эту плоскость сместить относительно плоскости идеального изображения (плоскости Гаусса) на величину (рис. 117, а), то в смещенной плоскости получим поперечную аберрацию связанную с поперечной аберрацией в плоскости Гаусса зависимостью

    В формуле (266) слагаемое на графике поперечной сферической аберрации, построенном в координатах является прямой, проходящей через начало координат. При

    Рис. 116. Графическое представление продольной и поперечной сферических аберраций