Актуальность . Существование гематоэнцефалического барьера (ГЭБ) является необходимым и наиболее важным условием для нормального функционирования центральной нервной системы (ЦНС), поэтому одной из ключевых задач, решение которой имеет не только фундаментальное, но и прикладное значение, является изучение механизмов функционирования ГЭБ. Известно, что физиологическая проницаемость ГЭБ уступает место патологической при различных видах патологии ЦНС (ишемия, гипоксия головного мозга, травмы и опухоли, нейродегенеративные заболевания), причем изменения проницаемости носят избирательный характер и зачастую являются причиной неэффективности фармакотерапии.

Гематоэнцефалический барьер (ГЭБ) - осуществляет активное взаимодействие между кровотоком и ЦНС, являясь высоко-организованной морфо-функциональной системой, локализованной на внутренней мембране сосудов головного мозга и включающей [1 ] церебральные эндотелиоциты и [2 ] комплекс поддерживающих структур: [2.1 ] базальную мембрану, к которой со стороны ткани мозга прилежат [2.2 ] перициты и [2.3 ] астроциты (имеются сообщения о том, что аксоны нейронов, которые содержат вазоактивные нейротрансмиттеры и пептиды, также могут вплотную граничить с эндотелиальными клетками, однако эти взгляды разделяются не всеми исследователями). За редким исключением ГЭБ хорошо развит во всех сосудах церебрального микроциркуляторного русла диаметром менее 100 мкм. Эти сосуды, включающие в себя собственно капилляры, а также пре- и посткапилляры, объединяются в понятие микрососуды.



Обратите внимание ! Только у небольшого количества образований головного мозга (около 1 - 1,5%) ГЭБ отсутствует. К таким образованиям относят: хориоидальные сплетения (основное), эпифиз, гипофиз и серый бугор. Однако и в этих структурах существует гематоликворный барьер, но иного строения.

читайте также пост: Нейроглия (на сайт)

ГЭБ выполняет барьерную (ограничивает транспорт из крови в мозг потенциально токсичных и опасных веществ: ГЭБ - высокоселективный фильтр), транспортную и метаболическую (обеспечивает транспорт газов, питательных веществ к мозгу и удаление метаболитов), иммунную и нейросекреторную функции, без которых невозможно нормальное функционирование ЦНС.

Эндотелиоциты . Первичной и важнейшей структурой ГЭБ являются эндотелиоциты церебральных микрососудов (ЭЦМ), которые значительно отличаются от аналогичных клеток других органов и тканей организма. Именно им отводится [!!! ] основная роль непосредственной регуляции проницаемости ГЭБ. Уникальными структурными характеристиками ЭЦМ являются: [1 ] наличие плотных контактов, соединяющих мембраны соседних клеток, как замок «молния», [2 ] высокое содержание митохондрий, [3 ] низкий уровень пиноцитоза и [4 ] отсутствие фенестр. Данные барьерные свойства эндотелия обусловливают очень высокое трансэндотелиальное сопротивление (от 4000 до 8000 W/см2 in vivo и до 800 W/см2 в кокультурах эндотелиоцитов с астроцитами in vitro) и практически полную непроницаемость монослоя барьерного эндотелия для гидрофильных веществ. Необходимые ЦНС питательные вещества (глюкоза, аминокислоты, витамины и пр.), а также все белки транспортируются через ГЭБ только активно (т.е. с затратой АТФ): либо путем рецептор-опосредованного эндоцитоза, либо с помощью специфических транспортеров. Основные отличия эндотелиоцитов ГЭБ и периферических сосудов представлены в таблице:


Кроме указанных особенностей, ЭЦМ ГЭБ секретируются вещества, регулирующие функциональную активность стволовых клеток ЦНС в постнатальном периоде: лейкемия ингибирующий фактор - LIF, нейротрофический фактор мозга - BDNF, костный морфоген - BMP, фактор роста фибробластов - FGF и др. ЭЦМ формируют и так называемое трансэндотелиальное электрическое сопротивление - барьер для полярных веществ и ионов.

Базальная мембрана . ЭЦМ окружает и поддерживает экстрацеллюлярный матрикс, который отделяет их от периэндотелиальных структур. Другое название данной структуры - базальная мембрана (БМ). Отростки астроцитов, окружающих капилляры, а также перициты внедрены в базальную мембрану. Экстрацеллюлярный матрикс является НЕклеточным компонентом ГЭБ. В состав матрикса входят ламинин, фибронектин, различные типы коллагенов, тенасцин и протеогликаны, экспрессируемые перицитами и эндотелиоцитами. БМ обеспечивает механическую поддержку окруженных ею клеток, отделяя эндотелиоциты капилляров от клеток ткани мозга. Кроме этого, она обеспечивает субстрат для миграции клеток, а также выступает в роли барьера для макромолекул. Адгезия клеток к БМ определяется интегринами - трансмембранными рецепторами, которые соединяют элементы цитокселета клетки с экстрацеллюлярным матриксом. БМ, окружая эндотелиоциты сплошным слоем, является последней физической преградой транспорту крупномолекулярных веществ в составе ГЭБ.

Перициты . Перициты являются удлиненными клетками, расположенными вдоль продольной оси капилляра, которые своими многочисленными отростками охватывают капилляры и посткапиллярные венулы, контактируют с эндотелиальными клетками, а также аксонами нейронов. Перициты передают нервный импульс от нейрона на эндотелиоциты, что приводит к накоплению или потере клеткой жидкости и, как следствие, изменению просвета сосудов. В настоящее время перициты считаются мало-дифференцированными клеточными элементами, участвующими в ангиогенезе, эндотелиальной пролиферации и воспалительных реакциях. Они оказывают стабилизирующий эффект на новые сформировавшиеся сосуды и приостанавливают их рост, влияют на пролиферацию и миграцию эндотелиальных клеток.

Астроциты . Работа всех транспортных систем ГЭБ контролируется астроцитами. Эти клетки окутывают своими окончаниями сосуды и контактируют непосредственно с эндотелиоцитами, оказывают существенное влияние на формирование плотных контактов между эндотелиоцитами и определяют свойства эндотелиоцитов ГЭБ. При этом эндотелиоциты приобретают способность к повышенной экструзии ксенобиотиков из ткани мозга. Астроциты, также как и перициты, являются посредниками в передаче регулирующих сигналов от нейронов к эндотелиоцитам сосудов через кальций-опосредованные и пуринергические взаимодействия.

Нейроны . Капилляры головного мозга иннервируются норадрен-, серотонин-, холин- и ГАМКергическими нейронами. При этом нейроны входят в состав нейроваскулярной единицы и оказывают существенное влияние на функции ГЭБ. Они индуцируют экспрессию ГЭБ-ассоциированных белков в эндотелиоцитах головного мозга, регулируют просвет сосудов головного мозга, проницаемость ГЭБ.

Обратите внимание ! Перечисленные выше структуры (1 - 5) составляют первый, [1 ] физический, или структурный компонент ГЭБ. Второй, [2 ] биохимический компонент, образован транспортными системами, которые расположены на люминальной (обращенной в просвет сосуда) и аблюминальной (внутренней или базальной) мембране эндотелиоцита. Транспортные системы могут осуществлять как перенос веществ из кровотока к мозгу (influx), так и/или обратный перенос из ткани мозга в кровоток (efflux).

Читайте также :

статья «Современные представления о роли нарушения резистентности гематоэнцефалического барьера в патогенезе заболеваний ЦНС. Часть 1: Строение и формирование гематоэнцефалического барьера» Блинов Д.В., ГБОУ ВПО РНИМУ им. Н.И. Пирогова Минздрава РФ, Москва (журнал «Эпилепсия и пароксизмальные состояния» №3, 2013) [читать ];

статья «Современные представления о роли нарушения резистентности гематоэнцефалического барьера в патогенезе заболеваний ЦНС. Часть 2: Функции и механизмы повреждения гематоэнцефалического барьера» Блинов Д.В., ГБОУ ВПО РНИМУ им. Н.И. Пирогова Минздрава РФ, Москва (журнал «Эпилепсия и пароксизмальные состояния» №1, 2014) [читать ];

статья «Основные функции гематоэнцефалического барьера» А.В. Моргун, Красноярский государственный медицинский университет им. проф. В.Ф. Войно-Ясенецкого (Сибирский медицинский журнал, №2, 2012) [читать ];

статья «Фундаментальные и прикладные аспекты изучения гематоэнцефалического барьера» В.П. Чехонин, В.П. Баклаушев, Г.М. Юсубалиева, Н.Е. Волгина, О.И. Гурина; Кафедра медицинских нанобиотехнологий РНИМУ им. Н.И. Пирогова, Москва; ФГБУ «Государственный научный центр социальной и судебной психиатрии им. В.П. Сербского» МЗ РФ (журнал «Вестник РАМН» №8, 2012) [читать ];

статья «Проницаемость гематоэнцефалического барьера в норме, при нарушении развития головного мозга и нейро-дегенерации» Н.В. Кувачева и соавт., Красноярский государственный медицинский университет им. профессора В.Ф. Войно-Ясенецкого Министерства здравоохранения РФ, Красноярск (Журнал неврологии и психиатрии, №4, 2013) [читать ]

читайте также пост: Нейроваскулярная единица (на сайт)


© Laesus De Liro


Уважаемые авторы научных материалов, которые я использую в своих сообщениях! Если Вы усматривайте в этом нарушение «Закона РФ об авторском праве» или желаете видеть изложение Вашего материала в ином виде (или в ином контексте), то в этом случае напишите мне (на почтовый адрес: [email protected] ) и я немедленно устраню все нарушения и неточности. Но поскольку мой блог не имеет никакой коммерческой цели (и основы) [лично для меня], а несет сугубо образовательную цель (и, как правило, всегда имеет активную ссылку на автора и его научный труд), поэтому я был бы благодарен Вам за шанс сделать некоторые исключения для моих сообщений (вопреки имеющимся правовым нормам). С уважением, Laesus De Liro.

Posts from This Journal by “нейроанатомия” Tag

  • … сосуды головного мозга имеют ряд уникальных структурных и функциональных характеристик, отличающие их от сосудов других органов и тканей. В…

  • Островок (островковая доля)

    … единственная доля мозга, не имеющая выхода на его поверхность. Островковая доля (островок, инсула, или островок Рейля) (далее ОД) -…

  • Нарушение ориентации в пространстве

    ТОПОГРАФИЧЕСКАЯ ДЕЗОРИЕНТАЦИЯ Под топографической дезориентацией [у человека] понимают нарушение его способности узнавать местность и ее…

Гематоэнцефалический барьер представляет собой функциональный барьер, который препятствует проникновению из крови в нервную ткань ряда таких веществ, как антибиотики, токсические химические и бактериальные соединения.

Вопрос51. Гематоэнцефалический барьер и его функции

В основе функционирования гематоэнцефалического барьера лежит сниженная проницаемость, которая характерна для кровеносных капилляров в нервной ткани. Главным структурным компонентом этого барьера являются замыкающие соединения, которые обеспечивают непрерывность эндотелиальных клеток этих капилляров.

Цитоплазма их эндотелиальных клеток не содержит фенестр, которые обнаруживаются во многих других участках, а пиноцитозные пузырьки очень немногочисленны. Низкую проницаемость этих капилляров частично обусловливают окружающие их расширенные участки отростков нейроглиальных клеток.

Сосудистое сплетение состоит из складок мягкой мозговой оболочки с высоким содержанием расширенных фенестрированных капилляров, которые проникают в глубь желудочков головного мозга. Оно обнаруживается в крыше III и IV желудочков и в части стенок боковых желудочков. Сосудистое сплетение образовано рыхлой соединительной тканью мягкой мозговой оболочки, покрытой однослойным кубическим или низким столбчатым эпителием, клетки которого транспортируют ионы.

Главной функцией сосудистого сплетения является выработка спинномозговой жидкости, которая содержит лишь небольшое количество твердых веществ и целиком заполняет желудочки, центральный канал спинного мозга, субарахноидальное пространство и периваскулярное пространство. Спинномозговая жидкость важна для метаболизма центральной нервной системы и действует как механизм, защищающий ее от механических ударов.

Спинномозговая жидкость - прозрачная, с низкой плотностью (1,004-1,008 г/мл) и очень низкой концентрацией белка. В одном миллилитре этой жидкости обнаруживаются также единичные десквамированные клетки и от двух до пяти лимфоцитов. Спинномозговая жидкость непрерывно вырабатывается и циркулирует в желудочках, из которых она направляется в субарахноидальное пространство.

Сосудистое сплетение .
Основу сосудистого сплетения образует рыхлая соединительная ткань с большим количеством кровеносных капилляров (КК), она покрыта однослойным кубическим эпителием

В нем в ворсинках паутинной оболочки происходит основное всасывание спинномозговой жидкости в венозный кровоток. (В нервной ткани головного мозга лимфатические сосуды отсутствуют.)

Снижение всасывания спинномозговой жидкости или блокада ее оттока от желудочков приводят к состоянию, которое известно как гидроцефалия (греч. hydro - вода + kephale - голова). Гидроцефалией называют любое нарушение, при котором в полостях центральной нервной системы имеется избыточное количество спинномозговой жидкости, что вызывает повышение внутричерепного давления.

Врожденная гидроцефалия приводит к увеличению головы, сопровождающемуся нарушением умственной деятельности и мышечной слабостью. У взрослых имеются многочисленные неврологические симптомы, также вызванные повреждением нервной ткани головного мозга.

— Вернуться в раздел « Гистология»

  1. Тело нервной клетки — нейрона: строение, гистология
  2. Дендриты нервных клеток: строение, гистология
  3. Аксоны нервных клеток: строение, гистология
  4. Мембранные потенциалы нервных клеток. Физиология
  5. Синапс: строение, функции
  6. Глиальные клетки: олигодендроциты, шванновские клетки, астроциты, клетки эпендимы
  7. Микроглия: строение, гистология
  8. Центральная нервная система (ЦНС): строение, гистология
  9. Гистология мозговых оболочек. Строение
  10. Гематоэнцефалический барьер: строение, гистология

Гемато-энцефалический барьер (ГЭБ - физиологический барьер между кровеносной системой и центральной нервной системой.

Гематоэнцефалический барьер

ГЭБ имеется у всех позвоночных, главной его функцией является поддержание гомеостаза мозга.

Гемато-энцефалический барьер защищает нервную ткань от циркулирующих в крови микроорганизмов, токсинов, клеточных и гуморальных факторов иммунной системы, которые воспринимают ткань мозга как чужеродную. Он выполняет функцию высокоселективного фильтра, через который в мозг поступают питательные вещества, а в кровеносное русло выводятся продукты его жизнедеятельности.

Организм человека и высших животных обладает рядом специ­фических физиологических систем, обеспечивающих приспособление (адаптацию) к постоянно изменяющимся условиям существования. Этот процесс тесно связан с необходимостью обязательного сохра­нения постоянства существенных физиологических параметров, внутренней среды организма, физико-химического состава тканевой жидкости межклеточного пространства.

Среди гомеостатических приспособительных механизмов, при­званных защитить органы и ткани от чужеродных веществ и регули­ровать постоянство состава тканевой межклеточной жидкости, веду­щее место занимает гематоэнцефалический барьер. По определению Л. С. Штерн, гематоэнцефалический барьер объединяет совокупность физиологических механизмов и соответствующих ана­томических образований в центральной нервной системе, участвую­щих в регулировании состава цереброспинальной жидкости (ЦСЖ).

В представлениях о гематоэнцефалическом барьере в качестве основных положений подчеркивается следующее: 1) проникновение веществ в мозг осуществляется главным образом не через ликворные пути, а через кровеносную систему на уровне капилляр - нервная клетка; 2) гематоэнцефалический барьер является в большей степени не анатомическим образованием, а функциональным понятием, ха­рактеризующим определенный физиологический механизм. Как лю­бой существующий в организме физиологический механизм, гема­тоэнцефалический барьер находится под регулирующим влиянием нервной и гуморальной систем; 3) среди управляющих гематоэнцефалическим барьером факторов ведущим является уровень деятель­ности и метаболизма нервной ткани.

Гематоэнцефалический барьер регулирует проникновение из кро­ви в мозг биологически активных веществ, метаболитов, химических веществ, воздействующих на чувствительные структуры мозга, препятствует поступлению в мозг чужеродных веществ, микроорганиз­мов, токсинов.

Основной функцией, характеризующей гематоэнцефалический барьер, является проницаемость клеточной стенки. Необходимый уровень физиологической проницаемости, адекватный функциональ­ному состоянию организма, обусловливает динамику поступления в нервные клетки мозга физиологически активных веществ.

Функциональная схема гематоэнцефалического барьера включает в себя наряду с гистогематическим барьером нейроглию и систему ликворных пространств. Гистогематический барьер имеет двойную функцию: регуляторную и защитную. Регуляторная функция обеспечивает относительное постоянство физи­ческих и физико-химических свойств, химического состава, физи­ологической активности межклеточной среды органа в зависимости от его функционального состояния. Защитная функция гистогематического барьера заключается в защите органов от поступления чужеродных или токсичных веществ эндо- и экзогенной природы.

Ведущим компонентом морфологического субстрата гематоэнце­фалического барьера, обеспечивающим его функции, является стенка капилляра мозга. Существуют два механизма проникновения веще­ства в клетки мозга: через цереброспинальную жидкость, которая служит промежуточным звеном между кровью и нервной или глиальной клеткой, которая выполняет питательную функцию (так называемый ликворный путь), и через стенку капилляра. У взрослого организма основным путем движения вещества в нервные клетки является гематогенный (через стенки капилляров); ликворный путь становится вспомогательным, дополнительным.

Проницаемость гематоэнцефалического барьера зависит от фун­кционального состояния организма, содержания в крови медиаторов, гормонов, ионов. Повышение их концентрации в крови приводит к снижению проницаемости гематоэнцефалического барьера для этих веществ.

Функциональная система гематоэнцефалического барьера представляется важным компонентом нейрогуморальной регуляции. В частности, через гематоэнцефалический барьер реализуется прин­цип обратной химической связи в организме. Именно таким образом осуществляется механизм гомеостатической регуляции состава внут­ренней среды организма.

Регуляция функций гематоэнцефалического барьера осуществ­ляется высшими отделами ЦНС и гуморальными факторами. Зна­чительная роль в регуляции отводится гипоталамо-гипофизарной адреналовой системе. В нейрогуморальной регуляции гематоэнце­фалического барьера важное значение имеют обменные процессы, в частности в ткани мозга.

При различных видах церебральной патологии, например травмах, различных воспалительных пораже­ниях ткани мозга, возникает необходимость искусственного сниже­ния уровня проницаемости гематоэнцефалического барьера. Фарма­кологическими воздействиями можно увеличить или уменьшить про­никновение в мозг различных веществ, вводимых извне или циркулирующих в крови.

⇐ Предыдущая12345678910Следующая ⇒

ГЕМАТО-ЭНЦЕФАЛИЧЕСКИЙ БАРЬЕР (греч, haima, haimat кровь + лат. encephalon, от греч, enkephalos головной мозг) - физиологический механизм, избирательно регулирующий обмен веществ между кровью и центральной нервной системой. Г.-э.

ГЭБ. Его значение для структуры и функции мозга

б. осуществляет также защитную функцию, препятствуя проникновению в цереброспинальную жидкость и мозг (головной и спинной) некоторых чужеродных веществ, попадающих в кровь, и промежуточных продуктов обмена веществ, образующихся в организме при некоторых патол, состояниях. Поэтому условно различают тесно связанные между собой защитную и регулирующую функции Г.-э. б., обеспечивающие относительную неизменность состава, физ.-хим. и биол, свойств цереброспинальной жидкости и адекватность микросреды отдельных нервных элементов.

На существование механизма, ограничивающего переход некоторых хим. соединений, в основном красителей, из крови в мозг, указывали П. Эрл их (1885), М. Левандовский, (1900), Гольдманн (E. Goldmann, 1913) и др. Термин «гемато-энцефалический барьер» предложен Л. С. Штерн и Готье (R. Gauthier) в 1921 г. Штерн, основываясь на анализе большого экспериментального материала, впервые сформулировала физиол, основы учения о Г.-э. б. и определила значение Г.-э. б. для деятельности ц. н. с.

Морфол, субстратом Г.-э. б. являются анатомические элементы, расположенные между кровью и нейронами: эндотелий капилляров, базальная мембрана клетки, глия, сосудистые сплетения, оболочки мозга. Большое значение в структурах Г.-э. б. имеет так наз. основное вещество, в состав к-рого входят комплексы белка и полисахаридов - мукополисахариды. Многие авторы особую роль в осуществлении функции Г.-э. б. приписывают клеткам нейроглии. Конечные периваскулярные (присосковые) ножки астроцитов, прилегающие к наружной поверхности капилляров, могут избирательно экстрагировать из кровотока вещества, необходимые для питания нейронов, и возвращать в кровь продукты их обмена [Брайерли (J. В. Brierley), 1957]. При этом во всех структурах Г.-э. б. могут происходить ферментативные реакции, способствующие перестройке, окислению, нейтрализации и разрушению поступающих из крови веществ (А. Лабори, 1964).

Оценка регулирующей функции производится путем определения коэффициента проницаемости (точнее, коэффициента распределения), т. е. отношения концентрации того или иного вещества в цереброспинальной жидкости к его концентрации в сыворотке крови. Для большинства изучаемых элементов крови коэффициент проницаемости меньше единицы и лишь для ионов магния и хлора он больше единицы. Величина коэффициента зависит от состава крови и цереброспинальной жидкости.

Применение радиоизотопной индикации (см. Радиоизотопная диагностика) привело к нек-рому пересмотру представления о Г.-э. б. Установлено, что проницаемость Г.-э. б. неодинакова в различных отделах мозга и в свою очередь может по-разному изменяться. Получила широкое распространение теория множественности барьерных образований (система мозговых барьеров), функционирующих в зависимости от химизма и меняющихся потребностей тех или иных нервных структур. Установлено, что в мозге имеются «безбарьерные» зоны (area postrema, нейрогипофиз, ножка гипофиза, эпифиз, серый бугор), куда введенные в кровь вещества поступают почти беспрепятственно. В некоторых отделах мозга (напр., в гипоталамусе) проницаемость Г.-э. б. по отношению к биогенным аминам, электролитам, нек-рым чужеродным веществам выше, чем в других отделах мозга, что обеспечивает своевременное поступление гуморальной информации в высшие вегетативные центры; возникновение некоторых патол, процессов (нарушение механизмов регуляции функций, вегетативные расстройства, диэнцефальные синдромы и др.) может быть связано с повышением или снижением проницаемости Г.-э. б.

Защитная и регулирующая функции Г.-э. б. изучаются у человека и животных в онто- и филогенезе, а также при различных состояниях организма - во время менструации и беременности, при изменениях температуры тела и окружающей среды, в условиях нарушенного питания, голодания и авитаминоза, при утомлении, бессоннице, эндокринных и вегетативных дисфункциях, асфиксии, нервных расстройствах и расстройствах внутренних органов, инфекциях, наркозе, черепно-мозговой травме, шоке, введении различных фармакол, препаратов, воздействии ионизирующего излучения и т. д. Так, в частности, установлено, что в процессе филогенеза нервные клетки становятся более чувствительными к изменениям состава и свойств окружающей их среды. Это ведет к совершенствованию барьерных механизмов ц. н. с. Так, напр., некоторые вещества легко проникают из крови в мозг у низкоорганизованных, но задерживаются Г.-э. б. у более высокоорганизованных организмов. Кроме того, Г.-э. б. отличается высокой проницаемостью у эмбрионов и новорожденных по сравнению с взрослым организмом. Существует предположение, что высокая лабильность нервной системы у детей в известной степени зависит от повышенной проницаемости их Г.-э.

Большое теоретическое и практическое значение имеет вопрос о селективности (избирательной проницаемости) Г.-э. б. по отношению к веществам, нередко близким друг к другу по хим. строению и биол, свойствам. Так, напр., L-дофа в ц. н. с. проникает легко, а D-дофа и дофамин задерживаются. Селективность Г.-э. б. при переходе веществ из крови в спинномозговую жидкость и ц. н. с. значительно более выражена, чем при переходе из спинномозговой жидкости в кровь. Г.-э. б. в данном случае подобен селективному фильтру в направлении кровь - ц. н. с. или предохранительному клапану в обратном направлении (Л. С. Штерн и Готье, 1918).

Согласно современным представлениям, Г.-э. б. является саморегулирующейся системой, состояние к-рой зависит от потребностей нервных клеток и уровня метаболических процессов не только в самом мозге, но и в других органах и тканях организма. Проницаемость Г.-э. б. регулируется нервными и гуморальными механизмами. Вместе с тем еще нет теории, полностью объясняющей закономерность перехода различных веществ из крови в цереброспинальную жидкость и ткани мозга.

Изучение защитной функции Г.-э. б. имеет особое значение для выявления патогенеза и в терапии заболеваний ц. н. с. Снижение проницаемости барьера способствует проникновению в ц. н. с. не только чужеродных веществ, но и продуктов нарушенного метаболизма; в то же время повышение сопротивляемости Г.-э. б. закрывает (частично или полностью) путь зазащитным телам, гормонам, метаболитам, медиаторам. Крайне ограниченная проницаемость Г.-э. б. по отношению к нек-рым химиотерапевтическим препаратам, применяемым в клин, практике (соединениям мышьяка, висмута, ртути и др.), к антибиотикам (напр., пенициллину, стрептомицину), антителам (антитоксинам, агглютининам, гемолизинам) нередко является препятствием при лечении заболеваний ц. н. с. Предложены различные методы повышения проницаемости Г.-э. б. (перегревание или переохлаждение организма, воздействие рентгеновскими лучами, прививка малярии и т. д.), однако они не всегда эффективны. В этих случаях возможно введение фармакол. препаратов, леч. сывороток, биологически активных веществ непосредственно в цереброспинальную жидкость (поясничным или подзатылочным уколом по Штерн).

Для изучения функции Г.-э. б. применяются обычно вещества, проникающие в цереброспинальную жидкость и мозг в незначительных количествах. С этой целью в экспериментах на животных чаще всего в кровь вводят кислые (в первую очередь трипановый синий) или основные красители, соли йодистоводородной, пикриновой или салициловой к-т и определяют их содержание (количественная или качественная проба) в цереброспинальной жидкости и ткани мозга. Широкое применение нашли методы авторадиографии (см.), гистол., химии, электронной микроскопии. ; В клин, практике предложены бромный, йодный, салициловый, нитратный, ураниновый, гемолизиновый, глюкозный и другие методы исследования Г.-э. б. По Вальтеру (F. Walter, 1929), вещества, применяемые с этой целью, должны удовлетворять следующим требованиям: распределяться в крови и цереброспинальной жидкости до того, как наступает их выделение, не расщепляться в организме и не связываться с белками; они не должны изменять состояние Г.-э. б. и приносить вред организму. Необходимо выбирать индикатор, поддающийся точному количественному определению.

С известными предосторожностями для исследования состояния Г.-э. б. радиоизотопный метод может быть использован и у человека.

См. также Барьерные функции, Цереброспинальная жидкость.

Библиография: Кассиль Г. Н. Гемато-энцефалический барьер, М., 1963; Штерн Л. С. Непосредственная питательная среда органов и тканей, Физиологические механизмы, определяющие ее состав и свойства, М., 1960; В a k а у L. The blood-brain barrier, with special regard to the use of radioactive isotopes, Springfield, 1956; Brain-barrier systems ed. by A. Lajtha, Amsterdam, 1968; Dob-b i n g J. The blood-brain barrier, Physiol. Rev., v. 41, p. 130, 1961; Handbook of physiology, sec. 1 - Neurophysiology, ed. by J. Field a. o., v. 3, Washington, 1960.

Происхождение мозга Савельев Сергей Вячеславович

§ 7. Гематоэнцефалический барьер

Нервная ткань - это объединение специализированных клеток, которые воспринимают, обрабатывают, хранят и используют информацию о внешней среде и внутреннем состоянии организма. Этим функциям подчинено строение нервных клеток - нейронов. Нервные клетки имеют особенности, которые отличают их от других клеток организма (рис. I-9). Нейроны неодинаковы. Они различаются по размеру, форме ветвления дендритов и аксонов, выделению различных химических веществ и физиологической активности.

Рис. I-9. Строение нейронов и глиальных клеток.

а - импрегнированные нейроны коры головного мозга человека. При такой окраске виден примерно 1 нейрон из 1000, что позволяет рассмотреть его отростки; б - глиальные клетки из мозга человека; в - строение нейрона и его аксона, закрытого глиальными клетками.

Нейроны - характерные структурные элементы нервной системы объединены в сети и в специализированные структуры ганглии или мозг, а их отростки образуют периферические нервы.

В нервных клетках - нейронах - обычно можно выделить клеточное тело, дендриты и аксон (см. рис. I-9). Тело содержит ядро и биохимический аппарат синтеза молекул, необходимых для жизнедеятельности клетки. Обычно тело нейрона имеет округлую, веретеновидную или пирамидальную форму. Дендриты представляют собой тонкие отростки, которые многократно ветвятся в непосредственной близости от тела клетки. Вокруг него образуется ветвистое дерево. Дендриты формируют ту основную физическую поверхность, на которую поступают идущие к данному нейрону сигналы. Аксоны распространяются далеко от тела клетки. Их длина варьирует от 1 мм до 1,5 м, что позволяет аксонам выполнять функции линий связи между телом клетки и далеко расположенным органом-мишенью или отделом мозга. По аксону проходят сигналы, генерируемые в теле данной клетки. Аксон отличается от дендритов как по строению, так и по свойствам наружной мембраны. Большинство аксонов длиннее и тоньше дендритов и имеют отличный от них характер ветвления. Отростки дендритов в основном группируются вокруг клеточного тела, тогда как отростки аксонов располагаются на конце волокна, в том месте, где аксон взаимодействует с другими нейронами или органами-мишенями.

Кроме нейронов, в нервной системе есть и другие специализированные клетки, которые не выполняют перечисленных нервных функций. Это клетки глии. Глиальные клетки не могут генерировать или обрабатывать информационные сигналы. В их задачу входят снабжение нейронов соединениями, необходимыми для нормального метаболизма, отведение продуктов катаболизма и обеспечение барьерных функций между мозгом и кровеносной системой. Кроме этого, глиальные клетки выполняют функции макрофагов, лимфоцитов и других клеток кровеносной и лимфоидной систем. Нейроглия выполняет механическую функцию и изолирует электрохимически активные волокна отдельных нервных волокон внутри мозга. Оболочки вокруг отростков нейронов состоят из клеток нейроглии, что позволяет стабилизировать ионную среду и увеличивать скорость проведения нервного сигнала (рис. I-10; I-11).

В головном мозге изолирующие функции выполняет олигодендроглия. Она происходит из нейроэктодермы, но отличается от нейронов тем, что не генерирует никаких сигналов, а специализируется на изолирующих функциях. Каждая клетка олигодендроглии охватывает сразу несколько отростков нейронов (см. рис. I-9). Олигодендроглия окружает отростки нейронов, тогда как другие глиальные клетки изолируют тела нейронов.

Рис. I-10. Основные компоненты гематоэнцефалического барьера головного мозга и периферической нервной системы.

Головной мозг изолирован от кровеносной системы трофическими глиальными клетками (зелёные), олигодендроглией и шванновскими клетками. Спинномозговая жидкость фильтруется через эпендимные клетки нейрального происхождения.

Глиальные клетки выполняют несколько функций. Одна из барьерных функций - это изоляция нейронов и их отростков от соприкосновения с кровеносным руслом. Между кровеносными капиллярами и нейронами находятся изолирующие клетки глии. В их функции входят как поддержание целостности гематоэнцефалического барьера, так и питание нейронов. Через эти клетки проходит основной поток веществ и кислорода, необходимого для сохранения активности мозга. Этот глиальный барьер непроницаем для большинства органических соединений. Их перенос к нейронам осуществляется под контролем рецепторных белков мембран глиальных клеток и нейронов. Такой активный фильтр препятствует случайному движению любых соединений как в мозг, так и из него. Через глиальные клетки осуществляется перенос веществ, подвергшихся катаболизму внутри нейронов, поэтому поток соединений через глиальную часть гематоэнцефалического барьера двунаправленный. В мозг поступают кислород и питательные вещества, а из него отводятся продукты катаболизма. Этот поток крайне интенсивен, поскольку у млекопитающих может достигать 25 % общего метаболизма организма. Столь высокий уровень обмена предусматривает высокую проницаемость барьера при невероятно эффективной избирательности. Эти функции структурно обеспечены соотношением количества глиальных клеток и нейронов. Как правило, каждый нейрон обслуживает примерно 15–50 глиальных клеток, которые и обеспечивают необходимый и избирательный поток компонентов, необходимых для поддержания жизни нервной клетки.

Надо отметить, что изолированность нервной системы двунаправленная. Глиальные клетки препятствуют попаданию продуктов, появляющихся при гибели нейронов, и в мозг, и в кровеносную систему. После гибели нейрона такие продукты формируют вокруг него своеобразный саркофаг из своих тел. Это препятствует попаданию продуктов аутолиза в межклеточное пространство. После окончательного распада нейрона остаётся только контур из тел глиальных клеток, формировавших саркофаг, а затем исчезает и он. Появляются своеобразные «тени» - пустые межклеточные участки, напоминающие форму погибших клеток. Гематоэнцефалический барьер мозга построен не только из глиальные клеток. Его функции выполняют и эпендимные клетки, выстилающие поверхность желудочков и сосудистое сплетение (см. рис. I-10; I-11). Эти клетки в зоне сосудистого сплетения образуют плотный слой, который препятствует проникновению через межклеточное пространство любых веществ и соединений.

Рис. I-11. Срезы мозга и сосудистого сплетения (стрелки), расположенного в желудочках мозга различных позвоночных. Микрофотографии.

Спинномозговая жидкость фильтруется через эпендимные клетки нейрального происхождения. При низком кровотоке проницаемость стенок сосудистого сплетения невысока, но его площадь очень большая. У млекопитающих при высоком давлении крови сосудистое сплетение имеет крайне небольшие размеры.

Через слой этих клеток в сосудистом сплетении головного мозга происходит ультрафильтрация воды и ионов кальция, натрия, хлора, марганца, калия и магния. Вода и растворы электролитов извлекаются из плазмы крови. В результате кровь лишается части воды и повышает свою вязкость. Накапливающийся в желудочках фильтрат обычно называют спинномозговой жидкостью. Она проходит через желудочки, стенки мозга и спускается по дорсальной поверхности вдоль спинного мозга, затем поднимается вверх и собирается под мозговыми оболочками в зонах особых расширений. Из них спинномозговая жидкость поступает в специальные зоны мозговых оболочек, которые называются пахионовыми грануляциями. Через грануляции спинномозговая жидкость возвращается в венозное русло. Надо отметить, что спинномозговая жидкость поступает в головной мозг активно, поскольку артериальное давление в приносящих мозговых сосудах довольно велико, а возвращается в венозное русло уже пассивно - по градиенту концентрации. Осмотические силы, действующие в момент извлечения спинномозговой жидкости из-под оболочек мозга, не всегда могут уравновесить непрерывный приток этой жидкости через сосудистые сплетения желудочков. Это приводит к динамическим нарушениям и повышению давления жидкости в желудочках мозга.

Спинномозговая жидкость меняется в головном мозге с высокой скоростью. У человека, исследованного лучше других животных, при пассивном образе жизни вся вода организма проходит через сосудистое сплетение за 10–12 ч, а при физической нагрузке - за 7 ч. Этот достаточно большой поток жидкости обеспечивает нейроны одним из важнейших факторов жизнедеятельности - растворами электролитов. Они необходимы при кодировке, генерации и передаче электрохимических сигналов между отдельными нервными клетками. Нарушения электролитного баланса мозга ставят больше проблем, чем недостаток питания нервных клеток. Для контроля за электролитным балансом мозга в эволюции сложилась специальная система, начинающаяся с осморецепторов, расположенных в прижелудочковых стенках промежуточного мозга. Эти клетки реагируют на изменение осмотического баланса в спинномозговой жидкости. Они вызывают фантомные ощущения сухости во рту, стимулируют выработку антидиуретического гормона, стимулирующего адсорбцию воды в почках, и запускают питьевое поведение. Возникновение этого сложного механизма автономной регуляции осмотического баланса только подчёркивает его функциональную важность для мозга. В этой системе снабжения мозга растворами электролитов нет никаких прямых контактов между нейронами и клетками иммунной системы. Граница непроницаема для органических соединений всего организма.

Следует отметить, что у позвоночных сосудистое сплетение различается по размерам (см. рис. I-11). У рыб и амфибий оно выглядит непропорционально большим, а у млекопитающих - чрезвычайно маленьким. В контексте рассуждений о скорости обмена спинномозговой жидкости такие различия кажутся необъяснимыми (Савельев, 2001). На самом деле причины таких морфологических различий вполне понятны. Скорость кровотока в сосудистом сплетении у птиц и млекопитающих намного выше, чем у рептилий, амфибий, хрящевых и костистых рыб, поэтому достаточный уровень обмена спинномозговой жидкости у холоднокровных обеспечивается большей площадью поверхности сосудистого сплетения. Отношение площадь поверхности сосудистого сплетения/объём мозга у низших позвоночных в несколько раз больше, чем у птиц или млекопитающих. Известны и «гипертрофированные» исключения из этого правила, например у бурого протоптера (Protopterus annectens) сосудистое сплетение закрывает собой почти всю дорсальную поверхность мозга.

Таким образом, изолированность и высокий уровень метаболизма нейронов головного мозга обеспечены двумя относительно независимыми системами. Одна из них представляет собой глиальные клетки, обеспечивающие метаболизм питательных веществ и кислорода, другая - эпендимные клетки сосудистого сплетения, фильтрующие через своё тело поток воды и электролитов из плазмы крови. Процессы разделены, поскольку даже при значительном недостатке пищи электрохимическая активность мозга поддерживается независимо. Это происходит благодаря эффективному и относительно независимому обмену спинномозговой жидкости и электролитов нервной системы (см. рис I-8; I-10; I-11).

Дополнительное внимание следует уделить изоляции периферической части нервной системы. Она является таким же забарьерным органом, как головной и спинной мозг. Все периферические нервы, ганглии, рецепторные и эффекторные окончания изолированы от иммунной системы организма. Нервы и ганглии окружает оболочка из особых клеток, которые называются шванновскими (см. рис. I-9; I-10). У позвоночных они происходят из клеток нервного гребня, как и большая часть периферической нервной системы. Обычный размер этих клеток, окружающих аксоны и дендриты нейронов, составляет около 1 мм. Шванновские клетки формируют изоляционный слой вокруг отростка нейрона при помощи своей мембраны, которая может образовывать множество витков. В сечении эта структура напоминает плотный рулет (рис. I-12). В случае особо скоростного проведения сигналов миелинизация может стать «матрёшечной»: внутри общей миелиновой оболочки может лежать высокоскоростной нерв, окружённый собственной многослойной миелиновой оболочкой. Обычно скорость проведения сигналов по таким нервам более 130 м/с. Зоны контактов отдельных шванновских клеток называются перехватами Ранвье.

Рис. I-12. Оболочки отростков нервных клеток (а, в) и синапсов (б).

Электронные фотографии. Схема основных типов синаптических контактов нервных клеток (г). Синапсы и контакты увеличены.

Оболочки отростков нервных клеток изолируют зоны проведения сигналов и увеличивают скорость их передачи. Синапсы обозначены зелёными стрелками.

В этих зонах часто располагаются складки мембраны аксонов, которые выходят наружу и формируют эффективно работающие соединения, синапсы. Места контакта нейронов с органами-мишенями также изолированы специализированными гомологами шванновских клеток. Отдельно необходимо пояснить ситуацию с миелинизированными и немиелинизированными (безмиелиновыми) волокнами. Под этим названием обычно понимают волокна, «лишённые» оболочек. Это название укрепилось в учебниках с конца XIX в., но не отражает реальной ситуации. Безмиелиновыми нервными волокнами микроскописты, использовавшие световой микроскоп, считали волокна без явных следов оболочек или миелина. Однако с помощью электронного микроскопа показано, что даже обонятельные нервы обладают небольшой оболочкой, состоящей из шванновских клеток.

Обычно одна шванновская клетка делает 1–2 оборота вокруг группы обонятельных волокон. Тем не менее нервные волокна изолированы на всём протяжении. Вполне понятно, что обновляющиеся обонятельные клетки не могут иметь развитой изолирующей оболочки, хотя в упрощённом виде она всегда присутствует. В периферической нервной системе нет неизолированных участков ганглиев, нейронов или их отростков и концевых разветвлений. Различия сводятся к степени миелинизации, а не к разным принципам строения. Следовательно, в головном и спинном мозге барьерные функции выполняют глиальные клетки, система сосудистых сплетений и олигодендроглия, в периферической нервной системе - шванновские клетки. Нервная система изолирована от остального организма, а нарушение этого барьера приводит к тяжелым аутоиммунным заболеваниям и гибели животного.

Взаимодействия между клетками

Нервные клетки взаимодействуют между собой и с остальными тканями организма. Обычно это прямой контакт. Нервное окончание получает информацию или передаёт её клеткам органа, но это не обязательно. Нервные клетки могут синтезировать гормоны, нейропептиды или другие соединения. Они выделяются в кровеносное русло и распространяются по гуморальным законам. Гормоны используются как генерализованные носители информации для управления всем организмом. Иногда они специфичны только для определённого органа-мишени, но в целом гормональная регуляция очень неспецифична и определяет только общую тенденцию в поведении. Выброс половых гормонов происходит под влиянием нервной системы, но их присутствие в организме в конечном счёте подчиняет себе и работу мозга. Мозг «вызывает их к жизни» и сам подчиняется им. Так, в период гона у копытных стратегически меняется поведенческая активность. Половые гормоны оказывают столь заметное влияние на мозг, что все другие формы поведения отходят на второй план или становятся подчинёнными. Достаточно попробовать плоды блестящей дрессировки любимого домашнего пса в присутствии течной суки.

В человеческом (приматном) сообществе действуют похожие законы. Весенняя гормональная активность преждевременно снимает шапки у мальчиков и оголяет коленки у девочек. Как правило, никакие «негормональные» доводы не действуют. Гормональная подчинённость нервной системы - это интеллектуальное горе человечества и гарантия его воспроизведения как биологического вида.

Размножаться, драться и добывать пищу лучше с использованием гормональной поддержки организма. Древние викинги грызли край щита, доводя до нужного уровень адреналина перед боем. Словесная перепалка на кухне вызывает выброс мобилизирующих гормонов, а через 10 мин становится ясно, как много веских слов и аргументов ещё не высказано. Следовательно, гормональные межклеточные взаимодействия, запускаемые нервной системой, хороши, но инертны, неадаптивны и не поддаются динамическому контролю. Трудно представить, что, собираясь отчаянно спорить, человек будет колоть себя шилом для гормональной мобилизации. Ещё менее вероятен волк, грызущий свой хвост для охотничьего возбуждения.

Для многих других видов гормональный контроль поведения позволяет просто статистически решать проблемы выживания. Для животных с выраженными генетическими программами поведения гормональная регуляция является одним из средств реализации врождённых форм поведения. Это свойственно беспозвоночным, первичноводным позвоночным, амфибиям, значительной части рептилий, птиц и специализированных млекопитающих. Такая распространённость генетико-гормональных форм поведения показывает их эффективность, но основана на вероятностном принципе. У таких видов обычно достаточно много потомков, чтобы хотя бы один из них смог выжить, просто перебирая стандартный набор поведенческих программ.

По определению Штерн, гематоэнцефалический барьер (ГЭБ, blood-brain barrier (BBB))- это совокупность физиологических механизмов и соответствующих анатомических образований в центральной нервной системе, участвующих в регулировании состава цереброспинальной жидкости (ЦСЖ). Это определение из книги Покровского и Коротько "Физиология человека".

Гематоэнцефалический барьер регулирует проникновение из крови в мозг биологически активных веществ, метаболитов, химических веществ, воздействующих на чувствительные структуры мозга, препятствует поступлению в мозг чужеродных веществ, микроорганизмов, токсинов.

В представлениях о гематоэнцефалическом барьере в качестве основных положений подчеркивается следующее: 1) проникновение веществ в мозг осуществляется главным образом не через ликворные пути, а через кровеносную систему на уровне капилляр - нервная клетка; 2) гематоэнцефалический барьер является в большей степени не анатомическим образованием, а функциональным понятием, характеризующим определенный физиологический механизм. Как любой существующий в организме физиологический механизм, гематоэнцефалический барьер находится под регулирующим влиянием нервной и гуморальной систем;

3) среди управляющих гематоэнцефалическим барьером факторов ведущим является уровень деятельности и метаболизма нервной ткани. Основной функцией, характеризующей гематоэнцефалический барьер, является проницаемость клеточной стенки. Необходимый уровень физиологической проницаемости, адекватный функциональному состоянию организма, обусловливает динамику поступления в нервные клеткимозга физиологически активных веществ.

Проницаемость гематоэнцефалического барьера зависит от функционального состояния организма, содержания в крови медиаторов, гормонов, ионов. Повышение их концентрации в крови приводит к снижению проницаемости гематоэнцефалического барьера для этих веществ.

Функциональная схема гематоэнцефалического барьера включает в себя наряду с гистогематическим барьером нейроглию и систему ликворных пространств. Гистогематический барьер имеет двойную функцию: регуляторную и защитную. Регуляторная функция обеспечивает относительное постоянство физических и физико-химических свойств, химического состава, физиологической активности межклеточной среды органа в зависимости от его функционального состояния. Защитная функция гистогематического барьера заключается в защите органов от поступления чужеродных или токсичных веществ эндо- и экзогенной природы.

Ведущим компонентом гематоэнцефалического барьера, обеспечивающим его функции, является стенка капилляра мозга. Существуют два механизма проникновения вещества в клетки мозга:

Через цереброспинальную жидкость, которая служит промежуточным звеном между кровью и нервной или глиальной клеткой, которая выполняет питательную функцию (так называемый ликворный путь)

Через стенку капилляра.

У взрослого организма основным путем движения вещества в нервные клетки является гематогенный (через стенки капилляров); ликворный путь становится вспомогательным, дополнительным.

Морфологическим субстратом ГЭБ являются анатомические элементы, расположенные между кровью и нервными клетками (так называемые межэндотелиальные контакты, охватывающие клетку в виде тесного кольца и препятствующие проникновению веществ из капилляров). Отростки глиальных клеток (концевые ножки астроцитов), окружающие капилляр, стягивают его стенку, что уменьшает фильтрационную поверхность капилляра, препятствует диффузии макромолекул. Согласно другим представлениям, глиальные отростки являются каналами, способными избирательно экстрагировать из кровотока вещества, необходимые для питания нервных клеток, и возвращать в кровь продукты их обмена. Важное значение в функции ГЭБ придается так называемому ферментному барьеру. В стенках микрососудов мозга, окружающей их соединительнотканной стромы, а также в сосудистом сплетении обнаружены ферменты, способствующие нейтрализации и разрушению поступающих из крови веществ. Распределение этих ферментов неодинаково в капиллярах разных структур мозга, их активность изменяется с возрастом, в условиях патологии.

ГЭБ рассматривают в качестве саморегулирующейся системы, состояние которой зависит от потребностей нервных клеток и уровня метаболических процессов не только в самом мозге, но и в других органах и тканях организма. Проницаемость ГЭБ неодинакова в разных отделахмозга, селективна для разных веществ и регулируется нервными и гуморальными механизмами. Важная роль в нейрогуморальной регуляции функций ГЭБ принадлежит изменению интенсивности метаболических процессов в ткани мозга, что доказывается угнетающим влиянием ингибиторов метаболических процессов на скорость транспорта аминокислот в мозг и стимуляцией их поглощения субстратами окисления.

Регуляция функций гематоэнцефалического барьера осуществляется высшими отделами ЦНС и гуморальными факторами. Значительная роль в регуляции отводитсягипоталамо-гипофизарной адреналовой системе. При различных видах церебральной патологии, например травмах, различных воспалительных поражениях ткани мозга, возникает необходимость искусственного снижения уровня проницаемости гематоэнцефалического барьера. Фармакологическими воздействиями можно увеличить или уменьшить проникновение в мозг различных веществ, вводимых извне или циркулирующих в крови. Проникновение в мозг в области гипоталамуса, где ГЭБ «прорван», различных патологических агентов сопровождается разнообразной симптоматикой нарушений вегетативной нервной системы. Имеются многочисленные доказательства снижения защитной функции ГЭБ под влиянием алкоголя, в условиях эмоционального стресса, перегревания и переохлаждения организма, воздействия ионизирующего излучения и т. д. В то же время экспериментально установлена способность некоторых препаратов, например пентамина, этаминал-натрия, витамина Р уменьшать проникновение в мозг определенных веществ.

ГЭБ- это система защиты мозга от внешних повреждающих факторов. Как говорилось выше, при травмах, патологических процессах она может нарушаться. Кроме того, у некоторых микробов выработались высокоспециализированные механизмы (пока малоизученные) преодоления этого барьера. Известно, что вирусы бешенства и вирусы простого герпеса (у человека) и реовирус (у экспериментальных животных) попадают в ЦНС, передвигаясь по нервам, а инкапсулированные бактерии и грибы обладают поверхностными компонентами, позволяющими им проходить через гематоэнцефалический барьер.

Таким образом, механизмы преодоления гематоэнцефалического барьера высокоспециализированы. Так, они имеются лишь у определенных серотипов возбудителей, способных вызывать менингит. Менингит новорожденных, например, вызывают только те Streptococcus agalactiae , которые относятся к серотипу III. Другие серотипы тоже патогенны, но вызывают инфекционные процессы вне ЦНС. Такая избирательность, видимо, определяется пространственной структурой капсульного полисахарида серотипа III, так как капсульныеполисахариды других серотипов содержат те же компоненты, но имеют иную пространственную структуру.

ГЭБ работает как селективный фильтр, пропускающий в цереброспинальную жидкость одни вещества и не пропускающий другие, которые могут циркулировать в крови, но чужды мозговой ткани. Так, не проходят через ГЭБ адреналин, норадреналин, ацетилхолин, дофамин, серотонин, гамма-аминомасляная кислота (ГАМК), пенициллин, стрептомицин.

Гистогематический барьер - это совокупность морфологических структур, физиологических и физико-химических механизмов, функционирующих как единое целое и регулирующих потоки веществ между кровью и органами.

Гистогематические барьеры участвуют в поддержании гомеостаза организма и отдельных органов. Благодаря наличию гистогематических барьеров каждый орган живет в своей особой среде, которая может значительно отличаться от по составу отдельных ингредиентов. Особенно мощные барьеры имеются между и мозгом, кровью и тканью половых желез, кровью и влагой камер глаза, кровью матери и плода.

Гистогематические барьеры различных органов имеют как различия, так и ряд общих черт строения. Непосредственный контакт с кровью во всех органах имеет слой барьера, образованный эндотелием кровеносных капилляров. Кроме того, структурами ГГБ являются базальная мембрана (средний слой) и адвентициальные клетки органов и тканей (наружный слой). Гистогематические барьеры, изменяя свою проницаемость для различных веществ, могут ограничивать или же облегчать их доставку к органу. Для ряда токсичных веществ они непроницаемы, в чем проявляется их защитная функция.

Важнейшие механизмы, обеспечивающие функционирование гистогематических барьеров, далее рассматриваются на примере гематоэнцефалического барьера, наличие и свойства которого врачу особенно часто приходится учитывать при применении лекарственных препаратов и различных воздействий на организм.

Гематоэнцефалический барьер

Гематоэнцефалический барьер - это совокупность морфологических структур, физиологических и физико-химических механизмов, функционирующих как единое целое и регулирующих потоки веществ между кровью и тканью мозга.

Морфологической основой гематоэнцефалического барьера являются эндотелий и базальная мембрана мозговых капилляров, интерстициальные элементы и гликокаликс, астроциты нейроглии, охватывающие своими ножками всю поверхность капилляров. В перемещении веществ через гематоэнцефалический барьер участвуют транспортные системы эндотелия капиллярных стенок, включающие везикулярный транспорт веществ (пино- и экзоцитоз), транспорт через каналы с участием или без участия белков-переносчиков, ферментные системы, модифицирующие или разрушающие поступающие вещества. Уже упоминалось, что в нервной ткани функционируют специализированные транспортные системы воды, использующие белки-аквапорины AQP1 и AQP4. Последние формируют водные каналы, регулирующие образование цереброспинальной жидкости и обмен воды между кровью и тканью мозга.

Капилляры мозга отличаются от капилляров других органов тем, что эндотелиальные клетки образуют непрерывную стенку. В местах контакта наружные слои эндотелиальных клеток сливаются, образуя так называемые «плотные контакты».

Гематоэнцефалический барьер выполняет для мозга защитную и регулирующую функции. Он защищает мозг от действия ряда веществ, образующихся в других тканях, чужеродных и токсичных веществ, участвует в транспорте веществ из крови в мозг и является важнейшим участником механизмов гомеостаза межклеточной жидкости мозга и ликвора.

Гематоэнцефалический барьер обладает избирательной проницаемостью для различных веществ. Некоторые биологически активные вещества, например катехоламины, практически не проходят через этот барьер. Исключение составляют лишь небольшие участки барьера на границе с гипофизом, эпифизом и некоторыми участками , где проницаемость гематоэнцефалического барьера для многих веществ высокая. В этих областях обнаружены пронизывающие эндотелий каналы и межэндотелиальные щели, по которым идет проникновение веществ из крови во внеклеточную жидкость мозговой ткани или в сами . Высокая проницаемость гематоэнцефалического барьера в этих областях позволяет биологически активным веществам (цитокинам, ) достигать тех нейронов гипоталамуса и железистых клеток, на которых замыкается регуляторный контур нейроэндокринных систем организма.

Характерной чертой функционирования гематоэнцефалического барьера является возможность изменения его проницаемости для ряда веществ в различных условиях. Тем самым гематоэнцефалический барьер способен, регулируя проницаемость, изменять взаимоотношения между кровью и мозгом. Регуляция осуществляется за счет изменения числа открытых капилляров, скорости кровотока, изменения проницаемости клеточных мембран, состояния межклеточного вещества, активности клеточных ферментных систем, пино- и экзоцитоза. Проницаемость ГЭБ может существенно нарушаться в условиях ишемии мозговой ткани, инфицирования, развития воспалительных процессов в нервной системе, ее травматическом повреждении.

Считается, что гематоэнцефалический барьер, создавая значительное препятствие для проникновения многих веществ из крови в мозг, вместе с тем хорошо пропускает такие же вещества, образовавшиеся в мозге, в обратном направлении — из мозга в кровь.

Проницаемость гематоэнцефалического барьерадля различных веществ сильно отличается. Жирорастворимые вещества, как правило, проникают через ГЭБ легче, чем водорастворимые . Легко проникают кислород, углекислый газ, никотин, этиловый спирт, героин, жирорастворимые антибиотики (хлорамфеникол и др.)

Нерастворимые в липидах глюкоза и некоторые незаменимые аминокислоты не могут проходить в мозг путем простой диффузии. Углеводы узнаются и транспортируются специальными переносчиками GLUT1 и GLUT3. Эта транспортная система настолько специфична, что различает стереоизомеры D- и L-глюкозы: D-глюкоза транспортируется, а L-глюкоза — нет. Транспорт глюкозы в ткань мозга нечувствителен к инсулину, но подавляется цитохалазином В.

Переносчики участвуют в транспорте нейтральных аминокислот (например, фенилаланина). Для переноса ряда веществ используются механизмы активного транспорта. Например, за счет активного транспорта против градиентов концентрации переносятся ионы Na + , К+ , аминокислота глицин, выполняющая функцию тормозного медиатора.

Таким образом, перенос веществ с использованием различных механизмов осуществляется не только через плазматические мембраны, но и через структуры биологических барьеров. Изучение этих механизмов необходимо для понимания сути регуляторных процессов в организме.