Поверхности, входящими в зацепление с зубьями другого зубчатого колеса. В машиностроении принято малое ведущее зубчатое колесо независимо от числа зубьев называть шестернёй , а большое ведомое - колесом. Однако часто все зубчатые колёса называют шестерня́ми.

Зубчатые колёса (шестерни) обычно используются па́рами с разным числом зубьев с целью преобразования крутящего момента и числа оборотов вала на выходе. Шестерня, к которой крутящий момент подводится извне, называется ведущей , а шестерня, с которой момент снимается - ведомой . Если диаметр ведущего колеса меньше, то крутящий момент ведомого колеса увеличивается за счёт пропорционального уменьшения скорости вращения, и наоборот.

Следует заметить, что шестерённая передача не является усилителем механической мощности, так как общее количество механической энергии на её выходе не может превышать количество энергии на входе. Это связано с тем, что в данном случае будет пропорциональна произведению на . В соответствии с передаточным отношением, увеличение крутящего момента будет вызывать пропорциональное уменьшение угловой скорости вращения ведомой шестерни, а их произведение останется неизменным. Данное соотношение справедливо для идеального случая, не учитывающего потери на трение и другие эффекты, характерные для реальных устройств.

Поперечный профиль зуба

Боковая форма профиля зубьев колёс для обеспечения плавности качения может быть: , неэльвовентной передача Новикова (с одной и двумя линиями зацепления), . Кроме того, в применяются зубчатые колеса с несимметричным профилем зуба.

Продольная линия зуба

Прямозубые шестерни

Прямозубые шестерни - самый распространённый вид шестерён. Зубья являются продолжением радиусов, а линия контакта зубьев обеих шестерён параллельна оси вращения. При этом оси обеих шестерён также должны располагаться строго параллельно.

Косозубые шестерни

Косозубые шестерни являются усовершенствованным вариантом прямозубых шестерён. Их зубья располагаются под углом к оси вращения, а по форме образуют часть спирали. Зацепление таких шестерён происходит плавнее, чем у прямозубых, и с меньшим шумом.

  • При работе косозубой шестерни возникает механический момент, направленный вдоль оси, что вызывает необходимость применения для установки вала упорных ;
  • Увеличение площади трения зубьев (что вызывает дополнительные потери мощности на нагрев), которое компенсируется применением специальных смазок.

В целом, косозубые шестерни применяются в механизмах, требующих передачи большого крутящего момента на высокой скорости, либо имеющих жёсткие ограничения по шумности.

Шестерни с круговыми зубьями

Передачи на основе колёс с круговыми зубьями имеют ещё более высокие ходовые качества, чем косозубые - высокую плавность и бесшумность работы. Однако, они ограничены в применении сниженными, при тех же условиях, КПД и ресурсом работы, такие колёса заметно сложнее в производстве. Линия зубьев у них представляет собой окружность радиуса, подбираемого под определённые требования.

Двойные косозубые шестерни (шевроны)

Двойные косозубые шестерни решают проблему осевого момента. Зубья таких шестерён изготавливаются в виде буквы «V» (либо они получаются стыковкой двух косозубых шестерён со встречным расположением зубьев). Осевые моменты обеих половин такой шестерни взаимно компенсируются, поэтому отпадает необходимость в установке осей и валов в специальные подшипники. Передачи, основанные на таких зубчатых колёсах, обычно называют «шевронными».

Зубчатые конические колёса

Кроме наиболее распространёных циллиндрических З. к. применяются колёса конической формы. Конические шестерни применяются там, где необходимо передать крутящий момент под определённым углом. Такие конические шестерни с круговым зубом, например, применяются в автомобильных , используемых для передачи момента от двигателя к колёсам.

Секторные колёса

Секторная шестерня представляет собой часть обычной шестерни любого типа. Такие шестерни применяются в тех случаях, когда не требуется вращение механизма на 360°, и поэтому можно сэкономить на его габаритах.

Зубчатые колёса с внутренним зацеплением

При жестких ограничениях на габариты, в планетарных механизмах, в шестерённых насосах с внутренним зацеплением, в приводе башни , удобно применение колёс с зубчатым венцом, нарезанным с внутренней стороны. Также стоит заметить что вращение ведущего и ведомого колеса направленно в одну сторону.

Реечная передача (кремальера)

Коронные шестерни

Коронная шестерня - особый вид шестерни, зубья которой располагаются на боковой поверхности. Такая шестерня обычно стыкуется с обычной прямозубой, либо с барабаном из стержней (цевочное колесо), как в башенных часах.

Для плавной работы и эффективной передачи энергии вращения посредством зубчатого зацепления необходимо, чтобы зубья имели особую форму. Такая форма зубьев, называемая эвольвентной , в настоящее время применяется почти на всех зубчатых колесах. (Эвольвента – это кривая, которую прочертит карандаш на конце туго натянутой нити, сматываемой с неподвижного кругового цилиндра.)

Зубчатые колеса обычно изготавливают из стали, но применяются и другие материалы – чугун, латунь, алюминий, пластмассы. Стальные зубчатые колеса для повышения долговечности подвергают поверхностному упрочнению путем науглероживания и термообработки. Такая обработка обязательна для всех ответственных зубчатых передач, в частности автомобильных передач и дифференциалов. Зацепление зубчатых колес может быть цилиндрическим, коническим и гипоидным – когда оси зубчатых колес, входящих в зацепление друг с другом, параллельны, пересекаются или скрещиваются соответственно.

Цилиндрические зубчатые колеса . Зубчатые колеса для параллельных валов называют цилиндрическими. Одно из двух входящих в зацепление зубчатых колес – передающее движение – является ведущим, другое – ведомым. Если одно из колес значительно меньше другого, оно называется шестерней. Если отношение частот вращения ведущего и ведомого колес равно единице, то оба зубчатых колеса имеют одинаковые размеры. Передаточное отношение равно отношению чисел зубьев двух колес. Например, шестерня с 10 зубьями вращается в 4 раза быстрее сцепленного с ней зубчатого колеса, имеющего 40 зубьев. Зубья могут быть расположены как на наружной, так и на внутренней поверхности колеса. При наружном зацеплении колеса вращаются в противоположных направлениях, при внутреннем – в одном.

Для преобразования вращения в линейное перемещение ведомое колесо заменяется зубчатой «рейкой» – это как бы зубчатое колесо бесконечно большого диаметра.

Многоступенчатая зубчатая передача. Для передачи вращения между двумя валами, расположенными на значительном удалении друг от друга, может потребоваться более двух зубчатых колес. Промежуточные колеса изменяют направление вращения, если их число – четное. При нечетном же их числе направление вращения не изменяется.

Виды цилиндрических зубчатых колес . Зубчатые колеса, зубья которых параллельны оси колеса, называются прямозубыми. Для увеличения контактной длины и числа зубьев, находящихся в зацеплении (что необходимо для передачи большего момента и более плавной работы на повышенных частотах вращения), применяют косозубые зубчатые колеса. Серьезным недостатком косозубых колес является осевое усилие, возникающее в контакте зацепленных зубьев. Для его устранения применяются шевронные зубчатые колеса с V-образными (угловыми) косыми зубьями.

Конические зубчатые колеса. Оси конических колес зубчатой передачи составляют прямой угол, и их зубья обычно нарезаются по радиусам. Если зубья конических колес прямые, но идут не по радиусам, то они называются тангенциальными. Конические зубчатые передачи, оси колес которых не пересекаются, называются гипоидными. Их часто применяют в задних мостах автомобилей для понижения центра тяжести. В дифференциалах автомобилей применяются ортогональные зубчатые передачи с зубчатыми колесами одного диаметра. Спиральнозубые колеса подобны цилиндрическим, но их зубья нарезаются таким образом, что они передают вращение между взаимно перпендикулярными валами.

Червячные передачи. Для увеличения передаточного отношения, получаемого с помощью цилиндрических прямозубых или конических колес, можно воспользоваться червячной передачей. «Червяк» такой передачи представляет собой винт, вращающий зубчатое колесо, ось которого перпендикулярна оси червяка. Преимущество червячной передачи – в экономии места, недостаток же – в потере мощности.

4. Какие основные виды организационных структур предприятий сервиса Вы знаете.

Организационная структура СО формируется в соответствии с выбранным направлением деятельности. Основная функция организационной структуры - мотивировать персонал, чтобы обеспечить рост эффективности, содействовать использова­нию выработанных правил, процедур и указаний, которые поддерживают ежедневную работу персонала СО.

Многообразие функциональных связей и возможных спо­собов их распределения между подразделениями и работниками предопределяет разнообразные виды организационных структур управления производством. Большинство СО в разных отрас­лях используют следующие виды организационных структур:

Функционально-технологическую;

Организованную на основе управления по видам продукции и(или) маркам;

Организованную по географическим признакам (географиче­ская структура);

Организованную по сегментам.

Первый вид структуры, традиционный для нашей страны, заимствован из опыта промышленных и эксплуатационных предприятий (так называемая цеховая структура). Остальные три структуры часто называют дивизионными.

В дивизионных структурах ключевыми фигурами в управ­лении предприятием выступают не руководители функцио­нальных служб управления, а управляющие (ме­неджеры), возглавляющие производственные подразделения. Структуризация предприятия по отделениям производится обычно по одному из трех критериев: по выпускаемой продук­ции или предоставляемым услугам (продуктовая специализа­ция), по обслуживаемым территориям (региональная специа­лизация), по ориентации на потребителя (потребительская специализация).

Продуктовая структура позволяет достаточно просто раз­рабатывать новые виды продукции, исходя из соображений конкуренции, совершенствования технологии или удовлетво­рения потребностей покупателей.

Региональная структура обеспечивает более эффективный учет местного законодательства, социально-экономической системы и рынков по мере географического расширения ры­ночных зон. Однако при организации работы по продукции или регионам ключевые подразделения СО не знают сегмен­тов, с какими они работают, не знают потребности этих сег­ментов.

В ориентированной на потребителя организационной струк­туре все подразделения группируются вокруг сегментов, вы­бранных руководством СО. Считается, что эта ор­ганизационная структура является наиболее перспективной и соответствует современным тенденциям развития рынка, в том числе ТС ДМ. Такая структура дает возможность наиболее эф­фективно учитывать запросы потребителей, имеющих четко определенные или специфические потребности, от которых предприятие более всего зависит. Структура СО связана с су­щественными характеристиками сегментов и зависит от числа рынков (на которых работает СО), от числа и размеров сегмен­тов, от финансовых взаимосвязей. Такая структура требует со­ответствующих изменений системы учета, в том числе бухгал­терской информации. СО, ориентирующая свою деятельность на выбранные сегменты, более отзывчива к потребностям рынка, чем структуры, организующие свою работу по функци­ям, продукции или регионам.

Таким образом, выбор вида дивизионной структуры дол­жен быть основан на том, какой из этих факторов наиболее способствует обеспечению реализации стратегических планов предприятия сервиса и достижению его целей. Например, при данной структуре можно реализовать большую часть идей современной философии качества. Дивизионные структуры предпочтительны в периоды достаточно стабильной деятель­ности предприятия Hа предприятиях с жесткой функциональной организаци­ей руководство среднего звена обычно делает упор на миними­зацию потребляемых ресурсов и строгое соблюдение персо­налом регламентирующих правил и распоряжений. На та­ком предприятии процессы оптимизируются в соответствии с функциональной структурой. Однако в каждом бизнес-про­цессе участвует несколько подразделений и служб СО и в рам­ках одного процесса функциональные границы подразделений и служб пересекаются. Это приводит к появлению внутренних потребителей и поставщиков промежуточных результатов. По­этому функции, ресурсы и управление должны выстраиваться в соответствии с выполняемыми процессами, а управляюще­му персоналу следует концентрировать внимание на работе с внутренними поставщиками и обслуживании внутренних по­требителей. В таких условиях персонал имеет более сильную мотивацию к улучшению качества и других характеристик про­изводимых продуктов и услуг. Здесь удовлетворительное ре­шение дает матричная (или программно-целевая) структура управления.

Матричная структура представляет собой сетевую струк­туру, которая построена на принципе двойного подчинения исполнителей. С одной стороны, исполнители подчиняются непосредственному руководителю функциональной службы (которая предоставляет персонал и техническую помощь руко­водителю проекта), а с другой - руководителю проекта или це­левой программы (который наделен соответствующими пол­номочиями). Таким образом, руководитель проекта взаимо­действует с двумя группами подчиненных - с постоянными членами проектной группы и работниками функциональных отделов, которые подчиняются ему временно и по ограничен­ному кругу вопросов. При этом сохраняется их подчинение не­посредственным руководителям подразделений и служб.

Матричная организация позволяет лучше координировать деятельность предприятия при осуществлении разных биз­нес-процессов. Она более гибкая, чем, например, функцио­нальная структура, в которой все работники жестко закрепле­ны за определенными функциональными отделами. В рамках матричной структуры можно осуществить интеграцию на уровне как совмещения функционального, оперативного, геorрафического и временного аспектов, так и взаимосвязи между сервисом и другими подразделениями предприятия. Матрич­ная организация используется во многих отраслях промыш­ленности, а также в некоторых организациях непроизводст­венной сферы. К недостаткам матричной организации следует отнести сложность и неясность ее структуры, наложение вер­тикальных и горизонтальных полномочий, что подрывает принцип единоначалия и может приводить к конфликтам и трудностям в принятии решений.

ЗУБЧАТЫЕ ПЕРЕДАЧИ

П л а н л е к ц и и

1. Общие сведения.

2. Классификация зубчатых передач.

3. Геометрические параметры зубчатых колес.

4. Точность преобразования параметров.

5. Динамические соотношения в зубчатых зацеплениях.

6. Конструкция колес. Материалы и допускаемые напряжения.

1. Общие сведения

Зубчатая передача – это механизм, который с помощью зубчатого зацепления передает или преобразует движение с изменением угловых скоростей и моментов. Зубчатая передача состоит из колес с зубьями, которые сцепляются между собой, образуя ряд последовательно работающих кулачковых механизмов.

Зубчатые передачи применяют для преобразования и передачи вращательного движения между валами с параллельными, пересекающимися или перекрещивающимися осями, а также для преобразования вращательного движения в поступательное и наоборот.

Достоинства зубчатых передач:

1. Постоянство передаточного отношения i .

2. Надежность и долговечность работы.

3. Компактность.

4. Большой диапазон передаваемых скоростей.

5. Небольшое давление на валы.

6. Высокий КПД.

7. Простота обслуживания.

Недостатки зубчатых передач:

1. Необходимость высокой точности изготовления и монтажа.

2. Шум при работе со значительными скоростями.

3. Невозможность бесступенчатого регулирования передаточного отно-

шения i .

2. Классификация зубчатых передач

Зубчатые передачи, применяемые в механических системах, разнообразны. Они используются как для понижения, так и для повышения угловой скорости.

Классификация конструкций зубчатых преобразователей группирует передачи по трем признакам:

1. По виду зацепления зубьев . В технических устройствах применяются передачи с внешним (рис. 5.1, а ), с внутренним (рис. 5.1, б ) и с реечным (рис. 5.1, в ) зацеплением.

Передачи с внешним зацеплением применяются для преобразования вращательного движения с изменением направления движения. Передаточное отношение колеблется в пределах –0,1 i –10. Внутреннее зацепление применяется в том случае, если требуется преобразовывать вращательное движение с сохранением направления. По сравнению с внешним зацеплением передача имеет меньшие габаритные размеры, бóльший коэффициент перекрытия и повышенную прочность, но более cложна в изготовлении. Реечное зацепление применяется при преобразовании вращательного движения в поступательное и обратно.

2 . По взаимному расположению осей валов различают передачи цилиндрическими колесами с параллельными осями валов (рис. 5.1, а), коническими колесами с пересекающимися осями (рис. 5.2), колесами со скрещивающимися осями (рис. 5.3). Передачи c коническими колесами обладают меньшим передаточным отношением (1/6 i 6), более сложны в изготовлении и эксплуатации, имеют дополнительные осевые нагрузки. Винтовые колеса работают с повышенным скольжением, быстрее изнашиваются, имеют малую нагрузочную способность. Эти передачи могут обеспечивать различные передаточные отношения при одинаковых диаметрах колес.

3 . По расположению зубьев относительно образующей обода колеса

различают передачи прямозубые (рис. 5.4, а ), косозубые (рис. 5.4, б ), шевронные (рис. 5.5) и с круговыми зубьями.

Косозубые передачи имеют боль-

шую плавность зацепления, меньше

технологически

равноценны

прямозубым, но в передаче возникают

дополнительные

нагрузки.

Сдвоенная косозубая со

встречными

наклонами зубьев (шевронная) переда-

ча имеет все преимущества косозубой

и уравновешенные осевые силы. Но

передача несколько сложнее в изготов-

лении и монтаже. Криволинейные

зубья чаще всего применяются в кони-

передачах

повышения

нагрузочной способности,

плавности

работы при высоких скоростях.

3. Геометрические параметры зубчатых колес

К основным геометрическим параметрам зубчатых колес (рис. 5.6) относятся: шаг зуба Р t , модуль m (m = P t /), число зубьев Z , диаметр d делительной окружности, высота h a делительной головки зуба, высота h f делительной ножки зуба, диаметры d a и d f окружностей вершин и впадин, ширина зубчатого венца b .

df 1

db 1

dw 1 (d1 )

da 1

df 2

dw 2 (d2 )

da 2

db 2

Диаметр делительной окружности d = mZ . Делительной окружностью зуб колеса делится на делительную головку и делительную ножку, соотношение размеров которых определяется относительным положением заготовки колеса и инструмента в процессе нарезания зубьев.

При нулевом смещении исходного контура высота делительной головки и ножки зуба колеса соответствует таковым у исходного контура, т. е.

ha = h a * m; hf = (h a * + c* ) m,

где h a * – коэффициент высоты головки зуба; c * – коэффициент радиального

Для колес с внешними зубьями диаметр окружности вершин

da = d + 2 ha = (Z + 2 h a * ) m.

Диаметр окружности впадин

df = d – 2 hf = (Z – 2 h a * – 2 c* ) m.

При m ≥ 1 мм h a * = 1, c * = 0,25, d a = (Z – 2,5)m .

Для колес с внутренними зубьями диаметры окружностей вершин и впадин следующие:

da = d – 2 ha = (Z – 2 h a * ) m;

df = d + 2 hf = (Z + 2 h a * + 2 c* ) m.

Для колес, нарезанных со смещением, диаметры вершин и впадин определяются с учетом величины коэффициента смещения по более сложным зависимостям.

Если два колеса, нарезанные без смещения, ввести в зацепление, то их делительные окружности будут касаться, т. е. совпадут с начальными окружностями. Угол зацепления при этом будет равен углу профиля исходного контура, т. е. начальные ножки и головки совпадут с делительными ножками и головками. Межосевое расстояние будет равняться делительному межосевому расстоянию, определяемому через диаметры делительных окружностей:

aw = a = (d1 + d2 )/2 = m(Z1 + Z2 )/2.

Для колес, нарезанных со смещением, имеется различие для начальных и делительных диаметров, т. е.

d w 1 ≠ d 1 ; d w 2 ≠ d 2 ; a w ≠ a ; αw = α.

4. Точность преобразования параметров

В процессе эксплуатации зубчатой передачи теоретически постоянное передаточное отношение претерпевает непрерывные изменения. Эти изменения вызываются неизбежными погрешностями изготовления размеров и формы зубьев. Проблема изготовления зубчатых зацеплений с малой чувствительностью к погрешностям решается в двух направлениях:

а) применение специальных видов профилей (например, часовое зацепление);

б) ограничение погрешностей изготовления.

В отличие от таких простых деталей, как валы и втулки, зубчатые колеса являются сложными деталями, и погрешности выполнения их отдельных элементов не только сказываются на сопряжении двух отдельных зубьев, но и оказывают влияние на динамические и прочностные характеристики зубчатой передачи в целом, а также на точность передачи и преобразования вращательного движения.

Погрешности зубчатых колес и передач в зависимости от их влияния на эксплуатационные показатели передачи можно разделить на четыре группы:

1) погрешности, влияющие на кинематическую точность, т. е. точность передачи и преобразования вращательного движения;

2) погрешности, влияющие на плавность работы зубчатой передачи;

3) погрешности пятна контакта зубьев;

4) погрешности, приводящие к изменению бокового зазора и влияющие на мертвый ход передачи.

В каждой из этих групп могут быть выделены комплексные погрешности, наиболее полно характеризующие данную группу, и поэлементные, частично характеризующие эксплуатационные показатели передачи.

Такое разделение погрешностей на группы положено в основу стандартов на допуски и отклонения зубчатых передач: ГОСТ 1643–81 и ГОСТ 9178–81.

Для оценки кинематической точности передачи, плавности вращения, характеристики контакта зубьев и мертвого хода в рассматриваемых стандартах установлено 12 степеней точности изготовления зубчатых колес

и передач. Степени точности в порядке убывания обозначаются числами 1–12. Степени точности 1 и 2 по ГОСТ 1643–81 для m > 1 мм и по ГОСТ 9178–81 для 0,1 < m < 1 являются перспективными, и для них в стандартах численные значения допусков нормируемых параметров не приводятся. Стандартом устанавливаются нормы кинематической точности, плавности, пятна контакта и бокового зазора, выраженные в допустимых погрешностях.

Допускается использование зубчатых колес и передач, группы погрешностей которых могут принадлежать к различным степеням точности. Однако ряд погрешностей, принадлежащих к различным группам по своему влиянию на точность передачи, взаимосвязаны, поэтому устанавливаются ограничения на комбинирование норм точности. Так, нормы плавности могут быть не более чем на две степени точнее или на одну степень грубее норм кинематической точности, а нормы контакта зубьев можно назначать по любым степеням, более точным, чем нормы плавности. Комбинирование норм точности позволяет проектировщику создавать наиболее экономичные передачи, выбирая при этом такие степени точности на отдельные показа-

тели, которые отвечают эксплуатационным требованиям, предъявляемым к данной передаче, не завышая затрат на изготовление передачи. Выбор степеней точности зависит от назначения, области применения колес и окружной скорости вращения зубьев.

Рассмотрим более подробно погрешности зубчатых колес и передач, влияющие на их качество.

5. Динамические соотношения в зубчатых зацеплениях

Зубчатые передачи преобразуют не только параметры движения, но и параметры нагрузки. В процессе преобразования механической энергии часть мощности P тр , подводимой к входу преобразователя, расходуется на преодоление трения качения и скольжения в кинематических парах зубчатых колес. В результате мощность на выходе уменьшается. Для оценки потери

мощности используется понятие коэффициента полезного действия (КПД), определяемого как отношение мощности на выходе преобразователя к мощности, подводимой к его входу, т. е.

η = P вых /P вх .

Если зубчатая передача преобразует вращательное движение, то соответственно мощности на входе и выходе можно определить как

Обозначим ωвых /ωвх через i , а величину T вых /T вх через i м , которое назовем передаточным отношением моментов. Тогда выражение (5.3) примет вид

η = i м .

Величина η колеблется в пределах 0,94–0,96 и зависит от типа передачи и передаваемой нагрузки.

Для зубчатой цилиндрической передачи КПД можно определить из зависимости

η = 1 – cf π(1/Z 1 + 1/Z 2 ),

где с – поправочный коэффициент, учитывающий уменьшение КПД с уменьшением передаваемой мощности;

20Т вых 292mZ 2

20Т вых 17,4mZ 2

где Т вых – момент на выходе, H мм; f – коэффициент трения между зубьями. Для определения действительных усилий на зубья передачи рассмот-

рим процесс преобразования нагрузки (рис. 5.7). Пусть движущий входной момент T 1 приложен к ведущему зубчатому колесу 1 с диаметром начальной окружности d w l , а момент сопротивления T 2 ведомого колеса 2 направлен в сторону, противоположную вращению колеса. В эвольвентном зубчатом зацеплении точка контакта находится всегда на линии, являющейся общей нормалью к соприкасаемым профилям. Следовательно, сила давления зуба F ведущего колеса на зуб ведомого будет направлена по нормали. Перенесем силу по линии действия в полюс зацепления P и разложим ее на две составляющие.

Ft ’

Ft ’

Касательная составляющая F t называется

окружной силой. Она

совершает полезную работу, преодолевая момент сопротивления T и приводя в движение колеса. Ее величину можно вычислить по формуле

F t = 2T /d w .

Составляющая по вертикали называется радиальной силой и обозначается F r . Эта сила работы не совершает, она только создает дополнительную нагрузку на валы и опоры передачи.

При определении величины обеих сил можно пренебречь силами трения между зубьями. В этом случае между полным усилием давления зубьев и его составляющими существуют следующие зависимости:

F n = F t /(cos α cos);

F r = F t tg α/ cos ,

где α – угол зацепления.

Зацепление цилиндрических прямозубых колес имеет ряд существенных динамических недостатков: ограниченные значения коэффициента перекрытия, значительный шум и удары при высоких скоростях. Для уменьшения габаритов передачи и уменьшения плавности работы часто прямозубое зацепление заменяют косозубым, боковые профили зубьев которого представляют собой эвольвентные винтовые поверхности.

В косозубых передачах полное усилие F направлено перпендикулярно зубу. Разложим эту силу на две составляющие: F t – окружное усилие колеса и F a – осевая сила, направленная вдоль геометрической оси колеса;

F a = F t tg β,

где – угол наклона зуба.

Таким образом, в косозубом зацеплении в отличие от прямозубого действуют три взаимно перпендикулярные силы F a , F r , F t , из которых только F t совершает полезную работу.

6. Конструкция колес. Материалы и допускаемые напряжения

Конструкция колес. При изучении принципов конструирования зубчатых передач основной целью является усвоение методики определения формы и основных параметров колес по условиям работоспособности и эксплуатации. Достижение указанной цели возможно при решении следующих задач:

а) выбор оптимальных материалов колес и определение допускаемых механических характеристик;

б) расчет размеров колес по условиям контактной и изгибной прочности;

в) разработка конструкции зубчатых колес.

Зубчатые передачи являются типовыми преобразователями, для которых разработано достаточно много обоснованных конструктивных оптимальных вариантов. Обобщающая схема конструкции зубчатого колеса может быть представлена как сочетание трех основных конструктивных элементов: зубчатого венца, ступицы и центрального диска (рис. 5.9). Форму и размеры зубчатого колеса определяют в зависимости от числа зубьев, модуля, диаметра вала, а также от материала и технологии изготовления колес.

На рис. 5.8 показаны примеры конструкций зубчатых колес механизмов. Размеры колес рекомендуется брать в соответствии с указаниями ГОСТ 13733–77.

Лекция № 16

Изложенного материала

Вопросы для самопроверки

1. Перечислите примеры деталей с поверхностями сложной кофигурации.

2. Какие виды поверхностей используются при проектировании деталей с поверхностями сложной конфигурации?

3. Приведите способы обработки поверхностей сложной конфигурации.

4. Что такое обработка по копиру ?

5. Какие виды копиров используются в производстве?

1. Изучите номенклатуру деталей сложной конфигурации, производимую (ремонтируемую) на выбранном Вами предприятии.

2. Составьте технологический маршрут их обработки.

3. Определите инструменты и способы обработки конкретных поверхностей сложной конфигурации.

ОБРАБОТКА ЗУБЧАТЫХ ПОВЕРХНОСТЕЙ

В передачах современных машин широко используются зубчатые колёса, разнообраз-ные по форме, размерам и профилям (рис. 16.1). Наиболее распространены цилиндрические зубчатые колёса с прямыми (рис. 16.1а) и косыми (рис. 16.1б) зубьями. Соединение двух косых зубьев с противоположными углами наклона на ободе цилиндрического колеса представляет собой зубчатую передачу с шевронными (ёлочными) зубьями.

Рис. 16.1. Типы зубчатых передач

На рис. 16.1в представлена коническая передача с пересекающимися осями, причём угол встречи осей может быть любым. Конические колёса могут иметь прямые, косые и криволинейные зубья.

На рис. 16.1г представлена зубчатая передача со скрещивающимися осями, состоящая из двух зубчатых колёс с винтовыми зубьями . На рис. 16.1д пре-дставлена ещё одна схема передачи со скрещивающимися осями – червячная передача , отличающаяся от перечисленных выше тем, что один элемент передачи представляет собой винт (червяк), а другой - зубчатое колесо с фасонным зубом, сцепляющимся с витками винта.

На рис. 16.1е изображена реечная передача, одним элементом которой является зубчатое колесо с прямым или косым зубом, а другим – зубчатая рейка, которую можно представить как зубчатое колесо с бесконечно большим чи-слом зубьев. Реечная пара передаёт движение как от зубчатого колеса к рейке,

так и наоборот.

На рис. 16.1ж представлена схема волновой передачи , основанной на передаче движения за счёт бегущей волновой деформации одного из зубчатых ко-лёс. Эта передача состоит из водила 3 с двумя роликами, свободно вращающимися на осях, закреплённых в водиле, неподвижного жесткого зубчатого колеса 1 с внутренними зубьями и вращающего гибкого колеса 2 с наружными зубьями. Жёсткое зубчатое колесо соединяется с корпусом передачи. Гибкое зубчатое колесо изготавливают либо в виде стакана с тонкой легко деформирующейся стенкой, либо в виде свободно деформирующегося кольца.



В современных механизмах применяют зубчатые колёса с профилем зуба, очерченным эвольвентной кривой. В ряде случаев используются передачи с зацеплением Новикова, основным отличием которых является выпуклый и вогнутый круговые профили зубьев.

Действующими ГОСТами установлено 12 степеней точности цилиндрических зубчатых колёс и передач, с обозначением степеней в порядке убывания точности. За основу принята 7-я степень точности, соответствующая 7-му квалитету. Для каждой степени точности установлены нормы: кинематическая точность колеса; плавность работы колеса; контакта зубьев; бокового зазора.

Показатели кинематической точности представлены на рис. 16.2.

Нормы кинематической точности определяют значение наибольшей погрешности угла поворота зубчатого колеса за оборот при зацеплении с точным колесом. Эта погрешность возникает при нарезании зубчатых колёс вследствие погрешностей взаимного расположения заготовки обрабатываемого колеса и режущего инструмента, а также вследствие кинематической погрешности зуборезного станка. Показателем кинематической точности является предельная кинематическая погрешность (рис. 16.2а).

Кинематическую погрешность можно оценить предельной накопленной погрешностью окружного шага , являющейся наибольшей погрешностью во взаимном расположении двух любых одноименных профилей зубьев по одной окружности колеса (рис. 16.2б).

Показателем кинематической погрешности, обозначаемым называемым колебанием длины общей нормали , т.е. размер между наибоьшей и наименьшей длинами общей нормали в одном и том же колеса (рис. 16.2в).

Норма плавности работы зубчатого колеса определяет составляющую полной погрешности углов поворота зубчатого колеса, многократно повторяющуюся за оборот колеса (рис. 16.2г). Показателем плавности работы колёс является циклическая погрешность , которая представляет собой среднее значение размаха колебаний кинематической погрешности зубчатого колеса по всем циклам за оборот колеса. Плавность работы зубчатого зацепления влияет на бесшумность и долговечность передач (рис. 16.2д).

Погрешность профиля характеризует расстояние расстояние по нормали между двумя теоретическими профилями зуба колеса, ограничивающими действительный профиль в пределах его рабочего участка (рис. 16.2е).

Рис. 16.2. Показатели кинематической точности зубчатой передачи

Нормы контакта зубьев определяют точность выполнения сопряжённых зубьев в передаче. Пятном контакт называется часть боковой поверхности зуба колеса, на которой располагаются следы прилегания его к зубьям парного колеса после вращения передачи при лёгком торможении (рис.16.2ж). Норма точности определяется относительными размерами пятна контакта (в процентах):

1) по длине зуба – отношением расстояния между крайними точками следов прилегания за вычетом разрывов с, превосходящих размер модуля, к полной длине В зуба (см. рис. 16.2ж):

2) по высоте зуба – отношение средней высоты пятна прилегания по всей длине зуба к рабочей высоте зуба:

Пример норм размеров пятна контакта приведен в табл. 16.1.

Боковым зазором называется зазор между зубьями сопряжённых колёс в передаче, обеспечивающий свободный поворот одного из колёс при неподвиж-ном втором колесе. Боковой зазор определяется в сечении, перпендикулярном направлению зубьев, в плоскости, касательной к основным цилиндрам.

Гарантированный боковой зазор обозначается .

Для зубчатых колёс в передаче установлены шесть видов сопряжений: А, В, С, D, E, H и восемь видов допуска на боковой зазор, обозначенных в порядке

Таблица 16.1

Нормы размера пятна контакта (%%) для цилиндрических колёс

его возрастания буквами: h, d, c, b, a, z, y, x.

Для конических колёс и червячных пар установлены особые нормы точности.

16.2. Основные методы обработки зубьев цилиндрических и конических колёс.

Выбор метода обработки зубчатых колёс находится в непосредственной зависимости от установленной нормы точности различных их элементов, а так-же от основных требований к передачам в процессе их эксплуатации. С этой точки зрения зубчатые передачи можно разделить на следующие группы: 1) силовые передачи больших мощностей и высоких скоростей; основное требование – обеспечение высоких КПД; 2) силовые промышленные и транспортные передачи при средних скоростях; основное требование – надёжность и плавнос-ть хода; 3) силовые передачи в станкостроении; основное требование – постоя-нство передаточного отношения и плавность хода; 4) передачи в автомобилестрении; основное требование – плавность и лёгкость хода; бесшумность; 5) кинематические передачи в точных приборах; основное требование – постоянство передаточных отношений, отсутствие мертвого хода. Установленные ГОСТом степени точности учитывают эти условия, допуская высокие технические показатели в одном направлении и низкие в другом.

Зубчатые колёса обрабатывают на разнообразных зубообрабатывающих станках. Зубья на колёсах нарезают двумя способами: копированием (рис.16.3а, б) и обкаткой (огибанием; рис. 16.3в). При копировании инструменту придают форму впадины между зубьями, а затем проводят обработку. При этом профиль инструмента копируется на обрабатываемой поверхности.

Зубонарезание способом способом копирования можно выполнять: последовательным нарезанием каждого зуба колеса модульной дисковой или па-льцевой фрезой на универсальном фрезерном станке; одновременным долблением всех зубьев колес; одновременным протягиванием всех зубьев колес; круговым протягиванием. Способ копирования применяется главным образом для изготовления зубчатых колёс невысокой точности.

Современным, точным и производительным способом изготовления зуб-чатых колёс является нарезание зубьев обкаткой червячной фрезой, круглым

Рис. 16.3. Схемы нарезания зубьев

долбяком, реечным долбяком (гребенкой), зубострогальными резцами, резцовой головкой, накатыванием зубчатыми валками.

Способ обкатки заключается в том, что зубья на заготовке формируются при согласованном совместном вращении (обкатке) режущего инструмента и заготовки. Так при зубофрезеровании (рис. 16.4) прямолинейные боковые режущие кромки зубьев фрезы, имеющую в осевом сечении трапецеидальную форму, поочередно касаются нарезаемого зуба. Рассматривая последовательные положения зубьев фрезы, видим, что профиль впадины формируется постепенно и состоит из множества прямолинейных участков, образованных зубьями фрезы. Эти прямолинейные участки накладываются один на другой и практически образуют не ломаный, а криволинейный (эвольвентный).

Рис. 16.4. Обкатка зубьев колёс

Шестернями называют основные элементы зубчатых передач (ЗП) в виде дисков или конусов с выполненными на их поверхности (нарезанными, литыми) зацепами (зубьями), которые входят в зацепление с зубьями другой детали. В машиностроении принято меньшую деталь передачи называть шестерней, а большую – зубчатым колесом (ЗК), но в целом можно считать эти термины синонимами.

Форма зубьев шестерен имеет определяющее значение на ее характеристики (нагрузочную способность, износоустойчивость, шумность и др).

Подавляющее большинство современных зубчатых шестерен выполнены с зубьями эвольвентного профиля (в форме эвольвенты окружности). При всех их несомненных достоинствах, зацепы эвольвентной формы имеют ограниченную прочность. Потому в тихоходных механизмах с большим силовым потоком применяются шестерни с зацепами и выемками круглой формы (так называемая передача Новикова).

В машиностроении основу составляют четыре вида шестерен (формфактора):

  • цилиндрические;
  • конические;
  • ЗК с внутренним зацеплением (эпициклы планетарных редукторов и др.);
  • вал-шестерня.

Особняком стоят такие разнообразные по форме зубчатые детали, как:

  • зубчатая рейка, применяемая в реечной передаче (кремальере);
  • секторное колесо, применяемое в приводах с неполным оборотом валов;
  • коронные шестерни с зацепами на боковой поверхности;
  • звездочки, применяемые в цепных механизмах.

Как цилиндрические, так и конические шестерни могут выполняться с зубьями (зацепами) эвольвентной и круглозубой формы.

Цилиндрические ЗК в конструкции машин и механизмов являются самыми распространенными.

В зависимости от начертания продольной линии зуба, они бывают:

  • прямозубые (продольная линия зуба параллельна оси вала);
  • косозубая (линия зуба под углом к оси вала);
  • шевронная (линии образуют по форме римскую букву V).

ЗК с внутренним зацеплением (эпициклы) имеют варианты продольной линии зуба такие же, как и у цилиндрических.

Конические шестерни в зависимости от формы линии зубьев бывают:

  • прямые;
  • тангенциальные;
  • круговые;
  • криволинейные.

Наиболее широко применяемым материалом для изготовления зубчатых деталей являются разнообразные сорта термически обрабатываемой (углеродистой и легированной) стали. Кроме того, в некоторых узлах и механизмах могут применяться шестерни, изготовленные из:

  • чугуна (серый СЧ, высокопрочный (магниевый) ВЧ);
  • латуни,
  • конструкционных полимеров и пластиков, (текстолит, капролон, фенилон и др.).

Подробнее о видах шестерен и их особенностях

Каждый особый тип ЗК имеет свои характерные особенности и сферу применения.

Цилиндрические прямозубые – наиболее просты и технологичны в изготовлении, хорошо ведут себя в составе скоростных редукторов, малочувствительны к изменениям межосевых расстояний и углов при сильных вибрациях. Но имеют недостатком относительно ограниченную нагрузочную стойкость. Также в составе узлов и механизмов имеют сравнительно высокую шумность в работе, порождают высокочастотные вибрации.

Цилиндрические косозубые – имеют большую площадь контакта (нагрузочную стойкость), лучшую плавность работы, меньшую шумность и вибрации. Применяются в скоростных нагруженных редукторах, где требуется снижение шумности. Но в своей работе порождают продольные усилия на валу, которые требуют применения более дорогих упорных подшипников.

Цилиндрические шевронные (самоцентрирующиеся) – не имеют недостатков прямозубых и косозубых (высокий передаваемый крутящий момент, плавность в работе, низкая шумность, отсутствие продольных усилий), но менее технологичны и более сложны в изготовлении, чувствительны к изменениям межосевых расстояний и углов при вибрациях.

Эпициклы (с внутренним зацеплением) – применяются в планетарных редукторах, или в составе цилиндрических передач, где по инженерным требованиям требуется экономия места.

Вал-шестерня является вариантом цилиндрического ЗК, в котором (как правило, прямые) зубья нарезаны непосредственно на штанге. Применяется в конструкциях редукторов, где требуется экономия места, или малонагруженные зубчатые детали подвергаются малому износу.

Зубчатая рейка – прямолинейная рейка с нарезанными на ней с одной или двух сторон зацепами, как правило, эвольвентного или циклоидного профиля. Работает в паре с приводной шестерней. Применяется в разнообразных механизмах, где необходимо преобразовать вращательное движение привода в продольно-поступательное движение рейки.

Секторное колесо – это не цельная цилиндрическая шестерня, а только ее часть (сектор), насаженный на ось. Применяется в приводах, где не нужен полный поворот вала, а вполне достаточно частичного.

Конические – применяются в зубчатых передачах, в которых оси валов пересекаются под произвольным углом (как правило, 90 град, но может быть и другой), или имеют динамически переменный угол зацепления. Предназначены для трансляции силового потока с изменением его направления. Среди них самые скоростные, технологичные в изготовлении, но в то же время и самые шумные – прямозубые конические шестерни. Как и в случае с цилиндрическими ЗК, изменение (усложнение) формы линии зубьев (от прямой к тангенциальной, круговой, криволинейной) приводит к увеличению плавности работы, нагрузочной способности, снижению шумности в механизмах. Но в то же время повышает их чувствительность к вибрациям, нарушениям зазоров в зацеплении, сложность и затратность изготовления.

Круглозубые (передача Новикова) – имеют высокую прочность зацепов и соответственно, нагрузочную стойкость. Но в то же время очень чувствительны к изменениям межосевых расстояний, углов, что случается при работе на высоких скоростях, в условиях вибраций. Потому применяются, как правило, только в тихоходных высоконагруженных машинах и механизмах. Имеют характерную особенность – в зубчатой паре профили зацепов на обоих колесах разные – на одном круглые выемки, на другом – круглые зубья.

Пара коронной (с зацепами на боковой поверхности цилиндрического колеса) и прямозубой ведущей шестерни (барабана) – применяется в механизмах с фиксированным неизменным углом трансляции силового потока в 90 град.

Звездочки – особый класс зубчатых деталей с разнообразной формой и профилем зубьев, применяются в цепных передачах с роликовыми, втулочными, силовыми, круглозвенными и др. цепями.

Ременная зубчатая передача одновременно совмещает особенности цепной и реечной. В ее составе имеются как гибкий зубчатый ремень, так и цилиндрические прямозубые шестерни (часто применяются как шестерня распредвала двигателя).