ФУНКЦИИ ЗРИТЕЛЬНОГО АНАЛИЗАТОРА И МЕТОДИКА ИХ ИССЛЕДОВАНИЯ

Зрительный анализатор человека является сложной нервно-рецепторной системой, предназначенной для восприятия и анализа световых раздражений. Согласно, в нем, как и в любом анализаторе, имеются три основных отдела - рецепторный, проводниковый и корковый. В периферических рецепторах - сетчатке глаза происходят восприятие света и первичный анализ зрительных ощущений. Проводниковый отдел включает зрительные пути и глазодвигательные нервы. В корковый отдел анализатора, расположенный в области шпорной борозды затылочной доли мозга, поступают импульсы как от фоторецепторов сетчатки, так и от про-приорецепторов наружных мышц глазного яблока, а также мышц, заложенных в радужной оболочке и цилиарном теле. Кроме того, имеются тесные ассоциативные связи с другими анализаторными системами.

Источником деятельности зрительного анализатора является превращение световой энергии в нервный процесс, возникающий в органе чувств. По классическому определению, «... ощущение есть действительно непосредственная связь сознания с внешним миром, есть превращение энергии внешнего раздражения в факт сознания. Это превращение каждый человек миллионы раз наблюдал и наблюдает действительно на каждом шагу».

Адекватным раздражителем для органа зрения служит энергия светового излучения. Человеческий глаз воспринимает свет с длиной волны от 380 до 760 нм. Однако в специально созданных условиях этот диапазон заметно расширяется в сторону инфракрасной части спектра до 950 нм и в сторону ультрафиолетовой части - до 290 нм.

Такой диапазон световой чувствительности глаза обусловлен формированием его фоторецепторов приспособительно к солнечному спектру. Земная атмосфера на уровне моря полностью поглощает ультрафиолетовые лучи с длиной волны менее 290 нм, часть ультрафиолетового излучения (до 360 нм) задерживается роговицей и особенно хрусталиком.

Ограничение восприятия длинноволнового инфракрасного излучения связано с тем, что внутренние оболочки глаза сами излучают энергию, сосредоточенную в инфракрасной части спектра. Чувствительность глаза к этим лучам привела бы к снижению четкости изображения предметов на сетчатке за счет освещения полости глаза светом, исходящим из его оболочек.

Зрительный акт является сложным нейрофизиологическим процессом, многие детали которого еще не выяснены. Он состоит из 4 основных этапов.

1.С помощью оптических сред глаза (роговица, хрусталик) на фоторецепторах сетчатки образуется действительное, но инвертированное (перевернутое) изображение предметоввнешнего мира.

2. Под воздействием световой эвергии в фоторецепторах (колбочки, палочки) происходит сложный фотохимический процесс, приводящий к распаду зрительных пигментов с последующей их регенерацией при участии витамина А и других веществ. Этот фотохимический процесс способствует трансформации световой энергии в нервные импульсы. Правда, до сих пор неясно, каким образом зрительный пурпур участвует в возбуждении фоторецепторов.

Светлые, темные и цветные детали изображения предметов по-разному возбуждают фоторецепторы сетчатки и позволяют воспринимать свет, цвет, форму и пространственные отношения предметов внешнего мира.

3. Импульсы, возникшие в фоторецепторах, проводятся по нервным волокнам к зрительным центрам коры головного мозга.

4. В корковых центрах происходит превращение энергии нервного импульса в зрительное ощущение и восприятие. Но каким образом происходит это преобразование, до сих пор неизвестно.

Таким образом, глаз является дистантным рецептором, дающим обширную информацию о внешнем мире без непосредственного контакта с его предметами. Тесная связь с другими анализаторными системами позволяет с помощью зрения на расстоянии получить представление о свойствах предмета, которые могут быть восприняты только другими рецепторами - вкусовыми, обонятельными, тактильными. Так, вид лимона и сахара создает представление о кислом и сладком, вид цветка - о его запахе, снега и огня - о температуре и т. п. Сочетанная и взаимная связь различных рецепторных систем в единую совокупность создается в процессе индивидуального развития.

Дистантный характер зрительных ощущений оказывал существенное влияние на процесс естественного отбора, облегчая добывание пищи, своевременно сигнализируя об опасности и способствуя свободной ориентации в окружающей обстановке. В процессе эволюции шло совершенствование зрительных функций, и они стали важнейшим источником информации о внешнем мире.

Основой всех зрительных функций является световая чувствительность глаза. Функциональная способность сетчатки неравноценна на всем ее протяжении. Наиболее высока она в области желтого пятна и особенно в центральной ямке. Здесь сетчатка представлена только нейроэпителием и состоит исключительно из высокодифференцированных колбочек. При рассматривании любого предмета глаз устанавливается таким образом, что изображение предмета всегда проецируется на область центральной ямки. На остальной части сетчатки преобладают менее дифференцированные фоторецепторы - палочки, и чем дальше от центра проецируется изображение предмета, тем менее отчетливо оно воспринимается.

В связи с тем, что сетчатка животных, ведущих ночной образ жизни, состоит преимущественно из палочек, а дневных животных - из колбочек, Шульце в 1868 г. высказал предположение о двойственной природе зрения, согласно которому дневное зрение осуществляется колбочками, а ночное - палочками. Палочковый аппарат обладает высокой светочувствительностью, но не способен передавать ощущение цветности; колбочки обеспечивают цветное зрение, но значительно менее чувствительны к слабому свету и функционируют только при хорошем освещении.

В зависимости от степени освещенности можно выделить три разновидности функциональной способности глаза.

1. Дневное (фотопическое) зрение (от греч. photos - свет и opsis - зрение) существляется колбочковым аппаратом глаза при большой интенсивности освещения. Оно характеризуется высокой остротой зрения и хорошим восприятием цвета.

2. Сумеречное (мезопическое) зрение (от греч. mesos - средний, промежуточный) осуществляется палочковым аппаратом глаза при слабой степени освещенности (0,1-0,3лк). Оно характеризуется низкой остротой зрения и ахроматичным восприятием предметов. Отсутствие цветовосприятия при слабом освещении хорошо отражено в пословице «ночью все кошки серы».

3. Ночное (скотопическое) зрение (от греч. skotos - темнота) также осуществляется палочками при пороговой и надпороговой освещенности. Оно сводится только к ощущению света.

Таким образом, двойственная природа зрения требует дифференцированного подхода к оценке зрительных функций. Следует различать центральное и периферическое зрение.

Центральное зрение осуществляется колбочковым аппаратом сетчатки. Оно характеризуется высокой остротой зрения и восприятием цвета. Другой важной чертой центрального зрения является визуальное восприятие формы предмета. В осуществлении форменного зрения решающее значение принадлежит корковому отделу зрительного анализатора. Так, среди рядов точек человеческий глаз легко формирует их в виде треугольников, наклонных линий за счет именно корковых ассоциаций (рис. 46).

Рис. 46. Графическая модель, демонстрирующая участие коркового отдела зрительного анализатора в восприятии формы предмета.

Значение коры головного мозга в осуществлении форменного зрения подтверждают случаи потери способности распознавать форму предметов, наблюдаемые иногда при повреждении затылочных областей мозга.

Периферическое палочковое зрение служит для ориентации в пространстве и обеспечивает ночное и сумеречное зрение.

ЦЕНТРАЛЬНОЕ ЗРЕНИЕ

Острота зрения

Для распознавания предметов внешнего мира необходимо не только выделить их по яркости или цвету на окружающем фоне, но и различить в них отдельные детали. Чем мельче детали может воспринимать глаз, тем выше его острота зрения (visus). Под остротой зрения принято понимать способность глаза воспринимать раздельно точки, расположенные друг от друга на минимальном расстоянии.

При рассматривании темных точек на светлом фоне их изображения на сетчатке вызывают возбуждение фоторецепторов, количественно отличающееся от возбуждения, вызываемого окружающим фоном. В связи с этим становится различимым светлый промежуток между точками и они воспринимаются как раздельные. Величина промежутка между изображениями точек на сетчатке зависит как от расстояния между ними на экране, так и от удаленности их от глаза. В этом легко убедиться, отдаляя книгу от глаз. Вначале исчезают наиболее мелкие промежутки между деталями букв и последние становятся неразборчивыми, затем исчезают промежутки между словами и строка видится в виде линии, и, наконец, происходит слияние строк в общий фон.

Взаимосвязь между величиной рассматриваемого объекта и удаленностью последнего от глаза характеризует угол, под которым виден объект. Угол, образованный крайними точками рассматриваемого объекта и узловой точкой глаза, называется углом зрения. Острота зрения обратно пропорциональна углу зрения: чем меньше угол зрения, тем выше острота зрения. Минимальный угол зрения, позволяющий раздельно воспринимать две точки, характеризует остроту зрения исследуемого глаза.

Определение минимального угла зрения для нормального глаза человека имеет уже трехсотлетнюю историю. Еще в 1674 г. Гук с помощью телескопа установил, что минимальное расстояние между звездами, доступное для их раздельного восприятия невооруженным глазом, равно 1 угловой минуте. Через 200 лет, в 1862 г., Снеллен использовал эту величину при построении таблиц для определения остроты зрения, приняв угол зрения в 1 мин. за физиологическую норму. Только в 1909 г. на Интернациональном конгрессе офтальмологов в Неаполе угол зрения 1 мин был окончательно утвержден в качестве международного эталона для определения нормальной остроты зрения, равной единице. Однако эта величина не предельная, а скорее характеризующая нижнюю границу нормы. Встречаются люди с остротой зрения 1,5; 2,0; 3,0 и более единиц. Гумбольт описал жителя Бреслау с остротой зрения 60 единиц, который невооруженным глазом различал спутники Юпитера, видимые с земли под углом зрения 1 с.

Предел различительной способности глаза во многом обусловлен анатомическими размерами фоторецепторов желтого пятна. Так, угол зрения 1 мин соответствует на сетчатке линейной величине 0,004 мм, что, например, равно диаметру одной колбочки. При меньшем расстоянии изображение падает на одну или две соседние колбочки и точки воспринимаются слитно. Раздельное восприятие точек возможно только в том случае, если между двумя возбужденными колбочками находится одна интактная.

В связи с неравномерным распределением колбочек в сетчатке различные ее участки неравноценны по остроте зрения. Наиболее высокая острота зрения в области центральной ямки желтого пятна, а по мере удаления от нее быстро падает. Уже на расстоянии 10° от центральной ямки она равна всего 0,2 и еще более снижается к периферии, поэтому правильнее говорить не об остроте зрения вообще, а об остроте центрального зрения.

Острота центрального зрения меняется в различные периоды жизненного цикла. Так, у новорожденных она очень низка. Форменное зрение появляется у детей после установления устойчивой центральной фиксации. В 4-месячном возрасте острота зрения несколько меньше 0,01 и к году постепенно достигает 0,1. Нормальной острота зрения становится к 5-15 годам. В процессе старения организма происходит постепенное падение остроты зрения. По данным Лукиша, если принять за 100% остроту зрения в 20-летнем возрасте, то в 40 лет она снижается до 90%, в 60 лет - до 74% и к 80 годам - до 42 %.

Для исследования остроты зрения применяются таблицы, содержащие несколько рядов специально подобранных знаков, которые называются оптотипами. В качестве оптотипов используются буквы, цифры, крючки, полосы, рисунки и т. п. Еще Снеллен в 1862 г. предложил вычерчивать оптотипы таким образом, чтобы весь знак был виден под углом зрения 5 мин, а его детали - под углом 1 мин. Под деталью знака понимается как толщина линий, составляющих оптотип, так и промежуток между этими линиями. Из рис. 47 видно, что все линии, составляющие оптотип Е, и промежутки между ними ровно в 5 раз меньше размеров самой буквы.


Рис.47. Принцип построения оптотипа Снеллена

С целью исключить элемент угадывания буквы, сделать все знаки в таблице идентичными по узнаваемости и одинаково удобными для исследования грамотных и неграмотных людей разных национальностей Ландольт предложил использовать в качестве оптотипа незамкнутые кольца разной величины. С заданного расстояния весь оптотип также виден под углом зрения 5 мин, а толщина кольца, равная величине разрыва,- под углом в 1 мин (рис. 48). Исследуемый должен определить, с какой стороны кольца расположен разрыв.


Рис.48. Принцип построения оптотипа Ландольта

В 1909 г. на XI Международном конгрессе офтальмологов кольца Ландольта были приняты в качестве интернационального оптотипа. Они входят в большинство таблиц, получивших практическое применение.

В Советском Союзе наиболее распространены таблицы и, в которые наряду с таблицей, составленной из колец Ландольта, входит таблица с буквенными оптотипами (рис. 49).


В этих таблицах впервые буквы были подобраны не случайно, а на основании углубленного изучения степени их узнаваемости большим числом людей с нормальным зрением. Это, естественно, повысило достоверность определения остроты зрения. Каждая таблица состоит из нескольких (обычно 10-12) рядов оптотипов. В каждом ряду размеры оптотипов одинаковы, но посте­пенно уменьшаются от первого ряда к последнему. Таблицы рассчитаны для исследования остроты зрения с расстояния 5 м. На этом расстоянии детали оптотипов 10-го ряда видны под углом зрения 1 мин. Следовательно, острота зрения глаза, различающего оптотипы этого ряда, будет равна единице. Если острота зрения иная, то определяют, в каком ряду таблицы исследуемый различает знаки. При этом остроту зрения высчитывают по формуле Снеллена: visus = - , где d - расстояние, с кото­рого проводится исследование, a D - расстояние, с которого нормальный глаз различает знаки этого ряда (проставлено в каждом ряду слева от оптотипов).

Например, исследуемый с расстояния 5 м читает 1-й ряд. Нормальный глаз различает знаки этого ряда с 50 м. Следовательно, vi-5м sus= =0,1.

Изменение величины оптотипов выполнено в арифметической прогрессии в десятичной системе так, что при исследовании с 5 м чтение каждой последующей строки сверху вниз свидетельствует об увеличении остроты зрения на одну десятую: верхняя строка - 0,1, вторая - 0,2 и т. д. до 10-й строки, которая соответствует единице. Этот принцип нарушен только в двух последних строках, так как чтение 11-й строки соответствует остроте зрения 1,5, а 12-й - 2 единицам.

Иногда значение остроты зрения выражается в простых дробях, например 5/5о, 5/25, где числитель соответствует расстоянию, с которого проводилось исследование, а знаменатель - расстоянию, с которого видит оптотипы этого ряда нормальный глаз. В англо-американской литературе расстояние обозначается в футах, и исследование обычно проводится с расстояния 20 футов, в связи с чем обозначения vis = 20/4o соответствуют vis = 0,5 и т. п.

Острота зрения, соответствующая чтению данной строки с расстояния 5 м, проставлена в таблицах в конце каждого ряда, т. е. справа от оптотипов. Если исследование проводится с меньшего расстояния, то пользуясь формулой Снеллена, нетрудно рассчитать остроту зрения для каждого ряда таблицы.

Для исследования остроты зрения у детей дошкольного возраста используются таблицы, где оптотипами служат рисунки (рис. 50).


Рис. 50. Таблицы для определения остроты зрения у детей.

В последнее время для ускорения процесса исследования остроты зрения выпускаются телеуправляемые проекторы оптотипов, что позволяет врачу, не отходя от исследуемого, демонстрировать на экране любые комбинации оптотипов. Такие проекторы (рис. 51) обычно комплектуются с другими аппаратами для исследования глаза.


Рис. 51. Комбайн для исследования функций глаза.

Если острота зрения исследуемого меньше 0,1, то определяют расстояние, с которого он различает оптотипы 1-го ряда. Для этого исследуемого постепенно подводят к таблице, или, что более удобно, приближают к нему оптотипы 1-го ряда, пользуясь разрезными таблицами или специальными оптотипами (рис. 52).

Рис. 52. Оптотипы.

С меньшей степенью точности можно определять низкую остроту зрения, пользуясь вместо оптотипов 1-го ряда демонстрацией пальцев рук на темном фоне, так как толщина пальцев примерно равна ширине линий оптотипов первого ряда таблицы и человек с нормальной остротой зрения может их различать с расстояния 50 м.

Остроту зрения при этом вычисляют по общей формуле. Например, если исследуемый видит оптотипы 1-го ряда или считает количество демонстрируемых пальцев с расстояния 3 м, то его visus= = 0,06.

Если острота зрения исследуемого ниже 0,005, то для ее характеристики указывают, с какого расстояния он считает пальцы, например: visus = c46T пальцев на 10 см.

Когда же зрение так мало, что глаз не различает предметов, а воспринимает только свет, остроту зрения считают равной светоощущению: visus= - (единица, деленная на бесконечность, является математическим выражением бесконечно малой величины). Определение светоощущения проводят с помощью офтальмоскопа (рис. 53).

Лампу устанавливают слева и сзади от больного и ее свет с помощью вогнутого зеркала направляют на исследуемый глаз с разных сторон. Если исследуемый видит свет и правильно определяет его направление, то остроту зрения оценивают равной светоощущению с правильной светопроекцией и обозначают visus=- proectia lucis certa, или сокращенно - р. 1. с.

Правильная проекция света свидетельствует о нормальной функции периферических отделов сетчатки и является важным критерием при определении показаний к операции при помутнении оптических сред глаза.

Если глаз исследуемого неправильно определяет проекцию света хотя бы с одной стороны, то такая острота зрения оценивается как светоощущение с неправильной светопроекцией и обозначается visus = - pr. 1. incerta. Наконец, если исследуемый не ощущает даже света, то его острота зрения равна нулю (visus = 0). Для правильной оценки изменений функционального состояния глаза во время лечения, при экспертизе трудоспособности, освидетельствовании военнообязанных, профессиональном отборе и т. п. необходима стандартная методика исследования остроты зрения для получения соизмеримых результатов. Для этого помещение, где больные ожидают приема, и глазной кабинет должны быть хорошо освещены, так как в период ожидания глаза адаптируются к имеющемуся уровню освещенности и тем самым готовятся к исследованию.

Таблицы для определения остроты зрения должны быть также хорошо, равномерно и всегда одинаково освещены. Для этого их помещают в специальный осветитель с зеркальными стенками.

Для освещения применяют электрическую лампу 40 Вт, закрытую со стороны больного щитком. Нижний край осветителя должен находиться на уровне 1,2 м от пола на расстоянии 5 м от больного. Исследование проводят для каждого глаза в отдельности. Для удобства запоминания принято первым проводить исследование правого глаза. Во время исследования оба глаза должны быть открыты. Глаз, который в данный момент не исследуется, заслоняют щитком из белого, непрозрачного, легко дезинфицируемого материала. Иногда разрешается прикрыть глаз ладонью, но без надавливания, так как после надавливания на глазное яблоко острота зрения снижается. Не разрешается во время исследования прищуривать глаза.

Оптотипы на таблицах показывают указкой, длительность экспозиции каждого знака не более 2-3 с.

Остроту зрения оценивают по тому ряду, где были правильно названы все знаки. Допускается неправильное распознавание одного знака в рядах, соответствующих остроте зрения 0,3-0,6, и двух знаков в рядах 0,7-1,0, но тогда после записи остроты зрения в скобках указывают, что она неполная.

Кроме описанного субъективного метода, имеется и объективный метод определения остроты зрения. Он основан на появлении непроизвольного нистагма при рассматривании движущихся объектов. Определение оптокинетического нистагма проводят на нистагмаппарате, в котором через смотровое окно видна лента движущегося барабана с объектами разной величины. Исследуемому демонстрируют подвижные объекты, постепенно уменьшая их размеры. Наблюдая за глазом в роговичный микроскоп, определяют наименьшую величину объектов, которые вызывают нистагмоидные движения глаза.

Этот метод пока еще не нашел широкого применения в клинике и используется в случаях экспертизы и при исследовании маленьких детей, когда субъективные методы определения остроты зрения недостаточно надежны.

Цветоощущение

Способность глаза различать цвета имеет важное значение в различных областях жизнедеятельности. Цветовое зрение не только существенно расширяет информативные возможности зрительного анализатора, но и оказывает несомненное влияние на психофизиологическое состояние организма, являясь в определенной степени регулятором настроения. Велико значение цвета в искусстве: живописи, скульптуре, архитектуре, театре, кино, телевидении. Цвет широко используется в промышленности, транспорте, научных исследованиях и многих других видах народного хозяйства.

Большое значение цветовое зрение имеет для всех отраслей клинической медицины и особенно офтальмологии. Так, разработанный метод исследования глазного дна в свете различного спектрального состава (офтальмохромоскопия) позволил проводить «цветовую препаровку» тканей глазного дна, что значительно расширило диагностические возможности офтальмоскопии, офтальмофлюорографии.

Ощущение цвета, как и ощущение света, возникает в глазу при воздействии на фоторецепторы сетчатки электромагнитных колебаний в области видимой части спектра.

В 1666 г. Ньютон, пропуская солнечный свет через трехгранную призму, обнаружил, что он состоит из ряда цветов, переходящих друг в друга через множество тонов и оттенков. По аналогии со звуковой гаммой, состоящей из 7 основных тонов, Ньютон выделил в спектре белого цвета 7 основных цветов: красный, оранжевый, желтый, зеленый, голубой, синий и фиолетовый.

Восприятие глазом того или иного цветового тона зависит от длины волны излучения. Можно условно выделить три группы цветов:

1) длинноволновые - красный и оранжевый;

2) средневолновые - желтый и зеленый;

3) коротковолновые - голубой, синий, фиолетовый.

За пределами хроматической части спектра располагается невидимое невооруженным глазом длинноволновое - инфракрасное и коротковолновое - ультрафиолетовое излучение.

Все многообразие наблюдаемых в природе цветов разделяется на две группы - ахроматические и хроматические. К ахроматическим относятся белый, серый и черный цвета, где средний человеческий глаз различает до 300 различных оттенков. Все ахроматические цвета характеризует одно качество - яркость, или светлота, т. е. степень близости его к белому цвету.

К хроматическим цветам относятся все тона и оттенки цветного спектра. Они характеризуются тремя качествами: 1) цветовым тоном, который зависит от длины волны светового излучения; 2) насыщенность, опpeделяемой долей основного тона и примесей к нему; 3) яркостью, или светлостью, цвета, т. е. степенью близости его к белому цвету. Различные комбинации этих характеристик дают несколько десятков тысяч оттенков хроматического цвета.

В природе редко приходится видеть чистые спектральные тона. Обычно цветность предметов зависит от отражения лучей смешанного спектрального состава, а возникающие зрительные ощущения являются следствием суммарного эффекта.

Каждый из спектральных цветов имеет дополнительный цвет, при смешивании с которым образуется ахроматический цвет - белый или серый. При смешивании цветов в иных комбинациях возникает ощущение хроматического цвета промежуточного тона.

Все многообразие цветовых оттенков можно получить путем смешивания только трех основных цветов - красного, зеленого и синего.

Физиология цветоощущения окончательно не изучена. Наибольшее распространение получила трехкомпонентная теория цветного зрения, выдвинутая в 1756 г. великим русским ученым. Она подтверждена работами Юнга (1807), Максвелла (1855) и особенно исследованиями Гельмгольца (1859). Согласно этой теории, в зрительном анализаторе допускается существование трех видов цветоощущающих компонентов, различно реагирующих на свет разной длины волны.

Цветоощущающие компоненты I типа сильнее всего возбуждаются длинными световыми волнами, слабее - средними и еще слабее - короткими. Компоненты II типа сильнее реагируют на средние световые волны, более слабую реакцию дают на длинные и короткие световые волны. Компоненты III типа слабо возбуждаются длинными, сильнее - средними и больше всего - короткими волнами. Таким образом, свет любой длины волны возбуждает все три цветоощущающих компонента, но в различной степени (рис. 54, см. цветную вклейку).

При равномерном возбуждении всех трех компонентов создается ощущение белого цвета. Отсутствие раздражения дает ощущение черного цвета. В зависимости от степени возбуждения каждого из трех компонентов суммарно получается все многообразие цветов и их оттенков.

Рецепторами цвета в сетчатке являются колбочки, но остается невыясненным, локализуются ли специфические цветоощущающие компоненты в различных колбочках или все три вида имеются в каждой из них. Существует предположение, что в ощущении цвета участвуют также биполярные клетки сетчатки и пигментный эпителий.

Трехкомпонентная теория цветного зрения, как и другие (четырех - и даже семикомпонентные) теории, не может полностью объяснить цветоощущение. В частности, эти теории недостаточно учитывают роль коркового отдела зрительного анализатора. В связи с этим их нельзя считать законченными и совершенными, а следует рассматривать как наиболее удобную рабочую гипотезу.

Расстройства цветоощущения. Расстройства цветового зрения бывают врожденными и приобретенными. Врожденные именовались раньше дальтонизмом (по имени английского ученого Дальтона, страдавшего этим дефектом зрения и впервые его описавшим). Врожденные аномалии цветоощущения наблюдаются довольно часто - у 8% мужчин и 0,5% женщин.

В соответствии с трехкомпонентной теорией цветового зрения нормальное ощущение цвета называется нормальной трихромазие и, а люди, им обладающие, - нормальными трихроматами.

Расстройства цветоощущения могут проявляться либо аномальным восприятием цветов, которое называется цветоаномалией, или аномальной трихромазией, либо полным выпадением одного из трех компонентов - дихрома-зией. В редких случаях наблюдается только черно-белое восприятие - монохромазия.

Каждый из трех цветорецепторов в зависимости от порядка их расположения в спектре принято обозначать порядковыми греческими цифрами: красный - первый (протос), зеленый - второй (дейторос) и синий - третий (тритос). Таким образом, аномальное восприятие красного цвета называется протаномалиеи, зеленого - дейтераномалией, синего - тританомалией, а людей с таким расстройством называют соответственно протаномалами, дейтераномалами и тританомалами.

Дихромаз^я наблюдается также в трех формах: а) протанопии, б) дейтеранопии, в) тританопии. Лиц с данной патологией называют протанопами, дейтеранопами и тританопами.

Среди врожденных расстройств цветоощущения наиболее часто встречается аномальная трихромазия. На ее долю приходится до 70% всей патологии цветоощущения.

Врожденные расстройства цветоощущения всегда двусторонние и не сопровождаются на­рушением других зрительных функций. Они обнаруживаются только при специальном исследовании.

Приобретенные расстройства цветоощущения встречаются при заболеваниях сетчатки, зрительного нерва и центральной нервной системы. Они бывают в одном или обоих глазах, выражаются в нарушении восприятия всех трех цветов, обычно сопровождаются расстройством других зрительных функций и в отличие от врожденных расстройств могут претерпевать изменения в процессе заболевания и его лечения.

К приобретенным расстройствам цветоощущения относится и видение предметов, окрашенных в какой-либо один цвет. В зависимости от тона окраски различают: эритропсию (красный), ксантопсию (желтый), хлоропсию (зеленый) и цианопсию (синий). Эритропсия и цианопсия наблюдаются нередко после экстракции катаракты, а ксантопсия и хлоропсия - при отравлениях и интоксикациях.

Диагностика. Для работников всех видов транспорта, рабочих ряда отраслей промышленности и при службе в некоторых родах войск необходимо хорошее цветоощущение. Выявление его расстройств - важный этап профессионального отбора и освидетельствования военнообязанных. Следует учитывать, что лица с врожденным расстройством цветоощущения не предъявляют жалоб, не чувствуют аномального цветовосприятия и обычно правильно называют цвета. Ошибки цветовосприятия проявляются только в определенных условиях при одинаковой яркости или насыщенности разных цветов, плохой видимости, малой величине объектов. Для исследования цветового зрения применяются два основных метода: специальные пигментные таблицы и спектральные приборы - аномалоскопы. Из пигментных таблиц наиболее совершенными признаны полихроматические таблицы проф. Е."Б. Рабкина, так как они позволяют установить не только вид, но и степень расстройства цветоощущения (рис. 55 см. цветную вклейку).

В основе построения таблиц лежит принцип уравнения яркости и насыщенности. Таблица содержит набор тестов. Каждая таблица состоит из кружков основного и дополнительных цветов. Из кружков основного цвета разной насыщенности и яркости составлена цифра или фигура, которая легко различима нормальным трихроматом и не видна людям с расстройством цветоощущения, так как цветослепой человек не может прибегнуть к помощи различия тона и производит уравнивание по насыщенности. В некоторых таблицах имеются скрытые цифры или фигуры, которые могут различать только лица с расстройством цветоощущения. Это повышает точность исследования и делает его более объективным.

Исследование проводят только при хорошем дневном освещении. Исследуемого усаживают спиной к свету на расстоянии 1 м от таблиц. Врач поочередно демонстрирует тесты таблицы и предлагает называть видимые знаки. Длительность экспозиции каждого теста таблицы 2-3 с, но не более 10 с. Первые два теста правильно читают лица как с нормальным, так и расстроенным цветоощущением. Они служат для контроля и объяснения исследуемому его задачи. Показания по каждому тесту регистрируют и согласуют с указаниями, имеющимися в приложении к таблицам. Анализ полученных данных позволяет определить диагноз цветовой слепоты или вид и степень цветоаномалии.

К спектральным, наиболее тонким методам диагностики расстройств цветового зрения относится аномалоскопия. (от греч. anomalia - неправильность, skopeo - смотрю).

В основе действия аномалоскопов лежит сравнение двухцветных полей, из которых одно постоянно освещается монохроматическими желтыми лучами с изменяемой яркостью; другое поле, освещаемое красными и зелеными лучами, может менять тон от чисто красного до чисто зеленого. Смешивая красный и зеленый цвета, исследуемый должен получить желтый цвет, по тону и яркости соответствующий контрольному. Нормальные трихроматы легко решают эту задачу, а цветоаномалы - нет.

В СССР изготовляется аномалоскоп конструкции, при помощи которого при врожденных и приобретенных расстройствах цветового зрения можно проводить исследования во всех участках видимого спектра.

ПЕРИФЕРИЧЕСКОЕ ЗРЕНИЕ

Поле зрения и методы его исследования

Полем зрения называется пространство, которое одновременно воспринимается неподвижным глазом. Состояние поля зрения обеспечивает ориентацию в пространстве и позволяет дать функциональную характеристику зрительного анализатора при профессиональном отборе, призыве в армию, экспертизе трудоспособности, в научных исследованиях и т. д. Изменение поля зрения является ранним и нередко единственным признаком многих глазных болезней. Динамика поля зрения часто служит критерием для оценки течения заболевания и эффективности лечения, а также имеет прогностическое значение. Выявление нарушений поля зрения оказывает существенную помощь в топической диагностике поражений головного мозга в связи с характерными дефектами поля зрения при повреждении разных участков зрительного пути. Изменения поля зрения при поражении головного мозга нередко являются единственным симптомом, на котором базируется топическая диагностика.

Все это объясняет практическую значимость изучения поля зрения и вместе с тем требует единообразия методики для получения сопоставимых результатов.

Размеры поля зрения нормального глаза определяются как границей оптически деятельной части сетчатки, расположенной по зубчатой линии, так и конфигурацией соседних с глазом частей лица (спинка носа, верхний край глазницы). Основными ориентирами поля зрения являются точка фиксации и слепое пятно. Первая связана с областью центральной ямки желтого пятна, а второе - с диском зрительного нерва, поверхность которого лишена свето-рецепторов.

Исследование поля зрения заключается в определении его границ и выявлении дефектов зрительной функции внутри них. Для этой цели применяются контрольные и инструментальные методы .

Обычно поле зрения для каждого глаза исследуется отдельно (монокулярное поле зрения) и в редких случаях одновременно для обоих глаз (бинокулярное поле зрения).

Контрольный метод исследования поля зрения прост, не требует приборов и отнимает всего несколько минут. Он широко используется в амбулаторной практике и у тяжелобольных для ориентировочной оценки. Несмотря на кажущуюся примитивность, эта методика все же дает достаточно определенную и сравнительно точную информацию, особенно при диагностике гемианопсий.

Сущность контрольного метода заключается в сравнении поля зрения исследуемого с полем зрения врача, которое должно быть нормальным. Поместив больного спиной к свету, врач садится против него на расстоянии 1 м. Закрыв один глаз исследуемого ладонью, врач закрывает свой глаз, противоположный закрытому у больного. Исследуемый фиксирует взором глаз врача и отмечает момент появления пальца или другого объекта, который врач плавно передвигает с разных сторон от периферии к центру на одинаковом расстоянии между собой и пациентом. Сравнивая показания исследуемого со своими, врач может установить изменения границ поля зрения и наличие в нем дефектов.

К инструментальным методам исследования поля зрения относятся кампиметрия и периметрия.

Кампиметрия (от лат. campus - поле, плоскость и греч. metreo -мерю). - способ измерения на плоской поверхности центральных отделов поля зрения и определения в нем дефектов зрительной функции. Метод позволяет наиболее точно определить форму и размеры слепого пятна, центральные и парацентральные дефекты поля зрения - скотомы (от греч. skotos - темнота).

Исследование проводят при помощи кампиметра - матового экрана черного цвета с белой фиксационной точкой в центре. Больной садится спиной к свету на расстоянии 1 м от экрана, опираясь подбородком на подставку, установленную против точки фиксации.

Белые объекты диаметром от 1-5 до 10 мм, укрепленные на длинных стержнях черного цвета, медленно передвигаются от центра к периферии в горизонтальном, вертикальном и косых меридианах. При этом булавками или мелом отмечают точки, где исчезает объект. Таким образом отыскивают участки выпадения- скотомы и, продолжая исследование, определяют их форму и величину.

Слепое пятно - проекция в пространстве диска зрительного нерва, относится к физиологическим скотомам. Оно расположено в височной половине поля зрения на 12-18° от точки фиксации. Его размеры по вертикали 8-9° и по горизонтали 5-8°.

К физиологическим скотомам относятся и лентовидные пробелы в поле зрения, обусловленные сосудами сетчатки, расположенными впереди ее фоторецепторов, - ангиоскотомы. Они начинаются от слепого пятна и прослеживаются на кампиметре в пределах 30-40° поля зрения.

Периметрия (от греч. peri - вокруг, metreo - мерю) - наиболее распространенный, простой и достаточно совершенный метод исследования периферического зрения. Основным отличием и достоинством периметрии является проекция поля зрения не на плоскость, а на вогнутую сферическую поверхность, концентричную сетчатой оболочке глаза. Благодаря этому исключается искажение границ поля зрения, неизбежное при исследовании на плоскости. Перемещение объекта на определенное число градусов по дуге дает равные отрезки, а на плоскости их величина неравномерно увеличивается от центра к периферии.

Впервые это показал в 1825 г. Пуркинье, а применил на практике Грефе (1855). На этом принципе Ауберт и Ферстер в 1857 г. создали прибор, получивший название периметра. Основной деталью наиболее распространенного и в настоящее время настольного периметра Ферстера является дуга шириной 50 мм и радиусом кривизны 333 мм. В середине этой дуги расположен белый неподвижный объект, служащий для исследуемого точкой фиксации. Центр дуги соединен с подставкой осью, вокруг которой дуга свободно вращается, что позволяет придать ей любой наклон для исследования поля зрения в разных меридианах. Меридиан исследования определяется по диску, разделенному на градусы и расположенному позади дуги. Внутренняя поверхность дуги по­крыта черной матовой краской, а на наружной с интервалами 5° нанесены деления от 0 до 90°. В центре кривизны дуги расположена подставка для головы, где по обе стороны от центрального стержня имеются упоры для подбородка, позволяющие ставить исследуемый глаз в центр дуги. Для исследования используют белые или цветные объекты, укрепленные на длинных стержнях черного цвета, хорошо сливающихся с фоном дуги периметра.

Достоинствами периметра Ферстера являются простота в обращении и дешевизна прибора, а недостатком - непостоянство освещения дуги и объектов, контроль за фиксацией глаза. На нем трудно обнаружить небольшие дефекты поля зрения (скотомы).

Значительно больший объем информации о периферическом зрении получается при исследовании с помощью проекционных периметров, основанных на принципе проекции светового объекта на дугу (периметр ПРП, рис. 56) или на внутреннюю поверхность полусферы (сферо-периметр Гольдмана, рис. 57).


Рис. 56. Измерение поля зрения на проекционном периметре.

Рис. 57. Измерение поля зрения на сферопериметре.

Набор диафрагм и светофильтров, вмонтированных на пути светового потока, позволяет быстро и главное дозированно изменять величину, яркость и цветность объектов. Это дает возможность проводить не только качественную, но и количественную (квантитативную) периметрию. B сферопериметре, кроме того, можно дозированно менять яркость освещения фона и исследовать дневное (фотопическое), сумеречное (мезопическое) и ночное (скотопическое) поле зрения. Устройство для последовательной регистрации результатов сокращает время, необходимое для исследования. У лежачих больных поле зрения исследуют при помощи портативного складного периметра.

Методика периметрии. Поле зрения исследуют поочередно для каждого глаза. Второй глаз выключают с помощью легкой повязки так, чтобы она не ограничивала поле зрения исследуемого глаза.

Больного в удобной позе усаживают у периметра спиной к свету. Исследование на проекционных периметрах проводят в затемненной комнате. Регулируя высоту подголовника, устанавливают исследуемый глаз в центре кривизны дуги периметра против фиксационной точки.

Определение границ поля зрения на белый цвет осуществляется объектами диаметром 3 мм, а измерение дефектов внутри поля зрения- объектами в 1 мм. При плохом зрении можно увеличить величину и яркость объектов. Периметрию на цвета проводят объектами диаметром 5 мм. Перемещая объект по дуге периметра от периферии к центру, отмечают по градусной шкале дуги момент, когда исследуемый констатирует появление объекта. При этом необходимо следить, чтобы исследуемый не двигал глазом и постоянно фиксировал неподвижную точку в центре дуги периметра.

Движение объекта следует проводить с постоянной скоростью 2-3 см в секунду. Поворачивая дугу периметра вокруг оси, последовательно измеряют поле зрения в 8- 12 меридианах с интервалами 30 или 45°. Увеличение числа меридианов исследования повышает точность периметрии, но вместе с тем прогрессивно возрастает время, затрачиваемое на исследование. Так, для измерения поля зрения с интервалом Г требуется около 27 ч.

Периметрия одним объектом позволяет дать только качественную оценку периферического зрения, довольно грубо отделяя видимые участ­ки от невидимых. Более дифференцированную оценку периферического зрения можно получить при периметрии объектами разной величины и яркости. Этот метод называется количественной, или квантитативной, периметрией. Метод позволяет улавливать патологические изменения поля зрения в ранних стадиях заболевания, когда обычная периметрия не выявляет отклонений от нормы.

При исследовании поля зрения на цвета следует учитывать, что при движении от периферии к центру цветной объект меняет окраску. На крайней периферии в ахроматической зоне все цветные объекты видны примерно на одинаковом расстоянии от центра поля зрения и кажутся серыми. При движении к центру они становятся хроматичными, но сначала их цвет воспринимается неправильно. Так, красный из серого переходит в желтый, затем в оранжевый и, наконец, в красный, а синий - от серого через голубой к синему. Границами поля зрения на цвета считаются участки, где наступает правильное распознавание цвета. Раньше всего узнаются синие и желтые объекты, затем красные и зеленые. Границы нормального поля зрения на цвета подвержены выраженным индивидуальным колебаниям (табл. 1).

Таблица 1 Средние границы поля зрения на цвета в градусах

Цвет объекта

височная

Красный Зеленый

В последнее время область применения периметрии на цвета все больше сужается и вытесняется квантитативной периметрией.

Регистрация результатов периметрии должна быть однотипной и удобной для сравнения. Результаты измерений заносят на специальные стандартные бланки отдельно для каждого глаза. Бланк состоит из серии концентрических кругов с интервалом 10°, которые через центр поля зрения пересекает координатная сетка, обозначающая меридианы исследования. Последние наносят через 10 или. 15°.

Схемы полей зрения принято располагать для правого глаза справа, для левого - слева; при этом височные половины поля зрения обращены наружу, а носовые - внутрь.

На каждой схеме принято обозначать нормальные границы поля зрения на белый цвет и на хроматические цвета (рис. 58 см. цветную вклейку). Для наглядности разницу между границами поля зрения исследуемого и нормой густо заштриховывают. Кроме того, записывают фамилию исследуемого, дату, остроту зрения данного глаза, освещение, размер объекта и тип периметра.

Границы нормального поля зрения в определенной степени зависят от методики исследования. На них оказывают влияние величина, яркость и удаленность объекта от глаза, яркость фона, а также контраст между объектом и фоном, скорость перемещения объекта и его цвет.

Границы поля зрения подвержены колебаниям в зависимости от интеллекта исследуемого и индивидуальных особенностей строения его лица. Например, крупный нос, сильно выступающие надбровные дуги, глубоко посаженные глаза, приспущенные верхние веки и т. п. могут обусловить сужение границ поля зрения. В норме средние границы для белой метки 5 мм2 и периметра с радиусом дуги 33 см (333 мм) следующие: кнаружи - 90°, книзу кнаружи - 90°, книзу - 60, книзу кнутри - 50°, кнутри -- 60, ~ кверху кнутри - 55°, кверху -_55° и кверху кнаружи - 70°.

В последние годы для характеристики изменений поля зрения в динамике заболевания и статистического анализа используется суммарное обозначение размеров поля зрения, которое образуется из суммы видимых участков поля зрения исследованного в 8 меридианах: 90 + +90 + 60 + 50 + 60 + 55 + 55 + 70 = 530°. Это значение принимается за норму. При оценке данных периметрии, особенно если отклонение от нормы невелико, следует соблюдать осторожность, а в сомнительных случаях проводить повторные исследования.

Патологические изменения поля зрения. Все многообразие патологических изменений (дефектов) поля зрения можно свести к двум основным видам:

1) сужение границ поля зрения (концентрическое или локальное) и

2) очаговые выпадения зрительной функции - скотомы.

Концентрическое сужение поля зрения может быть сравнительно небольшим или простираться почти до точки фиксации - трубочное поле зрения (рис. 59).



Рис. 59. Концентрическое сужение поля зрения

Концентрическое сужение развивается в связи с различными органическими заболеваниями глаза (пигментное перерождение сетчатки, невриты и атрофия зрительного нерва, периферические хориоретиниты, поздние стадии глаукомы и др.), может быть и функциональным - при неврозах, неврастении, истерии.

Дифференциальный диагноз функционального и органического сужения поля зрения основывается на результатах исследования его границ объектами разной величины и с разных расстояний. При функциональных нарушениях в отличие от органических это заметно не влияет на величину поля зрения.

Определенную помощь оказывает наблюдение за ориентацией больного в окружающей обстановке, которая при концентрическом сужении органического характера весьма затруднительна.

Локальные сужения границ поля зрения характеризуются сужением его в каком-либо участке при нормальных, азмерах на остальном протяжении. Такие дефекты могут быть одно - и двусторонние.

Большое диагностическое значение имеет двустороннее выпадение половины поля зрения - гемианопсия. Гемианопсии разделяются на гомонимные_(одноименные) и гетеронимные (разноименные). Они возникают при поражении зрительного пути в области хиазмы или позади нее в связи с неполным перекрестом нервных волокон в области хиазмы. Иногда гемианопсии обнаруживаются самим больным, но чаще выявляются при исследовании поля зрения.

Гомонимная гемианопсия характеризуется выпадением височной половины поля зрения в одном глазу и носовой - в другом. Она обусловлена ретрохиазмальным пораже­нием зрительного пути на стороне, противоположной выпадению поля зрения. Характер гемианопсии изменяется в зависимости от локализации участка поражения зрительного пути. Гемианопсия может быть полной (рис. 60) при выпадении всей половины поля зрения или частичной, квадрантной (рис. 61).



Рис. 60. Гомонимная гемианопсия



Битемпоральная гемианопсия (рис. 63, а) - выпадение наружных половин поля зрения. Она развивается при локализации патологического очага в области средней части хиазмы и является частым симптомом опухоли гипофиза.



Рис. 63. Гетеронимная гемианопсия

а - битемпоральная; б - биназальная

Таким образом, углубленный анализ гемианопических дефектов поля зрения оказывает существенную помощь для топической диагностики заболеваний головного мозга.

Очаговый дефект поля зрения, не сливающегося полностью с его периферическими границами, называется скотомой. Скотома может отмечаться самим больным в виде тени или пятна. Такая скотома называется положительной. Скотомы, не вызывающие у больного субъективных ощущений и обнаруживаемые только с помощью специальных методов исследования, носят название отрицательных.

При полном выпадении зрительной функции в области скотомы последняя обозначается как абсолютная в отличие от относительной скотомы, когда восприятие объекта сохраняется, но он виден недостаточно отчетливо. Следует учесть, что относительная скотома на белый цвет может быть в то же время абсолютно % на другие цвета.

Скотомы могут быть в виде круга, овала, дуги, сектора и иметь неправильную форму. В зависимости от локализации дефекта в поле зрения по отношению к точке фиксации различают центральные, перицентральные, парацентральные, секторальные и различного вида периферические скотомы (рис. 64).


Наряду с патологическими в поле зрения отмечаются физиологические скотомы. К ним относятся слепое пятно и ангиоскотомы. Слепое пятно представляет собой абсолютную отрицательную скотому овальной формы.

Физиологические скотомы могут существенно увеличиваться. Увеличение размеров слепого пятна является ранним признаком некоторых заболеваний (глаукома, застойный сосок, гипертоническая болезнь и др.) и измерение его имеет большое диагностическое значение.

7. Светоощущение. Методы определения

Способность глаза к восприятию света в различных степенях его яркости называется светоощущением. Это наиболее древняя функция зрительного анализатора. Осуществляется она палочковым аппаратом сетчатки и обеспечивает сумеречное и ночное зрение.

Световая чувствительность глаза проявляется в виде абсолютной световой чувствительности, характеризующейся порогом восприятия света глаза и различительной световой чувствительности, которая позволяет отличать предметы от окружающего фона в зависимости от их различной яркости.

Исследование светоощущения имеет большое значение в практической офтальмологии. Светоощущение отражает функциональное состояние зрительного анализатора, характеризует возможность ориентации в условиях пониженного освещения, является одним из ранних симптомов многих заболеваний глаза.

Абсолютная световая чувствительность глаза-величина непостоянная; она зависит от степени освещенности. Изменение освещенности вызывает приспособительное изменение порога светоощущения.

Изменение световой чувствительности глаза при изменении освещенности называется адаптацией. Способность к адаптации позволяет глазу защищать фоторецепторы от перенапряжения и вместе с тем сохранять высокую светочувствительность. Диапазон светоощущения глаза превосходит все известные в технике измерительные приборы; он позволяет видеть при освещенности порогового уровня и при освещенности, в миллионы раз превышающей его.

Абсолютный порог световой энергии, способный вызвать зрительное ощущение, ничтожно мал. Он равен 3-22-10~9 эрг/с-см2, что соответствует 7-10 квантам света.

Различают два~вида адаптации: адаптацию к свету при повышении уровня освещенности и адаптацию к темноте при понижении уровня освещенности.

Световая адаптация, особенно при резком увеличении уровня освещенности, может сопровождаться защитной реакцией зажмуривания глаз. Наиболее интенсивно световая адаптация протекает в течение первых секунд, за­тем она замедляется и заканчивается к концу 1-й минуты, после чего светочувствительность глаза уже не увеличивается.

Изменение световой чувствительности в процессе темновой адаптации происходит медленнее. При этом световая чувствительность нарастает в течение 20-30 мин, затем нарастание замедляется, и только к 50-60 мин достигается максимальная адаптация. Дальнейшее повышение светочувствительности наблюдается не всегда и бывает незначительным. Длительность процесса световой и темновой адаптации зависит от уровня предшествующей освещенности: чем более резок перепад уровней освещенности, тем длительнее идет адаптация.

Исследование световой чувствительности - сложный и трудоемкий процесс, поэтому в клинической практике часто применяются простые контрольные пробы, позволяющие получить ориентировочные данные. Самой простой пробой является наблюдение за действиями исследуемого в затемненном помещении, когда, не привлекая внимания, ему предлагают выполнить простые поручения: сесть на стул, подойти к аппарату, взять плохо видимый предмет и т. п.

Можно провести специальную пробу Кравкова - Пуркинье. На углы куска черного картона размером 20x20 см наклеивают четыре квадратика размером 3X3 см из голубой, желтой, красной и зеленой бумаги. Цветные квадратики показывают больному в затемненной комнате на расстоянии 40-50 см от глаза. В норме через 30-40 с становится различимым желтый квадрат, потом голубой. При нарушении светоощущения на месте желтого квадрата появляется светлое пятно, голубой квадрат не выявляется.

Для точной количественной характеристики световой чувствительности существуют инструментальные способы исследования. С этой целью применяются адаптометры. В настоящее время существует ряд приборов этого типа, отличающихся только деталями конструкции. В СССР широко используется адаптометр АДМ (рис. 65).

Рис. 65. Адаптометр АДМ (объяснение в тексте).

Он состоит из измерительного устройства (/), шара для адаптации (2), пульта управления (3). Исследование должно проводиться в темной комнате. Каркасная кабина позволяет делать это в светлом помещении.

В связи с тем, что процесс темновой адаптации зависит от уровня предварительной освещенности, исследование начинают с предварительной световой адаптации к определенному, всегда одинаковому уровню освещенности внутренней поверхности шара адаптометра. Эта адаптация длится 10 шш^и создает идентичный для всех исследуемых нулевой уровень. Затем свет выключают и с интервалами 5 мин на матовом стекле, расположенном пе­ред глазами исследуемого, освещают только контрольный объект (в виде круга, креста, квадрата). Освещенность контрольного объекта увеличивают до тех пор, пока его не увидит исследуемый. С 5-минутными интервалами исследование продолжается 50-60 мин. По мере адаптации исследуемый начинает различать контрольный объект при более низком уровне освещенности.

Результаты исследования вычерчивают в виде графика, где по оси абсцисс откладывается время исследования, а по оси ординат - оптическая плотность светофильтров, регулирующих освещенность увиденного в данном исследовании объекта. Эта величина и характеризует светочувствительность глаза: чем плотнее светофильтры, тем ниже освещенность объекта и тем выше светочувствительность увидевшего его глаза.

Расстройства сумеречного зрения называются гемералопией (от греч. hemera - днем, aloos - слепой и ops - глаз), или куриной слепотой (так как действительно у всех дневных птиц отсутствует сумеречное зрение). Различают гемералопию симптоматическую и функциональную.

Симптоматическая гемералопия связана с поражением фоторецепторов сетчатки и является одним из симптомов органического заболевания сетчатки, сосудистой оболочки, зрительного нерва (пигментная дегенерация сетчатки, глаукома, невриты зрительного нерва и др.). Она, как правило, сочетается с изменениями глазного дна и поля зрения.

Функциональная гемералопия развивается в связи с гиповитаминозом А и сочетается с образованием ксеротических бляшек на конъюнктиве вблизи лимба. Она_хорошо поддается лечению витаминами/А, Вь В2.

Иногда наблюдается врожденная гемералопия без изменения глазного дна. Причины ее не ясны. Заболевание носит семейно-наследственный характер.

БИНОКУЛЯРНОЕ ЗРЕНИЕ И МЕТОДЫ ЕГО ИССЛЕДОВАНИЯ

Зрительный анализатор человека может воспринимать окружающие предметы как одним глазом - монокулярное зрение, так и двумя глазами - бинокулярное зрение. При бинокулярном восприятии зрительные ощущения каждого из глаз в корковом отделе анализатора сливаются в единый зри­тельный образ. При этом происходит заметное улучшение зрительных функций: повышается острота зрения, расширяется поле зрения и, кроме того, появляется новое качество - объемное восприятие мира, стереоскопическое зрение. Оно позволяет осуществлять трехмерное восприятие непрерывно: при рассматривании различно расположенных предметов и при постоянно изменяющемся положении глазных яблок. Стереоскопическое зрение является сложнейшей физиологической функцией зрительного анализатора, высшим этапом его эво­люционного развития. Для его осуществления необходимы: хорошо координируемая функция всех 12 глазодвигательных мышц, четкое изображение рассматриваемых предметов на сетчатке и равная величина этих изображений в обоих глазах - изейкония, а также хорошая функциональная способность сетчатки, проводящих путей и высших зрительных центров. Нарушение в любом из этих звеньев может явиться препятствием для формирования стереоскопического зрения или причиной расстройств уже сформированного.

Бинокулярное зрение развивается постепенно и является продуктом длительной тренировки зрительного анализатора. Новорожденный не имеет бинокулярного зрения, только к 3-4 мес дети устойчиво фиксируют предметы обоими глазами, т. е. бинокулярно. К 6 мес формируется основной рефлекторный механизм бинокулярного зрения - фузионный рефлекс, рефлекс слияния двух изображений в одно. Однако для развития совершенного стереоскопического зрения, позволяющего определять расстояние между предметами и иметь точный глазомер, требуется еще 6-10 лет. В первые годы формирования бинокулярного зрения оно легко нарушается при воздействии различных вредных факторов (болезнь, нервное потрясение, испуг и др.), затем становится устойчивым. В акте стереоскопического зрения различают периферический компонент - расположение изображений предметов на сетчатке и центральный компонент - фузионный рефлекс и происходящее в корковом отделе зрительного анализатора слияние изображений от обоих сетчаток в стереоскопическую картину. Слияние происходит только в том случае, если изображение проеци­руется на идентичные - корреспондирующие точки сетчатки, импульсы от которых поступа­ют в идентичные отделы зрительного центра. Такими точками являются центральные ямки сетчаток и точки, расположенные в обоих гла­зах в одинаковых меридианах и на равном расстоянии от центральных ямок. Все другие точки сетчатки неидентичны - диспаратны. Изображения от них передаются в различные участки коры головного мозга, поэтому не мо­гут сливаться, в результате чего возникает двоение (рис. 66).

https://pandia.ru/text/78/602/images/image024_15.jpg" width="211" height="172 src=">

Рис. 67. Опыт с «дырой в ладони»

3. Проба с чтением за карандашом. В нескольких сантиметрах перед носом читающего помещают карандаш, который будет закрывать часть букв. Читать, не поворачивая головы, можно только при бинокулярном зрении, так как буквы, закрытые для одного глаза, видны другим и наоборот.

Более точные результаты дают аппаратные методы исследования бинокулярного зрения. Они наиболее широко используются при диагностике и ортоптическом лечении косоглазия и изложены в разделе «Заболевания глазодвигательного аппарата».

Офтальмология: учебник для вузов

Офтальмология: учебник для вузов/ Под ред. Е.А. Егорова - 2010. - 240 с.

http :// vmede . org / sait /? page =10& id = Oftalmologija _ uschebnik _ egorov _2010& menu = Oftalmologija _ uschebnik _ egorov _2010

ГЛАВА 3. ЗРИТЕЛЬНЫЕ ФУНКЦИИ

Общая характеристика зрения

Центральное зрение

Острота зрения

Цветоощущение

Периферийное зрение

Поле зрения

Светоощущение и адаптация

Бинокулярное зрение

ОБЩАЯ ХАРАКТЕРИСТИКА ЗРЕНИЯ

Зрение - сложный акт, направленный на получение информации о величине, форме и цвете окружающих предметов, а также их взаиморасположении и расстояниях между ними. До 90% сенсорной информации мозг получает благодаря зрению.

Палочки высокочувствительны к очень слабому свету, но не способны передавать ощущение цветности. Они отвечают за периферическое зрение (название обусловлено локализацией палочек), которое характеризуется полем зрения и светоощущением.

Колбочки функционируют при хорошем освещении и способны дифференцировать цвета. Они обеспечивают центральное зрение (название связано с их преимущественным расположением в центральной области сетчатки), которое характеризуется остротой зрения и цветоощущением.

Виды функциональной способности глаза

Дневное, или фотопическое, зрение (греч.photos- свет иopsis- зрение) обеспечивают колбочки при большой интенсивности освещения; характеризуется высокой остротой зрения и способностью глаза различать цвета (проявление центрального зрения).

Сумеречное, или мезопическое зрение (греч.mesos- средний, промежуточный) возникает при слабой степени освещенности и преимущественном раздражении палочек. Оно характеризуется низкой остротой зрения и ахроматичным восприятием предметов.

Ночное, или скотопическое зрение (греч.skotos- темнота) возникает при раздражении палочек пороговым и надпороговым уровнем света. При этом человек способен лишь различать свет и темноту.

Сумеречное и ночное зрение преимущественно обеспечивают палочки (проявление периферического зрения); оно служит для ориентации в пространстве.

ЦЕНТРАЛЬНОЕ ЗРЕНИЕ

Колбочки, расположенные в центральной части сетчатки, обеспечивают центральное форменное зрение и цветоощущение. Центральное форменное зрение - способность различать форму и детали рассматриваемого предмета благодаря остроте зрения.

Острота зрения

Острота зрения (visus) - способность глаза воспринимать две точки, расположенные на минимальном расстоянии друг от друга, как отдельные. Минимальное расстояние, при котором две точки будут видны раздельно, зависит от анатомо-физиологических свойств сетчатки. Если изображения двух точек попадают на две соседние колбочки, то они сольются в короткую линию. Две точки будут восприниматься раздельно, если их изображения на сетчатке (две возбужденные колбочки) будут разделены одной невозбужденной колбочкой. Таким образом, диаметр колбочки определяет величину максимальной остроты зрения. Чем меньше диаметр колбочек, тем больше острота зрения (рис. 3.1).

Рис. 3.1. Схематическое изображение угла зрения

Угол, образованный крайними точками рассматриваемого предмета и узловой точкой глаза (находится у заднего полюса хрусталика), называют углом зрения. Угол зрения -универсальная основа для выражения остроты зрения. Предел чувствительности глаза большинства людей в норме равен 1 (1 угловой минуте). В том случае, если глаз видит раздельно две точки, угол между которыми составляет не менее 1, остроту зрения считают нормальной и определяют ее равной одной единице. Некоторые люди имеют остроту зрения 2 единицы и более. С возрастом острота зрения меняется. Предметное зрение появляется в возрасте 2-3 мес. Острота зрения у детей в возрасте 4 мес.составляет около 0,01. К году острота зрения достигает 0,1-0,3. Острота зрения, равная 1,0 формируется к 5-15 годам.

Центральное зрение - это способность человека различать не только форму и цвет рассматриваемых предметов, но и их мелкие детали, что обеспечивается центральной ямкой желтого пятна сетчатки. Центральное зрение характеризуется его остротой, то есть способностью человеческого глаза воспринимать раздельно точки, расположенные друг от друга на минимальном расстоянии. Для большинства людей пороговый угол зрения соответствует одной минуте. На этом принципе построены все таблицы для исследования остроты зрения для дали, в том числе и принятые в нашей стране таблицы Головина-Сивцева и Орловой, которые состоят соответственно из 12 и 10 рядов букв или знаков. Так, детали самых крупных букв видны с расстояния в 50, а самых мелких - с 2,5 метра.

Нормальная острота зрения у большинства людей соответствует единице. Это значит, что при такой остроте зрения мы можем с расстояния в 5 метров свободно различать буквенные или другие изображения 10-го ряда таблицы. Если человек не видит самой крупной первой строки, ему показывают знаки одной из специальных таблиц. При очень низкой остроте зрения проверяют светоощущение. Если человек не воспринимает свет, он слеп. Довольно часто встречается и превышение общепринятой нормы зрения. Как показали исследования отделения адаптации зрения Научно-исследовательского института медицинских проблем Севера Сибирского отделения Академии медицинских наук СССР, проводимые под руководством доктора медицинских наук В. Ф. Базарного, в условиях Крайнего Севера у детей в возрасте 5-6 лет острота зрения вдаль превышает общепринятую условную норму, достигает в ряде случаев двух единиц.

На состояние центрального зрения оказывают влияние ряд факторов: интенсивность света, соотношение яркости и фона рассматриваемого объекта, время экспозиции, степень соразмерности между фокусным расстоянием преломляющей системы и длиной оси глаза, ширина зрачка и т. п., а также общее функциональное состояние центральной нервной системы, наличие различных заболеваний.

Острота зрения каждого глаза исследуется отдельно. Начинают с мелких знаков, постепенно переходят к более крупным. Существуют и объективные методы определения остроты зрения. Если острота зрения одного глаза значительно выше, чем другого, в головной мозг поступает изображение рассматриваемого объекта только от лучше видящего глаза, второй же глаз может обеспечить только периферическое зрение. В связи с этим хуже видящий глаз периодически выключается из зрительного акта, что приводит к амблиопии - снижению остроты зрения.

Определение остроты зрения. Для определения остроты зрения используют специальные таблицы, содержащие буквы, цифры или знаки (для детей используют рисунки - машинка, елочка и др.) различной величины. Эти знаки называют оптотипами. В основу создания оптотипов положено международное соглашение о величине их деталей, составляющих угол в 1", тогда как весь оптотип соответствует углу в 5 "с расстояния 5 м. (рис. 3.2).

Рис. 3.2. Принцип построения оптотипа Снеллена

У маленьких детей остроту зрения определяют ориентировочно, оценивая фиксацию ярких предметов различной величины. Начиная с трех лет остроту зрения у детей оценивают с помощью специальных таблиц. В нашей стране наибольшее распространение получила таблица Головина-Сивцева (рис. 3.3), которую помещают в аппарат Рота - ящик с зеркальными стенками, обеспечивающий равномерное освещение таблицы. Таблица состоит из 12 строк.

Рис. 3.3. Таблица Головина-Сивцева: а) взрослая; б) детская

Пациент садится на расстоянии 5 м от таблицы. Исследование каждого глаза проводят отдельно. Второй глаз закрывают щитком. Сначала обследуют правый (ОD-oculusdexter), затем левый (OS-oculussinister) глаз. При одинаковой остроте зрения обоих глаз используют обозначениеOU(oculiutriusque). Знаки таблицы предъявляют в течение 2-3 с. Сначала показывают знаки из десятой строки. Если пациент их не видит, дальнейшее обследование проводят с первой строки, постепенно предъявляя знаки следующих строк (2-й, 3-й и т.д.). Остроту зрения характеризуют оптотипы наименьшего размера, которые исследуемый различает.

Для расчета остроты зрения используют формулу Снеллена: visus=d/D, гдеd- расстояние, с которого пациент читает данную строку таблицы, аD- расстояние, с которого читает данную строку человек с остротой зрения 1,0 (это расстояние указано слева от каждой строки). Например, если обследуемый правым глазом с расстояния 5 м различает знаки второго ряда (D= 25 м), а левым глазом различает знаки пятого ряда (D= 10 м), то

visusOD= 5/25 = 0,2

visusOS= 5/10 = 0,5

Для удобства справа от каждой строки указана острота зрения, соответствующая чтению данных оптотипов с расстояния 5 м. Верхняя строка соответствует остроте зрения 0,1, каждая последующая - увеличению остроты зрения на 0,1, и десятая строка соответствует остроте зрения 1,0. В последних двух строках этот принцип нарушается: одиннадцатая строка соответствует остроте зрения 1,5, а двенадцатая - 2,0. При остроте зрения менее 0,1 следует подвести пациента на расстояние (d), с которого он сможет назвать знаки верхней строки (D= 50 м). Затем остроту зрения также рассчитывают по формуле Снеллена. Если пациент не различает знаки первой строки с расстояния 50 см (т.е. острота зрения ниже 0,01), то остроту зрения определяют по расстоянию, с которого он может сосчитать раздвинутые пальцы руки врача. Пример:visus= счет пальцев с расстояния 15 см. Если исследуемый не может сосчитать пальцы, но видит движение руки у лица, то данные об остроте зрения записываются следующим образом:visus= движение руки у лица. Самая низкая острота зрения - способность глаза отличать свет от темноты. В этом случае исследование проводят в затемненном помещении при освещении глаза ярким световым пучком. Если исследуемый видит свет, то острота зрения равна светоощущению (perceptiolucis). В данном случае остроту зрения обозначают следующим образом:visus= 1/??: Направляя на глаз пучок света с разных сторон (сверху, снизу, справа, слева), проверяют способность отдельных участков сетчатки воспринимать свет. Если обследуемый правильно определяет направление света, то острота зрения равна светоощущению с правильной проекцией света (visus= 1/??proectioluciscerta, илиvisus= 1/??p.l.c.); если обследуемый неправильно определяет направление света хотя бы с одной стороны, то острота зрения равна светоощущению с неправильной проекцией света (visus= 1/??proectiolucisincerta, илиvisus= 1/??p.l.incerta). В том случае, когда больной не способен отличить свет от темноты, его острота зрения равна нулю (visus= 0).

В основу создания оптотипов положено международное соглашение о величине их деталей, различаемых под углом зрения Г, тогда как весь оптотип соответствует углу зрения 5 градусов. В нашей стране наиболее распространенным является метод определения остроты зрения по таблице Головина - Сивцева (рис. 4.3), помешенной в аппарат Рота. Нижний край таблицы должен находиться на расстоянии 120 см от уровня пола. Пациент сидит на расстоянии 5 м от экспонируемой таблицы. Сначала определяют остроту зрения правого, затем - левого глаза. Второй глаз закрывают заслонкой.

Таблица имеет 12 рядов букв или знаков, величина которых постепенно уменьшается от верхнего ряда к нижнему. В построении таблицы использована десятичная система: при прочтении каждой последующей строчки острота зрения увеличивается на 0,1- Справа от каждой строки указана острота зрения, которой соответствует распознавание букв в этом ряду. Слева против каждой строки указано то расстояние, с которого детали этих букв будут видны под углом зрения Г, а вся буква - под углом зрения 5". Так, при нормальном зрении, принятом за 1,0, верхняя строка будет видна с расстояния 50 м, а десятая - с расстояния 5 м.

При остроте зрения ниже 0,1 обследуемого нужно приближать к таблице до момента, когда он увидит ее первую строку. Расчет остроты зрения следует производить по формуле Снеллена:

где d - расстояние, с которого обследуемый распознает оптотип; D - расстояние, с которого данный оптотип виден при нормальной остроте зрения. Для первой строки D равно 50 м. Например, пациент видит первую строку таблицы на расстоянии 2 м. В этом случае

Поскольку толщина пальцев руки примерно соответствует ширине штрихов онтотинов первой строки таблицы, можно демонстрировать обследуемому раздвинутые пальцы (желательно на темном фоне) с различного расстояния и соответственно определять остроту зрения ниже 0,1 также по приведенной выше формуле. Если острота зрения ниже 0,01, но обследуемый считает пальцы на расстоянии 10 см (или 20, 30 см), тогда Vis равна счету пальцев на расстоянии 10 см (или 20, 30 см). Больной может быть не способен считать пальцы, но определяет движение руки у лица, это считается следующей градацией остроты зрения.

Минимальной остротой зрения является светоощущение (Vis = l/oo) с правильной (pioectia lucis certa) или неправильной (pioectia lucis incerta) светопроекцией. Светопроекцию определяют путем направления в глаз с разных сторон луча света от офтальмоскопа. При отсутствии светоощущения острота зрения равна нулю (Vis = 0) и глаз считается слепым.

Для определения остроты зрения ниже 0,1 применяют оптотипы, разработанные Б. Л. Поляком, в виде штриховых тестов или колец Ландольта, предназначенных для предъявления на определенном близком расстоянии с указанием соответствующей остроты зрения (рис. 4.4). Данные оптотипы специально созданы для военно-врачебной и медикосоциальной экспертизы, проводимой при определении годности к военной службе или гуппы инвалидности.

Существует и объективный (не зависящий от показаний пациента) способ определения остроты зрения, основанный на оптокинетическом нистагме. С помощью специальных аппаратов обследуемому демонстрируют движущиеся объекты в виде полос или шахматной доски. Наименьшая величина объекта, вызвавшая непроизвольный нистагм (увиденный врачом), и соответствует остроте зрения исследуемого глаза.

В заключение следует отметить, что в течение жизни острота зрения изменяется, достигая максимума (нормальных величин) к 5-15 годам и затем постепенно снижаясь после 40-50 лет.

Острота зрения - важная зрительная функция для определения профессиональной пригодности и групп инвалидности. У маленьких детей или при проведении экспертизы для объективного определения остроты зрения используют фиксацию нистагмоидных движений глазного яблока, которые возникают при рассматривании движущихся объектов.

Цветоощущение

Острота зрения основывается на способности воспринимать ощущение белого цвета. Поэтому употребляемые для определения остроты зрения таблицы представляют изображение черных знаков на белом фоне. Однако не менее важная функция - способность видеть окружающий мир в цвете. Вся световая часть электромагнитных волн создает цветовую гамму с постепенным переходом от красного до фиолетового (цве- товой спектр). В цветовом спектре принято выделять семь главных цветов: красный, оранжевый, желтый, зеленый, голубой, синий и фиолетовый, из них приято выделять три основных цвета (красный, зеленый и фиолетовый), при смешении которых в разных пропорциях можно получить все остальные цвета.

Человек в состоянии воспринимать около 180 цветовых тонов, а с учетом яркости и насыщенности - более 13 тысяч. Это происходит благодаря смешению в разных сочетаниях красного, зеленого и синего цветов. Человек с правильным ощущением всех трех цветов считается нормальным трихроматом. Если функционируют два или один компонент, наблюдается цветоаномалия. Отсутствие восприятия красного цвета называется протаномалией, зеленого - дейтераномалией и синего - тританомалией.

Известны врожденные и приобретенные расстройства цветового зрения. Врожденные расстройства называются дальтонизмом по имени английского ученого Дальтона, который сам не воспринимал красный цвет и впервые описал это состояние.

При врожденных нарушениях цветового зрения может быть полная цветовая слепота, и тогда все предметы человеку кажутся серыми. Причиной такого дефекта является недоразвитие или отсутствие в сетчатке колбочек.

Довольно распространена частичная цветовая слепота, особенно на красный и зеленый цвета, которая, как правило, передается по наследству. Слепота на зеленый цвет встречается вдвое чаще, чем на красный; на синий - сравнительно редко. Частичная цветовая слепота наблюдается примерно у каждого двенадцатого из ста мужчин и одной, из двухсот женщин. Как правило, это явление не сопровождается нарушением других зрительных функций и выявляется только при специальном исследовании.

Врожденная цветовая слепота неизлечима. Нередко люди с аномальным цветоощущением могут и не знать о своем состоянии, так как привыкают различать окраску предметов не по цвету, а по яркости.

Приобретенные расстройства цветоощущения наблюдаются при заболеваниях сетчатки и зрительного нерва, а также при расстройствах центральной нервной системы. Они могут быть как в одном, так и в обоих глазах и сопровождаться расстройствами других зрительных функций. В отличие от врожденных, приобретенные расстройства могут изменяться в процессе заболевания и его лечения.

Способность глаза воспринимать всю цветовую гамму только на основе трех основных цветов была открыта И. Ньютоном и М.М. Ломоносовым. Т. Юнг предложил трехкомпонентную теорию цветового зрения, согласно которой сетчатка воспринимает цвета благодаря наличию в ней трех анатомических компонентов: одного - для восприятия красного цвета, другого - для зеленого и третьего - для фиолетового. Однако эта теория не могла объяснить, почему при выпадении одного из компонентов (красного, зеленого или фиолетового) страдает восприятие остальных цветов. Г. Гельмгольц развил теорию трехкомпонентного цветового зрения. Он указал, что каждый компонент, будучи специфичен для одного цвета, вместе с тем раздражается и остальными цветами, но в меньшей степени, т.е. каждый цвет образуется всеми тремя компонентами. Цвет воспринимают колбочки. Нейрофизиологи подтвердили наличие в сетчатке трех типов колбочек (рис. 3.4). Каждый цвет характеризуется тремя качествами: тоном, насыщенностью и яркостью.

Рис. 3.4. Схема трехкомпонентного цветового зрения

Тон - основной признак цвета, зависящий от длины волны светового излучения. Тон эквивалентен цвету.Насыщенность цвета определяется долей основного тона среди примесей другого цвета.Яркость или светлота определяется степенью близости к белому цвету (степень разведения белым цветом).

В соответствии с трехкомпонентной теорией цветового зрения восприятие всех трех цветов называется нормальной трихромазией, а люди, их воспринимающие, - нормальными трихроматами.

Исследование цветового зрения

Для оценки цветоощущения применяют специальные таблицы (наиболее часто - полихроматические таблицы Е.Б. Рабкина) и спектральные приборы - аномалоскопы. Исследование цветоощущения с помощью таблиц. При создании цветных таблиц используют принцип уравнивания яркости и насыщенности цвета. В предъявляемых тестах нанесены кружки основного и дополнительного цветов. Используя различную яркость и насыщенность основного цвета, составляют различные фигуры или цифры, которые легко различают нормальные трихроматы. Люди, имеющие различные расстройства цветоощущения, не способны их различить. В то же время в тестах имеются таблицы, которые содержат скрытые фигуры, различаемые только лицами с нарушениями цветоощущения (рис. 3.5).

Рис. 3.5. Таблицы из набора полихроматических таблиц Рабкина

Методика исследования цветового зрения по полихроматическим таблицам Е.Б. Рабкина следующая. Обследуемый сидит спиной к источнику освещения (окну или лампам дневного света). Уровень освещенности должен быть в пределах 500-1000 лк. Таблицы предъявляют с расстояния 1 м, на уровне глаз исследуемого, располагая их вертикально. Длительность экспозиции каждого теста таблицы 3-5 с, но не более 10 с. Если исследуемый пользуется очками, то он должен рассматривать таблицы в очках.

Оценка результатов.

Все таблицы (27) основной серии названы правильно - у обследуемого нормальная трихромазия.

Неправильно названы таблицы в количестве от 1 до 12 - аномальная трихромазия.

Неправильно названы более 12 таблиц - дихромазия.

Для точного определения вида и степени цветоаномалии результаты исследования по каждому тесту регистрируют и согласуют с указаниями, имеющимися в приложении к таблицам Е.Б. Рабкина.

Исследование цветоощущения с помощью аномалоскопов. Методика исследования цветового зрения с помощью спектральных приборов заключается в следующем: обследуемый сравнивает два поля, одно из которых постоянно освещают желтым цветом, другое - красным и зеленым. Смешивая красный и зеленый цвета, пациент должен получить желтый цвет, который по тону и яркости соответствует контролю.

Нарушение цветового зрения

Расстройства цветоощущения могут быть врожденными иприобретенными . Врожденные нарушения цветового зрения обычно двухсторонние, а приобретенные - односторонние. В отличие от приобретенных, при врожденных расстройствах отсутствуют изменения других зрительных функций, и заболевание не прогрессирует. Приобретенные расстройства возникают при заболеваниях сетчатки, зрительного нерва и центральной нервной системы, в то время как врожденные обусловлены мутациями генов, кодирующих белки рецепторного аппарата колбочек.

Виды нарушений цветового зрения. Цветоаномалия, или аномальная трихромазия - аномальное восприятие цветов, составляет около 70% среди врожденных расстройств цветоощущения. Основные цвета в зависимости от порядка расположения в спектре принято обозначать порядковыми греческими цифрами: красный - первый (protos), зеленый - второй (deuteros), синий - третий (tritos). Аномальное восприятие красного цвета называется протаномалией, зеленого - дейтераномалией, синего - тританомалией.

Дихромазия - восприятие только двух цветов. Различают три основных типа дихромазии:

Протанопия - выпадение восприятия красной части спектра;

Дейтеранопия - выпадение восприятия зеленой части спектра;

Тританопия - выпадение восприятия фиолетовой части спектра.

Монохромазия - восприятие только одного цвета, встречается исключительно редко и сочетается с низкой остротой зрения.

К приобретенным расстройствам цветоощущения относят также видение предметов, окрашенных в какой-либо один цвет. В зависимости от тона окраски различают эритропсию (красный), ксантопсию (желтый), хлоропсию (зеленый) и цианопсию (синий). Цианопсия и эритропсия нередко развиваются после удаления хрусталика, ксантопсия и хлоропсия - при отравлениях и интоксикациях, в том числе лекарственными средствами.

ПЕРИФЕРИЧЕСКОЕ ЗРЕНИЕ

Палочки и расположенные на периферии колбочки отвечают за периферическое зрение, которое характеризуется полем зрения и светоощущением. Острота периферического зрения во много раз меньше, чем центрального, что связано с уменьшением плотности расположения колбочек по направлению к периферическим отделам сетчатки. Хотя очертание предметов, воспринимаемое периферией сетчатки весьма неотчетливо, но и этого вполне достаточно для ориентации в пространстве. Периферическое зрение особенно восприимчиво к движению, что позволяет быстро замечать и адекватно реагировать на возможную опасность.

Возможность зрительной работы определяется не только состоянием остроты зрения вдаль и на близком расстоянии от глаз. Большую роль в жизни человека играет периферическое зрение. Оно обеспечивается периферическими отделами сетчатки и определяется величиной и конфигурацией поля зрения - пространства, которое воспринимается глазом при неподвижном взоре. На периферическое зрение оказывает влияние освещенность, величина и цвет рассматриваемого предмета или объекта, степень контрастности между фоном и объектом, а также общее функциональное состояние нервной системы.

Поле зрения каждого глаза имеет определенные границы. В норме средние его границы на белый цвет 90-50° в том числе: кнаружи и книзу-кнаружи - по 90°, кверху-кнаружи - 70°; книзу и кнутри - по 60°, кверху и кверху-кнутри - по 55°, книзу-кнутри - 50°.

Для точного определения границ поля зрения их проецируют на сферическую поверхность. На этом способе основано исследование на специальном аппарате - периметре. Исследуется каждый глаз в отдельности не менее чем в 6 меридианах. Градус дуги, на котором испытываемый впервые увидел объект, отмечается на специальной схеме.

Крайняя периферия сетчатки, как правило, не воспринимает цвета. Так, ощущение синего цвета возникает лишь в 70-40" от центра, красного - 50 -25°, зеленого-в 30-20°.

Формы изменений периферического зрения весьма многогранны, а причины разнообразны. В первую очередь это опухоли, кровоизлияния и воспалительные заболевания головного мозга, болезни сетчатки и зрительного нерва, глаукома и др. Нередки и так называемые физиологические скотомы (слепые пятна). Примером является слепое пятно - место проекции в пространстве диска зрительного нерва, поверхность которого лишена светочувствительных клеток. Увеличение размеров слепого пятна имеет диагностическое значение, являясь ранним признаком глаукомы и некоторых заболеваний зрительного нерва.

Поле зрения

Поле зрения - пространство, видимое глазом при фиксированном взоре. Размеры поля зрения определяются границей оптически деятельной части сетчатки и выступающими частями лица: спинкой носа, верхним краем глазницы, щеками. Исследование поля зрения. Существует три метода исследования поля зрения: ориентировочный способ, кампиметрия и периметрия. Ориентировочный метод исследования поля зрения. Врач садится напротив пациента на расстоянии 50-60 см. Исследуемый закрывает ладонью левый глаз, а врач - свой правый глаз. Правым глазом пациент фиксирует находящийся против него левый глаз врача. Врач перемещает объект (пальцы свободной руки) от периферии к центру на середину расстояния между врачом и пациентом до точки фиксации сверху, снизу, с височной и носовой сторон, а также в промежуточных радиусах. Затем аналогичным образом обследуют левый глаз. При оценке результатов исследования необходимо учитывать, что эталоном служит поле зрения врача (оно не должно иметь патологических изменений). Поле зрения пациента считают нормальным, если врач и пациент одновременно замечают появление объекта и видят его во всех участках поля зрения. Если пациент заметил появление объекта в каком-то радиусе позже врача, то поле зрения оценивают как суженное с соответствующей стороны. Исчезновение объекта в поле зрения больного на каком-то участке указывает на наличие скотомы.

Центральное или форменное зрение осуществляется наиболее высокодифференцированной областью сетчатки — центральной ямкой желтого пятна, где сосредоточены только колбочки. Центральное зрение измеряется остротой зрения. Исследование остроты зрения очень важно для суждения о состоянии зрительного аппарата человека, о динамике патологического процесса.

Под остротой зрения понимается способность глаза различать раздельно две точки в пространстве, находящиеся на определенном расстоянии от глаза.

При исследовании остроты зрения определяется минимальный угол, под которым могут быть раздельно восприняты два световых раздражения сетчатой оболочки глаза. На основании многочисленных исследований и измерений установлено, что нормальный глаз человека может раздельно воспринять два раздражения под углом зрения в одну минуту.

Эта величина угла зрения принята за интернациональную единицу остроты зрения. Такому углу на сетчатке соответствует линейная величина в 0,004 мм, приблизительно равная поперечнику одной колбочки в центральной ямке желтого пятна. Для раздельного восприятия двух точек глазом, оптически правильно устроенным, необходимо чтобы на сетчатке между изображениями этих точек существовал промежуток не менее чем в одну колбочку, которая не раздражается совсем и находится в покое. Если же изображения точек упадут на смежные колбочки, то эти изображения сольются и раздельного восприятия не получится.

Острота зрения одного глаза, могущего воспринимать раздельно точки, дающие на сетчатке изображения под углом в одну минуту, считается нормальной остротой зрения, равной единице (1,0). Есть люди, у которых острота зрения выше этой величины и равна 1,5-2,0 единицам и больше.

При остроте зрения выше единицы минимальный угол зрения меньше одной минуты. Самая высокая острота зрения обеспечивается центральной ямкой сетчатки. Уже на расстоянии от нее на 10 градусов острота зрения в 5 раз меньше.

Для исследования остроты зрения предложены различные таблицы с расположенными на них буквами или знаками различной величины. Впервые специальные таблицы предложил в 1862 году Снеллен. На принципе Снеллена строились все последующие таблицы. В настоящее время для определения остроты зрения пользуются таблицами Сивцева и Головина.

Таблицы состоят из 12 рядов букв. Каждая из букв в целом видна с определенного расстояния под углом в 50, а каждый штрих буквы под углом зрения в 10. Первый ряд таблицы виден при нормальной остроте зрения равной 1,0 с расстояния 50 м, буквы десятого ряда с расстояния 5 м.

Исследование остроты зрения проводится с расстояния 5 м и для каждого глаза отдельно. Справа в таблице стоит цифра, указывающая остроту зрения при проверке с расстояния 5 м, а слева цифра, указывающая расстояние, с которого этот ряд должен видеть исследуемый при нормальной остроте зрения.

Острота зрения может быть вычислена по формуле Снеллена:

где V (Visus) — острота зрения, d — расстояние, с которого видит больной, D — расстояние, с которого должен видеть глаз с нормальной остротой зрения знаки данного ряда на таблице.

Если исследуемый читает буквы 10 ряда с расстояния 5 м, то Visus = 5/5 = 1,0. Если же он читает только первую строчку таблицы, то Visus = 5/50 = 0,1 и т.д. Если острота зрения ниже 0,1, т.е. больной не видит первую строчку таблицы, то можно больного подводить к таблице пока он не увидит первую строчку и затем остроту зрения определить с помощью формулы Снеллена.

На практике пользуются показам раздвинутых пальцев врача, учитывая что толщина пальца приблизительно равна ширине штриха первого ряда таблицы, т.е. не больного подводят к таблице, а врач подходит к больному, показывая раздвинутые пальцы или оптотипы Поляка. И также, как в первом случае, остроту зрения рассчитывают по формуле. Если больной считает пальцы с расстояния 1 м, то его острота зрения равна 1:50 = 0,02, если с расстояния двух метров, то 2:50 = 0,04 и т.д. Если больной считает пальцы на расстоянии меньше 50 см, то острота зрения равна счету пальцев на расстоянии 40, 30, 20, 10 см, счету пальцев у лица. Если отсутствует даже такое минимальное форменное зрение, а сохраняется способность отличать свет от тьмы, зрение обозначается как бесконечно малое зрение — светоощущение 1/бесконечность.

При светоощущении с правильной проекцией света Visus = 1/бесконечность proectia lucis certa. Если глаз исследуемого неправильно определяет проекцию света хотя бы с одной стороны, то острота зрения расценивается как светоощущение с неправильной светопроекцией и обозначается Visus = 1/бесконечность рг. 1. incerta. При отсутствии даже светоощущения, зрение равно нулю и обозначается так: Visus = 0.

Правильность проекции света определяется при помощи источника света и зеркала офтальмоскопа. Больной садится, как при исследовании глаза методом проходящего света, и в глаз, который проверяют, направляется с разных сторон пучок света, который отражается от зеркала офтальмоскопа. Если функции сетчатки и зрительного нерва сохранились на всем протяжении, то больной говорит точно, с какой стороны на глаз направлен свет (сверху, снизу, справа, слева).

Определение наличия светоощущения и состояния проекции света очень важно для решения вопроса о целесообразности некоторых видов оперативного лечения. Если, например, при помутнении роговицы и хрусталика зрение равно правильному светоощущению, это указывает, что сохранены функции зрительного аппарата и можно рассчитывать на успех операции.

Зрение, равное нулю, свидетельствует об абсолютной слепоте. Более точно состояние сетчатки и зрительного нерва можно определить с помощью электрофизиологических методов исследования.

Для определения остроты зрения у детей служат детские таблицы, принцип построения которых такой же, как и для взрослых. Показ картинок или знаков начинают с верхних строчек. При проверки остроты зрения детям школьного возраста, также как и взрослым, буквы в таблице Сивцева и Головина показывают, начиная с самых нижних строк.

При оценке остроты зрения у детей надо помнить о возрастной динамике центрального зрения. В 3 года острота зрения равна 0,6-0,9, к 5 годам — у большинства 0,8-1,0.

На первой неделе жизни о наличии зрения у ребенка можно судить по зрачковой реакции на свет. Надо знать, что зрачок у новорожденных узкий и вяло реагирует на свет, поэтому проверять его реакцию надо путем сильного засвета глаза и лучше в затемненной комнате. На 2-й 3-й неделе — по кратковременной фиксации взглядом источника света или яркого предмета. В возрасте 4-5 недель движения глаз становятся координированными и развивается устойчивая центральная фиксация взора. Если зрение хорошее, то ребенок в этом возрасте способен долго удерживать взгляд на источнике света или ярких предметах. Кроме того, в этом возрасте появляется рефлекс смыкания век в ответ на быстрое приближение к его лицу какого-либо предмета. Количественно определить остроту зрения и в более позднем возрасте почти невозможно.

В первые годы жизни об остроте зрения судят по тому, с какого расстояния он узнает окружающих людей, игрушки. В возрасте 3, а у умственно хорошо развитых детей и 2 лет, часто можно определить остроту зрения по детским таблицам. Таблицы чрезвычайно разнообразны по своему содержанию.

В России довольно широкое распространение получили таблицы П.Г. Алейниковой, Е.М. Орловой с картинками и таблицы с оптотипами кольцами Ландольта и Пфлюгера. При исследовании зрения у детей от врача требуется большое терпение, повторное или многократное исследование.

Цветоощущение, методы исследования и диагностика его расстройств

Человеческий глаз различает не только форму, но и цвет предмета. Цветоощущение, также как и острота зрения, является функцией колбочкового аппарата сетчатки и связанных с ним нервных центров. Человеческий глаз воспринимает цвета с длиной волны от 380 до 800 нм.

Богатство цветов сводится к 7 цветам спектра, на которые разлагается, как показал еще Ньютон, солнечный свет, пропущенный через призму. Лучи длиной более 800 нм являются инфракрасными и не входят в состав видимого человеком спектра. Лучи менее 380 нм являются ультрафиолетовыми и не вызывают у человека оптического эффекта.

Все цвета разделяются на ахроматические (белые, черные и всевозможные серые) и хроматические (все цвета спектра, кроме белого, черного и серого). Человеческий глаз может различать до 300 оттенков ахроматического цвета и десятками тысяч хроматических цветов в различных сочетаниях. Хроматические цвета отличаются друг от друга по трем основным признакам: по цветовому тону, яркости (светлоте) и насыщенности.

Цветовой тон — качество цвета, которое мы обозначаем словами красный, желтый, зеленый и т.д., и характеризуется он длиной волны. Ахроматические цвета цветового тона не имеют.

Яркость или светлота цвета — это близость его к белому цвету. Чем ближе цвет к белому, тем он светлее.

Насыщенность — это густота тона, процентное соотношение основного тона и примесей к нему. Чем больше в цвете основного тона, тем он насыщенней.

Цветовые ощущения вызываются не только монохроматическим лучом с определенной длиной волны, но и совокупностью лучей с различной длиной волн, подчиненной законам оптического смещения цветов. Каждому основному цвету соответствует дополнительный, от смешения с которым получается белый цвет.

Пары дополнительных цветов находятся в диаметрально противоположных точках спектра: красный и зеленый, оранжевый и голубой, синий и желтый. Смешение цветов в спектре, расположенных близко друг от друга, дает ощущение нового хроматического цвета. Например, от смешения красного с желтым получается оранжевый, синего с зеленым — голубой. Все разнообразие ощущения цветов может быть получено путем смешения только трех основных цветов: красного, зеленого и синего. Т.к. существует три основных цвета, то в сетчатке глаза должны существовать специальные элементы для восприятия этих цветов.

Трехкомпонентную теорию цветоощущения предложил в 1757 году М.В. Ломоносов и в 1807 году английский ученый Томас Юнг. Они высказали предположение, что в сетчатке имеются троякого рода элементы, каждый из которых специфичен только для одного цвета и не воспринимает другого. Но в жизни оказывается, что потеря одного цвета связана с изменением всего цветного миросозерцания.

Если нет ощущения красного цвета, то и зеленый и фиолетовый цвета становятся несколько измененными. Через 50 лет Гельмгольц, выступивший со своей теорией трехкомпонентности, указал, что каждый из элементов, будучи специфичен для одного основного цвета, раздражается и другими цветами, но в меньшей степени. Например, красный цвет раздражает сильнее всего красные элементы, но в небольшой степени зеленые и фиолетовые. Зеленые лучи — сильно зеленые, слабо — красные и фиолетовые. Фиолетовый цвет действует очень сильно на элементы фиолетовые, слабее — на зеленые и красные. Если все три рода элементов раздражены в строго определенных отношениях, то получается ощущение белого цвета, а отсутствие возбуждения дает ощущение черного цвета.

Возбуждение только двух или всех трех элементов двумя или тремя раздражителями в различных степенях и соотношениях ведет к ощущению всей гаммы имеющихся в природе цветов. Люди с одинаковым развитием всех трех элементов имеют, согласно этой теории, нормальное цветоощущение и называются нормальными трихроматами. Если элементы не одинаково развиты, то наблюдается нарушение восприятия цветов.

Расстройство цветового зрения бывает врожденным и приобретенным, полным или неполным. Врожденная цветовая слепота встречается чаще у мужчин (8%) и значительно реже — у женщин (0,5%).

Полное выпадение функции одного из компонентов называется дихромазией. Дихроматы могут быть протанопами, при выпадении красного компонента, дейтеранопами — зеленого, тританопами — фиолетового. Врожденная слепота на красный и зеленый цвета встречается часто, а на фиолетовый — редко. Протанопией страдал знаменитый физик Дальтон, который в 1798 году впервые точно описал цветослепоту на красный цвет.

У некоторых лиц наблюдается ослабление цветовой чувствительности к одному из цветов. Это цветоаномалы. Ослабление восприятия красного цвета называется протаномалией, зеленого — дейтераномалией и фиолетового — тританомалией.

По степени выраженности цветоаномалии различают аномалии типа А, В, С. К цветоаномалиям А относятся более далекие от нормы формы, к С — более тяготеющие к норме. Промежуточное положение занимают цветоаномалы В.

Крайне редко встречается ахромазия — полная цветовая слепота. Никакие цветовые тона в этих случаях не различают, все воспринимается в сером цвете, как на черно-белой фотографии. При ахромазии обычно бывают и другие изменения глаз: светобоязнь, нистагм, центральное зрение не бывает выше 0,1 из-за аплазии центральной ямки, никтолапия (улучшение зрения при пониженном освещении).

Полная цветовая слепота большей частью проявляется как семейное страдание с рецессивным типом наследования (цветовая астенопия). Цветовую астенопию у отдельных людей следует рассматривать как явление физиологическое, свидетельствующее о недостаточной устойчивости хроматического зрения.

На характер цветового зрения оказывают влияние слуховые, обонятельные, вкусовые и многие другие раздражения. Под влиянием этих непрямых раздражителей цветовое восприятие может в одних случаях угнетаться, в других — усиливаться. Для диагностики расстройств цветового зрения у нас в стране пользуются специальными полихроматическими таблицами профессора Е.Б. Рабкина .

Таблицы построены на принципе уравнивания яркости и насыщенности. Кружочки основного и дополнительного цветов имеют одинаковую яркость и насыщенность и расположены так, что некоторые из них образуются на фоне остальных цифру или фигуру. В таблицах есть также скрытые цифры или фигуры, распознаваемые цветослепыми.

Исследование проводится при хорошем дневном или люминесцентном освещении таблиц, т.к. иначе изменяются цветовые оттенки. Исследуемый помещается спиной к окну, на расстоянии 0,5-1 м от таблицы. Время экспозиции каждой таблицы 5-10 с. Показания испытуемого записывают и по полученным данным устанавливают степень аномалии или цветослепоты. Исследуется раздельно каждый глаз, т.к. очень редко возможна односторонняя дихромазия. В детской практике ребенку младшего возраста предлагают кисточкой или указкой провести по цифре или фигуре, которую он различает. Кроме таблиц, для диагностики расстройств и более точного определения качества цветового зрения пользуются специальными спектральными аппаратами — аномалоскопами. Исследование цветоощущения имеет большое практическое значение.

Существует ряд профессий, для которых нормальное цветоощущение является необходимым. Это транспортная служба, изобразительное искусство, химическая, текстильная, полиграфическая промышленности. Цветоразличительная функция имеет большое значение в различных областях медицины: для врачей инфекционистов, дерматологов, офтальмологов, стоматологов; в познании окружающего мира и т.д.

Возможны приобретенные нарушения цветового зрения, которые по сравнению с врожденными более разнообразны и не укладываются в какие-либо схемы. Раньше и чаще нарушается красно-зеленое восприятие и позже — желто-синее. Иногда наоборот. Приобретенным нарушениям цветоощущения сопутствуют и другие нарушения: снижение остроты зрения, поля зрения, появление скотом и т.д. Приобретенная цветовая слепота может быть при патологических изменениях в области желтого пятна, папилломакулярном пучке, при поражении более высоких отделов зрительных путей и т.д. Приобретенные расстройства весьма изменчивы в динамике. Для диагностики приобретенных расстройств цветового зрения Е.Б. Рабкин предложил специальные таблицы.

Благодаря глазам, этим удивительным органам, мы обладаем уникальной возможностью – видеть все вокруг себя, рассматривать вещи вдалеке и вблизи, ориентироваться в темноте, ориентироваться в пространстве, перемещаться в нем быстро и легко.

Наше зрение делает нашу жизнь богаче, информативнее, активнее. Поэтому так важно для человека своевременно решать все проблемы, которые возникают с глазами, ведь даже малейшая вероятность перестать видеть этот прекрасный мир пугает.

Глаза – это окно в мир, это отражение состояния нашей души, это хранилище загадок и тайн.

В этой статье мы уделим особенное внимание центральному и периферическому зрению.

В чем их различия? Как определяется их качество? В чем отличия периферического и центрального зрения у людей и животных и как вообще видят животные? И как улучшить периферическое зрение...

Это и еще очень-очень многое будет рассмотрено в данной статье.

Центральное и периферическое зрение. Интересная информация.

Сначала о центральном зрении.

Это самый важный элемент зрительной функции человека.

Оно получило такое название, т.к. обеспечивается центральным участком сетчатки и центральной ямкой. Дает человеку возможность различать формы и мелкие детали предметов, поэтому его второе название – форменное зрение.

Даже если оно незначительно снизится, человек сразу же это ощутит.

Основная характеристика центрального зрения – это острота зрения.

Ее исследование имеет большое значение в оценке всего зрительного аппарата человека, для отслеживания разнообразных патологических процессов в органах зрения .

Под остротой зрения понимают способность глаза человека различать две точки в пространстве, расположенные близко друг к другу, на определенном расстоянии от человека.

Также обратим внимание на такое понятие, как угол зрения, который представляет собой угол, образующийся между двумя крайними точками рассматриваемого предмета и узловой точкой глаза.

Получается, что чем больше угол зрения, тем ниже его острота.

Теперь о периферическом зрении.

Оно обеспечивает ориентацию человека в пространстве, дает возможность видеть во тьме и полутьме.

Как разобраться, что такое центральное, а что такое периферическое зрение?

Поверните голову вправо, словите глазами какой-либо предмет, к примеру, картину на стене, и зафиксируйте взгляд на каком-либо отдельном ее элементе. Его вы видите хорошо, четко, не так ли?

Это благодаря центральному зрению. Но кроме данного объекта, который вы так хорошо видите, в поле зрения попадает также большое количество различных вещей. Это, к примеру, дверь в другую комнату, шкаф, который стоит рядом с выбранной вами картиной, собака, сидящая на полу чуть подальше. Вы видите все эти предметы нечетко, но, все же, видите, имеете возможность улавливать их движение и реагировать на него.

Это и есть периферическое зрение.

Оба глаза человека, не двигаясь, способны охватывать 180 градусов по горизонтальному меридиану и чуть меньше – где-то 130 градусов по вертикальному.

Как мы уже заметили, острота периферического зрения меньше в сравнении с центральным. Это объясняется тем, что количество колбочек, от центра к периферическим отделам сетчатки , значительно уменьшается.

Периферическое зрение характеризуется так называемым полем зрения.

Это пространство, которое воспринимается неподвижным взглядом.



Периферическое зрение имеет неоценимое значение для человека.


Именно благодаря нему возможно свободное привычное передвижение в окружающем человека пространстве, ориентировка в окружающей нас среде.

Если периферическое зрение по каким-то причинам утрачивается, то даже при полном сохранении центрального зрения, индивид не может самостоятельно передвигаться, он будет натыкаться на каждый предмет на своем пути, утратится способность охватывать взглядом крупные предметы.

А какое зрение считается хорошим?

Теперь рассмотрим следующие вопросы: как измеряется качество центрального и периферического зрения, а также, какие показатели считаются нормальными.

Сначала о центральном зрении.

Мы привыкли, что если человек видит хорошо, про него говорят «единица на оба глаза».

Что это значит? Что каждый глаз по отдельности может различать в пространстве две близкорасположенные точки, которые дают на сетчатке изображение под углом в одну минуту. Вот и получается единица на оба глаза.

Кстати, это лишь нижняя норма. Встречаются люди, у которых зрение 1,2, 2 и более.

У нас чаще всего для определения остроты зрения используется таблица Головина-Сивцева, та самая, где в верхней части красуются известные всем буквы Ш Б. Человек садится напротив таблицы на расстоянии 5 метров и закрывает поочередно то правый, то левый глаз. Врач указывает на буквы в таблице, а пациент произносит их вслух.

Нормальным считается зрение человека, который одним глазом видит десятую строчку.

Периферическое зрение.

Оно характеризуется полем зрения. Его изменение является ранним, а иногда и единственным признаком некоторых глазных недугов.

Динамика изменения поля зрения позволяет оценить ход заболевания, а также эффективность его лечения. Кроме того, благодаря исследованию данного параметра выявляются нетипичные процессы в головном мозге.

Изучение поля зрения – это определение его границ, выявление внутри них дефектов зрительной функции.

Для достижения данных целей используются различные методы.

Самый простой из них – контрольный.

Позволяет быстро, буквально за несколько минут, без применения каких-либо приборов, определить поле зрения человека.

Сущность данного метода – сравнение периферического зрения медика (которое должно быть нормальным) с периферическим зрением пациента.

Выглядит это так. Врач и пациент садятся друг напротив друга на расстоянии одного метра, каждый из них закрывает один глаз (закрываются разноименные глаза), а открытые глаза выступают точкой фиксации. Затем врач начинает медленно перемещать кисть своей руки, которая находится сбоку, вне поля зрения, и постепенно приближать ее к центру поля зрения. Пациент должен указать момент, когда увидит ее. Исследование повторяется со всех сторон.

С помощью данного метода лишь грубо оценивается периферийное зрение человека.

Есть и более сложные методы, которые дают глубокие результаты, например кампиметрия и периметрия.


Границы поля зрения могут различаться от человека к человеку, зависят, в том числе, от уровня интеллекта, особенностей строения лица пациента.

Нормальные показатели для белого цвета следующие: кверху – 50o, кнаружи – 90o, кверху кнаружи – 70o, кверху кнутри - 60o, книзу кнаружи - 90o, книзу - 60o, книзу кнутри - 50o, кнутри – 50o.

Восприятие цвета в центральном и периферическом зрении.

Опытным путем установлено, что человеческие глаза могут различать до 150 000 оттенков и цветовых тонов.

Данная способность оказывает влияние на различные стороны жизни человека.

Цветное зрение обогащает картину мира, дает индивиду больше полезной информации, оказывает влияние на его психофизическое состояние.

Цвета активно используются везде – в живописи, промышленности, в научных исследованиях…

За цветное зрение отвечают так называемые колбочки, светочувствительные клетки, которые находятся в глазу человека. А вот палочки ответственны уже за ночное зрение. В сетчатке глаза расположено три вида колбочек, каждый из которых максимально чувствителен к синему, зеленому и красному участкам спектра.

Конечно же, картинка, которую мы получаем благодаря центральному зрению, лучше насыщена цветами в сравнении с результатом периферического зрения. Периферическое зрение лучше улавливает более яркие цвета, красный, к примеру, или черный.

Женщины и мужчины, оказывается, видят по-разному!

Интересно, но женщины и мужчины видят несколько по-разному.

Из-за определенных различий в строении глаз представительницы прекрасного пола способны различать больше цветов и оттенков, нежели сильная часть человечества.


Кроме того, ученые доказали, что у мужчин лучше развито центральное зрение, а у женщин – периферическое.

Объясняется это характером деятельности людей различного пола в древние времена.

Мужчины ходили на охоту, где важно было четко сконцентрироваться на каком-то одном объекте, ничего кроме него не видеть. А женщины следили за жильем, должны были быстро замечать малейшие изменения, нарушения привычного течения бытовой жизни (к примеру, быстро заметить заползшую в пещеру змею).

Существуют статистические подтверждения данного утверждения. К примеру, в 1997 году, в Великобритании в результате ДТП пострадало 4132 ребенка, из них – 60% мальчиков и 40% девочек.

Кроме того, страховые компании отмечают, что женщины намного реже, нежели мужчины, попадают на автомобилях в аварии, которые связаны с боковыми ударами на перекрестках. Зато параллельная парковка дается прекрасным дамам сложнее.

Также женщины лучше видят в темноте, в близком широком поле замечают больше мелких деталей, если сравнивать с мужчинами.

В то же время, глаза последних хорошо приспособлены к слежению за объектом на дальнем расстоянии.

Если учесть и другие физиологические особенности женщин и мужчин, сформируется следующий совет – в течение долгой поездки лучше всего чередоваться следующим образом – женщине отдать день, а мужчине – ночь.

И еще несколько интересных фактов.

У прекрасных дам глаза устают медленнее, нежели у мужчин.

Кроме того, женские глаза лучше подходят для наблюдения за предметами на близком расстоянии, поэтому они, к примеру, могут гораздо быстрее и ловчее мужчин вдеть нитку в ушко иголки.

Люди, животные и их зрение.

С самого детства людей занимает вопрос - а как видят животные, наши любимые кошки и собаки, парящие в высоте птицы, плавающие в море существа?

Ученые долгое время занимались изучением строения глаз птиц, животных и рыб, чтобы мы смогли, наконец, узнать интересующие нас ответы.

Начнем с наших любимых домашних питомцев – собак и кошек.

То, как они видят мир, значительно отличается от того, как видит мир человек. Происходит это по нескольким причинам.

Первое.

Острота зрения у данных животных значительно ниже, нежели у человека. Собака, к примеру, обладает зрением примерно 0,3, а кошки вообще 0,1. В то же время, данные животные имеют невероятно широкое поле зрения, значительно шире, чем у человека.

Вывод можно сделать такой: глаза животных максимально адаптированы для панорамного зрения.

Это обусловлено и строением сетчатки, и анатомическим расположением органов.

Второе.

Животные гораздо лучше человека видят в темноте.

Интересно и то, что собаки и кошки ночью видят даже лучше, чем днем. Все благодаря особенному строению сетчатки, наличию специального светоотражающего слоя.




Третье.

Наши домашние питомцы, в отличие от человека, лучше различают движущиеся, нежели статичные предметы.

При этом животные обладают уникальной способностью определять расстояние, на котором находится тот или иной объект.

Четверное.

Существуют различия в восприятии цветов. И это притом, что строение роговицы и хрусталика у животных и человека практически не отличается.

Человек различает гораздо больше цветов, нежели собаки и кошки.

И связано это с особенностями строения глаз . К примеру, в глазах собаки имеется меньше «колбочек», ответственных за цветовосприятие, нежели у человека. Поэтому и цветов они различают меньше.

Раньше вообще существовала теория, что зрение у животных, кошек и собак, черно-белое.

Это если говорить об отличиях человеческого зрения домашних питомцев.

Теперь о других животных и птицах.

Обезьяны, к примеру, видят втрое лучше человека.

Необычайной остротой зрения обладают орлы, грифы, соколы. Последний может хорошо рассмотреть цель, размером до 10 см, на расстоянии около 1,5км. А гриф способен различать грызунов небольшого размера, которые находятся за 5 км от него.

Рекордсмен именно в панорамном зрении – вальдшнеп. Оно у него практически круговое!

А вот всем нам привычный голубь имеет угол обзора приблизительно в 340 градусов.

Глубоководные рыбы хорошо видят в абсолютной темноте, морские коньки и хамелеоны вообще могут одновременно смотреть в разных направлениях, и все потому, что их глаза двигаются независимо друг от друга.

Вот такие интересные факты.

Как меняется наше зрение в процессе жизни?

А как меняется наше зрение, как центральное, так и периферическое, в процессе жизни? С каким зрением мы рождаемся, и с каким приходим к старости? Давайте уделим данным вопросам внимание.

В разные периоды жизни у людей различная острота зрения.

Человек рождается на свет, и у него она будет низкой. В четырехмесячном возрасте острота зрения ребенка составляет примерно 0,06, к году вырастает до 0,1-0,3, и лишь к пяти годам (в некоторых случаях требуется до 15 лет) зрение становится нормальным.

Со временем ситуация меняется. Это связано с тем, что глаза, как и любые другие органы, претерпевают определенные возрастные изменения, их активность постепенно снижается.



Считается, что ухудшение остроты зрения является неизбежным или почти неизбежным явлением в старости.

Выделим следующие моменты.

* С возрастом уменьшаются размеры зрачков из-за ослабевания мышц, которые ответственны за их регуляцию. Как следствие, ухудшается реакция зрачков на световой поток.

Это значит, что чем старше становится человек, тем больше ему необходимо света для чтения и других видов деятельности.

Кроме того, в пожилом возрасте очень болезненно воспринимаются перепады яркости освещения.

* Также с возрастом глаза хуже распознают цвета, понижается контрастность и яркость изображения. Это является следствием снижения количества клеток сетчатки, которые отвечают за восприятие цветов, оттенков, контрастности и яркости.

Окружающий мир пожилого человека будто выцветает, становится тусклым.


Что же происходит с периферическим зрением?

Оно также становится хуже с возрастом – ухудшается боковой обзор, сужаются поля зрения.

Это очень важно знать и учитывать, особенно людям, которые продолжают вести активный образ жизни, водить автомобиль и т.д.

Значительное ухудшение именно периферического зрения происходит после 65 лет.

Вывод можно сделать следующий.

Снижение центрального и периферического зрения с возрастом – это нормально, ведь глаза, как и любой другой орган человеческого организма, подвержены старению.

С плохим зрением не быть мне…

Многие из нас уже с самого детства знали, кем хотят быть во взрослой жизни.

Кто-то мечтал стать пилотом, кто-то – автомехаником, кто-то - фотографом.

Каждому хотелось бы делать в жизни именно то, что нравится – не больше, не меньше. И каково бывает удивление и разочарование, когда при получении медицинской справки для поступления в то или иное учебное заведение, оказывается, что долгожданная профессия вашей не станет, и все по причине плохого зрения.

Некоторые даже не задумываются, что оно может стать настоящим препятствием для реализации планов на будущее.

Итак, давайте же разберемся, какие профессии требуют хорошего зрения.

Их оказывается не так и мало.

К примеру, именно острота зрения необходима ювелирам, часовщикам, лицам, занятым в точном мелком приборостроении в электротехнической, радиотехнической промышленности, в оптико-механическом производстве, а также имеющим профессию типографического профиля (это может быть наборщик, корректировщик и т.д.).

Бесспорно, острым должно быть зрение фотографа, швеи, обувщика.

Во всех вышеперечисленных случаях важно скорее качество центрального зрения, но есть профессии, где играет роль еще и периферическое.

К примеру, пилот летательных аппаратов. Никто не поспорит, что его периферическое зрение должно быть на высоте, также как и центральное.

Аналогична и профессия водителя. Хорошо развитое периферическое зрение позволит избежать множества опасных и неприятных, в том числе, аварийных ситуаций на дороге.

Кроме того, отличным зрением (и центральным, и периферическим) должны обладать автомеханики. Это одно из важных требований к кандидатам при приеме на работу на данную должность.

Не стоит также забывать о спортсменах. К примеру, у футболистов, хоккеистов, гандболистов периферическое зрение приближается к идеальному.

Также есть профессии, где очень важно правильно различать цвета (сохранности цветового зрения).

Это, к примеру, дизайнеры, швеи, обувщики, работники радиотехнической отрасли промышленности.

Тренируем периферическое зрение. Пару упражнений.

Наверняка вы слышали о курсах скорочтения.

Организаторы обязуются за пару месяцев и не за такую уж большую сумму денег научить вас проглатывать книги одну за одной, причем отлично запоминая их содержание.Так вот, львиная доля времени на курсах отводится именно развитию периферического зрения. Впоследствии человеку не нужно будет водить глазами по строкам в книге, он сразу сможет видеть страницу целиком.

Поэтому если вы ставите перед собой задачу в короткие сроки отлично развить периферическое зрение, можно записаться на курсы скорочтения, и уже в ближайшее время вы заметите значительные изменения и улучшения.

Но не все хотят тратить время на подобные мероприятия.

Для тех, кто хочет дома, в спокойной обстановке, улучшить свое периферическое зрение, приведем несколько упражнений.

Упражнение №1.

Станьте возле окна и зафиксируйте взгляд на каком-либо предмете на улице. Это может быть спутниковая антенна на соседнем доме, чей-то балкон, или горка на детской площадке.

Зафиксировали? Теперь, не двигая глазами и головой, назовите предметы, которые находятся возле избранного вами объекта.


Упражнение №2.

Откройте книгу, которую вы читаете в данный момент.

Выберите какое-нибудь слово на одной из страниц и зафиксируйте свой взгляд на нем. Теперь, не двигая зрачками, попробуйте прочитать слова вокруг того, на котором вы зафиксировали взгляд.

Упражнение №3.

Для него вам понадобится газета.

В ней необходимо найти самую узкую колонку, а затем взять красную ручку и по центру колонки, сверху вниз, начертить прямую тонкую линию. Теперь, скользя взглядом лишь по красной черте, не поворачивая зрачки вправо и влево, пытайтесь прочитать содержимое колонки.

Не переживайте, если вы не сможете сделать это в первый раз.

Когда у вас получится с узкой колонкой, выберите более широкую и т.д.

В скором времени вы сможете охватывать взглядом целые страницы книг, журналов.

Денискина Венера Закировна, заведующая лабораторией

ФГНУ «Институт коррекционной педагогики»

Зрительные возможности слепых с остаточным форменным зрением

В статье приводятся примеры и анализируются особенности зрительного восприятия слепых детей, имеющих форменное (предметное) зрение. Показана необходимость знания педагогами и (ре)абилитологами зрительных возможностей при формировании компенсаторных навыков, лежащих в основе социально-адаптивного поведения.

Ключевые слова: дети с нарушением зрения, слепые дети, слепые дети с остаточным форменным (предметным) зрением, приемы использования остаточного форменного зрения, автобиографический метод.

Данная статья является логическим продолжением публикации «Особенности зрительного восприятия у слепых, имеющих остаточное зрение» («Дефектология», № 5, 2011). В соответствии с представленной в ней педагогической классификацией, к слепым с остаточным форменным (предметным) зрением мы относим детей с остротой зрения от 0,01 до 0,04.

Приведем примеры, иллюстрирующие приемы использования зрения этой группой слепых, и покажем, что они обусловлены не только низким, но все-таки форменным зрением, но и состоянием других зрительных функций (цветовым зрением, полем зрения, состоянием световой чувствительности). Именно поэтому в учебно-воспитательном и коррекционно-(ре)абилитационном процессах специалистам важно знать зрительные функции в норме и патологии, чтобы понимать, как именно видит ребенок с нарушением зрения.

Обратимся к примерам.

Екатерина А.: «Однажды мне пришлось играть в японские карты. Сначала было очень трудно, потому что все рисунки были выполнены в одном цвете. Потом заметила, что в углу на карте с изображением валета нарисован 1 квадратик, на карте с дамой - 2 квадратика, а на карте с королем - 3. Как только поняла это различие, перестала пытаться разглядеть картинки, так как не вглядываясь в них, стала ориентироваться на квадратики, сосчитать которые оказалось намного легче».

Валентин Е.: «У меня есть предметное зрение, но я не различаю цвета, т. е. страдаю ахроматизмом. Специалисты говорят, что я вижу окружающий мир так, как человек с нормальным зрением видит черно-белое кино. С детства пользуюсь специальными метками на обуви (например, в виде цифр), на одежде (например, в виде нашивок различных фигур), чтобы не путать свою одежду с чужой. Чтобы найти свое место в концертном зале или театре, я не отсчитываю ряды, потому что первый ряд иногда оказывается нулевым, и не пытаюсь разглядеть цифры в надписях. Я смело иду до ряда, где с края сидит зритель, и спрашиваю у него номер его ряда, и уже от него веду отсчет».

Таким образом, наличие форменного остаточного зрения расширяет возможности использования зрительной информации, потому что это зрение доставляет больше зрительных сигналов (по сравнению с теми слепыми, у которых имеется остаточное, но более низкое зрение). Задача реабилитолога - научить человека выбирать из нескольких зрительных сигналов те, которые наиболее рациональным путем позволяют решить имеющуюся проблему (задачу). Умение рационально использовать доступную зрительную информацию свидетельствует об уровне реабилитированности человека с глубоким нарушением зрения.

Слепота, даже при наличии остаточного форменного зрения, чаще всего, своеобразно отражается и на манерах человека. При этом сами инвалиды, как правило, не догадываются о внешних проявлениях последствий своего нарушенного зрения. Во всяком случае, в моем опыте было только так. Узнавали они (дети и взрослые) об этом только в ходе инициированной мною же специальной работы со стороны воспитателей и (ре)абилитологов. В литературных источниках можно встретить иллюстрации деформации поля зрения, но практически нет примеров того, каким образом сказывается деформация поля зрения на манерах слепых с остаточным зрением, и как зрячие люди воспринимают эти манеры и реагируют на них. А ведь эти манеры зачастую требуют коррекции. Кроме того, эти манеры могут «подсказать» педагогам, родителям и (ре)абилитологам особенности деформации поля зрения, а, следовательно, учитывать эти знания в процессе организации и выполнения различных видов деятельности. Эти доводы говорят о том, что очень важно знать, как именно внешне проявляются различные формы деформации поля зрения.

Рассмотрим примеры

Первый пример . В студенческие годы мое внимание привлек незрячий специалист - преподаватель иностранного языка в высшем учебном заведении. Он был образован, умен, разносторонне развит. Все меня в нем восхищало, только вот передвигался он очень странно: ходил без трости, но при каждом шаге поворачивал голову, поочередно, то вправо, то влево. Тогда я не понимала причину такой странной манеры передвижения, но как можно мягче спросила об этом. Ответ тогда меня удивил: «Головой кручу? Не замечал».

Впоследствии, изучая «Основы патологии органа зрения», я поняла причину походки того незрячего педагога. Теперь же привожу этот случай в качестве примера, иллюстрирующего половинчатое выпадение поля зрения (гемианопсию). Дело в том, что когда выпадают, например, левые половинки поля зрения обоих глаз, поле и без того слабого зрения слепых людей с форменным остаточным зрением, оказывается «полосатым». Причем вертикальные полоски, в которые человек пусть нечетко, но видит крупные окружающие предметы, чередуются с вертикальными темными полосами, в которые человек ничего не видит. Так вот, чтобы увидеть и то пространство, которое скрыто за выпадающими участками, человек вынужден поворачивать голову при каждом шаге, чтобы сканировать скрытые за темными полосами участки пространства и составлять как из пазлов более полную картину окружающего мира.

Второй пример . Однажды после лекции по теме «Учет патологии органа зрения учащихся в учебно-воспитательном и коррекционно-(ре)абилитационном процессах» ко мне подошла завуч очень эффективно работающей школы для слепых и слабовидящих детей и сказала: «Моя квартира в доме, в котором живет много инвалидов по зрению. Одна женщина ходит именно так, как вы описали. Меня раздражала ее походка… Только теперь поняла, что надо было не раздражаться, а сочувствовать ей; посоветовать обучиться пользованию ориентировочной тростью, чтобы с ее помощью контролировать дорогу по маршруту передвижения в выпадающих участках поля зрения, чтобы не поворачивать голову при каждом шаге. Для меня это открытие! А ведь я много лет работаю с инвалидами по зрению».

Третий пример . Будучи уже кандидатом наук, я занималась практической реабилитацией человека, срок инвалидности которого составлял 1 год; причем получил он эту инвалидность в самый расцвет своей карьеры. Замечу, что я принципиально никогда не использую термин «поздноослепший», для меня - инвалида - он не корректный. В каком бы возрасте ни произошла утрата зрения, это всегда очень рано. Кто потерял зрение, тот со мной спорить не будет.

Приступая к реабилитации, всегда объясняю, что задавать можно абсолютно любые вопросы, относящиеся к «секретам» жизни с очень низким зрением или вовсе без него: «Как без зрительного контроля погладить одежду?», «Как найти упавшую вещь?», «Как поровну разлить сок по стаканам?» и т. д. и т. п.

Однажды мне надо было прочитать текст, написанный плоским шрифтом. Надеваю очки с линзами в 20 диоптрий и начинаю читать. Слышу: «Можно спросить, почему при чтении вы постоянно водите головой слева направо?» Отвечаю: «Во время чтения заодно и с шейным хондрозом борюсь». Затем серьезно добавляю: «Я пошутила. На самом деле это вызвано особенностью моего поля зрения. Оно у меня трубчатое, т. е. при таком поле зрения человек видит мир так, как если бы смотрел в узенькую трубочку. (Хорошая иллюстрация трубчатого зрения дана М. П. Бондаренко и Н. С. Комовой во вкладыше журнала «Воспитание и обучение детей с отклонением в развитии», № 3, 2010.) Такое зрение позволяет мне увидеть 3–4 буквы. Чтобы прочитать всю строку приходится «передвигать трубочку» вдоль строки, последовательно прочитывая последующие буквы. Внешне это выглядит так: человек держит читаемый текст точно перед самым лицом (так как если опустит его ниже, то из поля его зрения исчезнет сам читаемый текст) и при этом совершает движения головой слева направо и обратно. Причем слева направо делает это медленно, потому что чтение при таком зрении процесс трудоемкий, а в обратную сторону (справа налево, т. е. к началу строки) быстро, так как в обратную сторону ничего считывать не надо.

Однако самое примечательное для меня в описываемом случае состоит в том, что, имея к тому времени диплом тифлопедагога, опыт успешной работы в качестве преподавателя в школе для слепых и слабовидящих детей и ученую степень кандидата педагогических наук, до прямого вопроса я не замечала за собой описанной особенности. Вот уж воистину, в своем глазу бревна не замечаем. Ответ на вопрос у меня (как тифлореабилитолога) не вызвал никаких трудностей, но я-то за собой описанной особенности никогда до этого вопроса не замечала. А со стороны-то окружающим я казалась очень странной. Наверное, некоторые эту специфическую особенность чтения трубчатым зрением принимали за странности инвалидов по зрению. Да и примеров убеждающих в этом мнении у меня достаточно.

Четвертый пример. Разбирая на лекции различные варианты деформации поля зрения, для иллюстрации теоретического материала предложила слушателям (работникам системы Всероссийского общества слепых - ВОС) самим демонстрировать внешние проявления называемых мною нарушений. Дохожу до варианта, в котором надо было изобразить взгляд человека (его манеру держать голову), имеющего остаточное форменное зрение только в верхнебоковой кнаружи части поля зрения. При такой деформации видит не весь боковой участок глаза и не весь верхний, а зрение имеется только в верхнебоковой части поля зрения кнаружи глаза. Слушатели выполняют задание. Вдруг одна «ученица» с ужасом и сожалением восклицает: «Так она просто так смотрела! Она по-другому не могла. Значит, я ее ни за что обидела?!»

Как выяснилось, эта курсантка работала комендантом в общежитии при учебно-производственном предприятии ВОС. Естественно, общалась с проживающими там инвалидами по зрению. Особенно большое участие она принимала в судьбе молодой незрячей матери-одиночки. Но сколько бы комендант ни помогала этой женщине, женщина всегда на нее «смотрела косо и как бы исподлобья». Однажды она (комендант) не выдержала и «высказала неблагодарной женщине» свою обиду: «За что ты на меня всегда косо смотришь?! За мои хорошие дела?!» Женщина оторопела и ушла с наполненными слезами глазами, не пытаясь оправдываться.

А не оправдывалась она потому, что, как и я, не видела себя со стороны, а окружающие на этом никогда не акцентировали ее внимание. Она не знала, как именно выглядит ее взгляд, а тифлологического образования у нее, в отличие от меня, не было. Женщина просто не поняла, почему и за что ее обидел человек, который ей так помогает, и которому (я в этом совершенно уверена!) она была очень благодарна. На объект обожания женщина смотрела тем участком глаза, на котором имелось зрение (ведь мы - инвалиды - понимаем, что не до каждого человека можно дотрагиваться). А объект ее обругал и женщина, наверное, совсем не поняла за что, потому что на внешних проявлениях нарушения зрения, как правило, ни педагоги, ни родители внимание не заостряют. Многие не делают этого потому, что им самим не хватает знаний для грамотного объяснения.

Иногда нормально видящие люди не понимают инвалидов по зрению, даже если являются любящими родителями и постоянно находятся при ребенке. «Держи лицо! Держи лицо! Убери руки!» - строго и громко буквально приказывала мама 4-летней дочке, которую она привела на первичное знакомство со специалистами «Маминой школы» (школы родительского мастерства для родителей, воспитывающих детей с глубоким нарушением зрения). Знакомлюсь с диагнозом (частичная атрофия зрительного нерва, концентрическое сужение поля зрения), и сердце сжимается от боли. Чего же ждать от посторонних для ребенка людей, если образованная мама совсем не понимает зрительные возможности своего ребенка?! Как может девочка в незнакомом пространстве «держать голову», т. е. не смотреть под ноги, если она мир видит в узенькую трубочку и без направления взгляда вниз (на пол, на дорогу и т. п.) не видит препятствий? Ей 4 года. Она уже имеет опыт столкновений с препятствиями, которые не может увидеть, не глядя себе под ноги. А мама все осанку дочке исправляет, вместо того, чтобы понять, что и как видит ее ребенок-инвалид по зрению.

Итак, нарушения поля зрения часто являются причиной «странного» поведения инвалидов по зрению. Зачастую именно внешние проявления последствий нарушения зрения воспринимаются нормально видящими людьми как «странные манеры» слепых людей, их ненормальность, даже как интеллектуальная недостаточность.

Понимание зрительных возможностей людей с остаточным зрением, напротив, позволяет грамотно строить общение.На международной конференции меня совершенно очаровала переводчица. Она, будучи инвалидом по зрению, лучше других коллег выполняла свою работу, была хорошо и соответственно мероприятию одета, ухожена. Нам обеим захотелось пообщаться. Наконец-то нашли время, встретились и отошли в сторону от других участников конференции. Далее картина была следующей. Я встаю четко напротив нее, чтобы видеть ее своим трубчатым зрением, но она поворачивается ко мне боком. Я опять разворачиваюсь так, чтобы моя «трубочка» была направлена на нее, а она, разворачиваясь, опять уходит от моего взгляда. Мы описываем таким образом полный круг (вот уж, наверное, со стороны странным было это кружение!), после чего следует диалог:

Стоп. Ты видишь только боком левого глаза?

А я только центром правого глаза. Тогда встань ко мне боком, и мы будем видеть друг друга. А вот окружающие будут удивляться, почему это я смотрю на тебя, а ты стоишь ко мне четко боком и говоришь в сторону от меня.

Мы обе рассмеялись со словами «слепота - большой порок» и начали общаться. Кому-то может показаться странным слово «рассмеялись». На самом деле - ничего странного. Невозможно постоянно переживать свой дефект. А юмор помогает инвалидам справляться с возникающими трудностями.

Многие из слепых людей страдают либо светобоязнью (нарушением световой адаптации) , либо нарушением темновой адаптации. Это обстоятельство тоже накладывает свои особенности на их взаимодействие между собой. Например, в интернате я и девочка из соседнего класса очень любили рисовать цветными карандашами (фломастеров в ту пору еще не было). У меня тяга к рисованию, наверное, была от подражания дяде и старшей сестре, которые рисовали много и очень хорошо. У девочки же просто были способности к изобразительной деятельности, и пришла она в школу слепых из массовой школы ввиду прогрессирующего ухудшения зрения уже только в 8-й класс, поэтому владела определенными навыками рисования. Так вот, в те 60-е годы XX века искусственное освещение в школе было настолько слабое, что я со своим трубчатым зрением (при котором нет сумеречного зрения, вследствие чего нарушена темновая адаптация) могла рисовать только днем при естественном и достаточно хорошем освещении, а подруга моя, напротив, могла рисовать только вечером. При ее центральной скотоме (выпадении центрального участка поля зрения) она не могла зрительно работать днем, зато с удовольствием рисовала вечером. Поэтому рисовали мы в разное время суток и рассматривали рисунки в разное время суток, а рисовать, сидя рядышком, почти никогда не удавалось. Я рисовала днем, а она вечером рассматривала мои рисунки; затем сама готовила свои рисунки, которые я могла рассмотреть уже только на следующий день. В современных условиях при использовании индивидуального освещения, защищающих козырьков, очков для близи, учете других индивидуальных особенностей зрительного восприятия конкретных детей (конечно, и взрослых) проблемы, подобные описанной, вполне можно решить. Правда, это возможно только при владении педагогами соответствующими знаниями, от которых зависит понимание инвалидом своих проблем и особенностей их решения.

Нарушение темновой и световой адаптации у лиц с остаточным форменным зрением вызывает и другие, более важные для социальной адаптации, особенности. Например, люди с трубчатым зрением (у них страдает периферическое зрение, поэтому и нарушена темновая адаптация) видят значительно хуже или совсем не видят в сумерках. Поэтому, если даже они днем прекрасно ориентируются с помощью зрения, то их все равно необходимо обучать ориентировке в пространстве с помощью трости, то есть как слепых. Иначе в пасмурную погоду и в темное время суток они будут мало мобильными или вовсе не мобильными, то есть не смогут передвигаться там, где достаточно свободно ориентировались в светлое время суток. Более того, так как поле зрения у них ограничено во всех направлениях, в том числе и книзу, то они для безопасного передвижения без трости вынуждены постоянно смотреть под ноги, то есть низко наклонять голову. Если же мы хотим, чтобы инвалид при таком нарушении поля зрения передвигался с поднятой головой, то для контролирования пространства под ногами его обязательно надо обучать передвижению с помощью трости.

Справедливости ради, заметим, что есть приемы, которые позволяют днем на оживленных маршрутах передвигаться быстро и без трости. Например, в толпе я, как правило, иду за человеком («лидером» по терминологии слепых спортсменов-бегунов), который движется в нужном мне направлении и с устраивающей меня скоростью. Лидера научилась выбирать (а если необходимо, то и менять) очень быстро, делаю это, прямо- таки, «на автомате». Именно ходьба за лидером позволяет быстро и достаточно безопасно передвигаться. Потому что нормально видящий человек и лужи обойдет, и стройку обогнет и т. д. Например, вдруг лидер меняет траекторию маршрута, то есть идет в нужном направлении, но отклоняется от маршрута влево, надо не задумываясь четко следовать за ним. Главное - во время реагировать на изменения в его поведении, то есть продолжать двигаться за ним и не терять его из виду, так как при слабом зрении его можно легко потерять. А уж что именно лидер обходил, совершенно не должно волновать, когда торопишься успеть добраться до места к определенному сроку.

Периферическое зрение позволяет человеку быстрее замечать движущиеся объекты, чем центральное зрение, поэтому детей с нарушением периферического зрения (нарушением темновой адаптации) необходимо приучать с особой осторожностью переходить через дорогу, не полагаясь только на свое дефектное зрение.

В детстве мне никто этого не объяснял и я, естественно, доверяла своему зрению, т. е. излишне полагалась на него. В студенческие времена (когда жила без присмотра родителей и воспитателей) я несколько раз попадала в ситуации, когда, как мне казалось, далеко едущая машина то выбивала портфель из рук, то разворачивала меня, то отбрасывала в сторону. Тогда я только удивлялась этим происшествиям, теперь же - понимаю их причину.

В тифлопедагогике известно, что слепые с остаточным зрением нуждаются в словесных пояснениях зрячих относительно зрительных стимулов, особенно, воспринимаемых инвалидом впервые (картин, объектов и явлений) . Причем в этих пояснениях нуждаются все инвалиды по зрению. Но практика показывает, что зрячие больше пояснений делают для слепых с остаточным зрением трех первых групп (имеющих светоощущение, светоощущение с цветоразличением, а также видящих движения руки перед лицом). Вместе с тем, для лиц, имеющих слепоту с остаточным форменным зрением, поле пояснений иногда должно быть даже шире, чем для лиц с меньшими зрительными возможностями. Почему? Потому что дефектное форменное зрение часто дает совершенно неверную информацию, которая требует коррекции, а более низкое остаточное зрение дает так мало зрительной информации, что инвалиды знают об объекте лишь то, что сказали сопровождающие зрячие. Выпадение отдельных (особенно мелких) для конкретного человека с форменным остаточным зрением деталей приводит к неправильному толкованию событий, поступков, действий.

Приведу пример . Как-то мне рассказали следующий анекдот: «Идет по дорожке Вини Пух и при этом что-то жует. За ним семенит Пятачок:

Вини, угости меня, пожалуйста, булочкой.

Это не булочка. (Продолжает, пожевывая, идти дальше.)

Вини, угости, пожалуйста, бубликом?

Это не бублик! (Продолжает жевать и идти дальше.)

Вини, ну, пожалуйста, угости печеньем!

Это не печенье! И вообще, Пятачок, определись, что ты хочешь!

Выслушала анекдот и вслух рассуждаю: «Забавно, но не понятно, почему так отрицательно выставлен Вини Пух в анекдоте. Ведь он такой заботливый. В гостях у кролика повязывал Пятачку слюнявчик!» В ответ слышу: «Да нет, это он Пятачку рот прикрыл слюнявчиком, чтобы тот не смог много съесть». Своим зрением я рассмотрела слюнявчик, но не смогла увидеть, как именно Вини Пух его повязал Пятачку. Мне и в голову не могло придти, что можно слюнявчиком закрыть рот. Отсюда и восприняла анекдот как клевету на Вини Пуха. Оказалось, что анекдот-то был как раз на тему эгоизма Вин Пуха.

Остановимся на том, как трудно нормально видящим людям (даже из числа дефектологов) понять слепого человека с остаточным форменным зрением . Многие зрячие, которые прекрасно знают о моем низком зрении, забывают о том, что при встрече с инвалидом по зрению, даже если у него имеется остаточное форменное зрение, целесообразнее представиться, чтобы самому не попасть и инвалида не поставить в неловкое положение.

Как-то в зале, где предстояла защита диссертации, со мной поздоровался мужчина; не представляясь, притянул к себе и поцеловал руку (можно заменить на «поздоровался»). «Знакомый» - решила я. - «Кто же это может быть?» Решаю задать наводящий вопрос: «Какими судьбами к нам на Совет?» «Да вот выпала командировка в Москву, решил коллег проведать». По комплекции напомнил известного и знакомого мне дефектолога из ближнего зарубежья. Продолжаю «разведку боем», т. е. задаю наводящие вопросы: «Вы один приехали? … Как семья?... Внуки?» Человек мне в ответ дружелюбно: «Да… Один…Все здоровы… Внуки в порядке». Выходит из зала и идет за мной в лабораторию, расспрашивает, а я не знаю, насколько откровенно можно отвечать, ведь все еще не уверена, что узнала его, поэтому продолжаю «наводить»: «Как супруга?» А мне продолжают отвечать, не называя никаких имен, по которым я могла бы сориентироваться. Наконец-то решаюсь обратиться по имени. В ответ: «Я думал, что один для вас неповторимый, а вы и имени моего не помните. Меня зовут…» Называет имя, я тут же понимаю свою ошибку. Гневно ворчу: «Господи, я вам столько раз объясняла, что не вижу лиц, плохо различаю голоса (осложнение после гриппа), поэтому мне нужно просто представиться!» Получается, что человек и себя (в присутствии сотрудников лаборатории я неверно назвала его имя), и меня поставил в неловкое положение, хотя мы прекрасно относимся друг к другу. Себе тоже вслух выговорила: «Не уверена? Попроси человека представиться! Тогда для опознания собеседника не придется крутиться как уж на сковороде».

Мои наблюдения показывают, что зрячим людям трудно понять, как может человек с открытыми глазами, направленным на собеседника взглядом совсем не различать черты его лица. Более того, близкие мне люди то с обидой, то с недоумением говорят: «Мы тебе махали руками, махали, а ты никакого внимания!» Иногда не могу себя сдержать: «Что же вы только руками махали? Могли бы еще и подмигивать. В обоих случаях я не могу видеть подаваемых сигналов».

Кстати, еще один пример на эту тему. Как-то спрашиваю учительницу при анализе ее урока в школе для слепых: «А почему вы не подбодрили этого ученика? Он так нуждался в поддержке!» А она мне в ответ: «Подбадривала! Я же на него одобрительно смотрела». Да, взгляд слепые с остаточным форменным зрением могут направить правильно, и даже могут что-то увидеть, но одобрительные взгляды этим зрением заметить невозможно.

Многих взрослых, в том числе и педагогов, слепые дети с остаточным форменным зрением вводят в заблуждение тем, что бегают, огибая преграды (но ведь бегают-то только в хорошо освоенном пространстве!), выполняют много различных действий, которые, по мнению зрячих, без хорошего зрения невозможно выполнять. Эти педагоги считают излишними требования относительно соблюдения для лиц с нарушением зрения яркости и контрастности цвета, объяснения тех явлений, которые ребенок с глубоким нарушением зрения не может увидеть в естественных условиях. В подтверждение важности этого довода приведу рассказ Алии Юносовой «Подарок судьбы».

«О том, что у меня плохое зрение я узнала только в семилетнем возрасте, когда начала ходить в школу. Но меня это пока не беспокоило, ведь я могла играть во все игры, разве что "водить" мне приходилось чаще.

Мы жили в небольшом поселке недалеко от железнодорожной станции. Сразу же за домами начиналось ржаное поле, а за ним протекала речушка, с забавными названиями "Бочагов пупок", "Примиловка", "Крыса" и "Самовар". Справа от поля зеленой полосой раскинулась дубовая роща. Она так и называлась "Дубовка".

Я, как и все мои ровесники, гоняла гусей на речку, ходила в "Дубовку" пасти козу. Туда приходило много детей, и мы играли в прятки, качались на качелях и лазали по деревьям. Сверстники меня не обижали. Все было хорошо. Я видела звезды на небе и даже могла отыскать Большую Медведицу. Только одно меня постоянно огорчало: я никогда не видела радуги. Как только это чудо появлялось на небе, все дети радостно кричали: «Радуга! Радуга!» Как я ни старалась разглядеть хоть что-нибудь, ничего не получалось.

Тогда я убегала в сарай и там давала волю слезам. "Ну почему мне так не везет?" - думала я. – Почему все так радуются, а я не могу? Хоть бы разок взглянуть на нее!"

Это случилось в августе. Прошел сильный и теплый дождь, а затем выглянуло солнце. Я выбежала на улицу босиком. Солнце клонилось к западу, а на востоке небо было синее-синее, и на нем яркой дугой повисла радуга. Я это сразу поняла и бросилась на поле, чтобы там с открытого места понаблюдать за этим удивительным явлением природы. Сначала радуга была яркая и пологая, но она двигалась и постепенно становилась круче и круче, концы ее сближались. И вот радуга нависла над рекой как разноцветная арка, застыла на мгновение, а затем, превратившись в столб, стала бледнеть и, наконец, совсем исчезла.

Я долго сидела, молча, потрясенная и очарованная зрелищем. Это был подарок судьбы! Как будто, кто-то большой и могучий сотворил это чудо и преподнес мне в дар.

Теперь я уже никогда не смогу ничего увидеть, но в моей памяти навсегда останется тот августовский вечер со всеми его красками. Даже сейчас, спустя много лет, когда мне говорят, что на небе появилась радуга, - я всегда вспоминаю ту, единственную, мне подаренную».

Этот рассказ публикуется впервые, написан близким мне человеком и, практически, по моей настойчивой просьбе описать свои зрительные впечатления в детстве. Я хорошо помню то время, когда автор рассказа видела лучше меня, хотя обе мы учились с опорой на осязание, т. е., пользуясь при чтении и письме рельефно-точечной системой Брайля. Из приведенного рассказа видно, как важно учитывать зрительные возможности (в данном случае подачу материала на контрастном фоне) при формировании у детей зрительных образов. И как важно насыщать ребенка зрительными впечатлениями, особенно, если он страдает прогрессирующим заболеванием органа зрения.

На проблеме развития зрительного восприятия у слепых детей с остаточным зрением останавливаться здесь не будем, так как наша задача состояла только в выявлении особенностей использования остаточного зрения. Кроме того исследования Л. П. Григорьевой и ее учеников убедительно доказали, что зрительное восприятие с помощью дефектного зрения можно и нужно развивать на специальных занятиях, ибо в процессе этой коррекционной работы улучшаются практически все свойства зрительного восприятия.

Со взрослыми людьми занятия по развитию зрительного восприятия не проводятся, но на занятиях по ориентировке в пространстве свойства зрительного восприятия значительно улучшаются. В качестве примера приведу высказывание незрячей массажистки, которую слепота настигла в выпускном классе школы для слабовидящих детей: «Надо же, когда я видела еще первую строчку (острота зрения 0,1 или 10%), я не могла ходить без сопровождения папы, а теперь у меня острота зрения только 1%, а по знакомым маршрутам самостоятельно могу ходить даже без трости!» Замечу, что высказывание это последовало после ее обучения ориентировке в пространстве с опорой на анализ доступной ей зрительной информации.

Проведенный анализ различных вариантов использования остаточного зрения инвалидами (с учетом материалов публикации, на которую была ссылка в начале статьи) показывает, что при интерпретации зрительной информации слепые с разными формами остаточного зрения имеют специфические возможности его использования. В процессе интерпретации зрительных сигналов слепыми с остаточным зрением большая роль принадлежит мышлению, поэтому очень важно с детства развивать у слепых логическое мышление.

Дефектный зрительный анализатор используется тем эффективнее, чем лучше развиты у человека, в том числе и у ребенка, представления об окружающем мире. Причем эти представления могут быть разных модальностей. Однако развитие детей с остаточным зрением идет при непрерывно нарастающих возможностях использования дефектного зрения, которое больше всего применяется в процессе социально-бытовой и пространственной ориентировки.

Рамки статьи не позволили подробнее рассмотреть примеры, свидетельствующие о том, что ориентировка в пространстве слепых детей с остаточным форменным зрением существенно отличается от ориентировки в пространстве как зрячих, так и слепых с более глубоким нарушением (тотальная слепота, светоощущение, цветоощущение, движения руки перед лицом). Однако приведенные примеры говорят, что методика обучения ориентировке в пространстве слепых должна быть многовариантной и учитывать индивидуальные особенности остаточного зрения. Эта проблема в отечественной тифлопедагогике еще не изучалась и нуждается в специальном исследовании с выходом на методические рекомендации педагогам и родителям.

Таким образом, резюмируя вышеизложенное, можно сделать следующие выводы:

  1. Слепые дети с остаточным форменным зрением часто опознают объекты неверно, опираясь на имеющийся зрительный и социальный опыт.
  2. Многообразие факторов, влияющих на зрительные возможности слепых детей с остаточным форменным зрением, приводит к индивидуальным различиям в приемах его использования. Этот вывод созвучен выводу Р. М. Боскис, подчеркивавшей, что многообразие факторов, влияющих на речевые возможности слабослышащих детей дает «исключительное разнообразие» слуховых возможностей детей с недостатками слуха (1963, С. 315).
  3. Изучение опыта использования слепыми остаточного зрения в познавательной и бытовой деятельности, а также в пространственной ориентировке показывает, что имеется определенная зависимость между глубиной нарушения зрения и качеством зрительного восприятия. В то же время дети и взрослые, которых не обучают использованию дефектного зрения, используют его гораздо ниже своих возможностей, хуже, чем те, которые имеют более низкое зрение, но научены анализировать и интерпретировать получаемую зрительную информацию.
  4. Анализ зрительного восприятия слепых с остаточным форменным зрением позволяет характеризовать его не только как недостаточность, но как активный процесс поступательного развития зрительного восприятия, протекающего своеобразно, по обходным путям в условиях целенаправленного коррекционно-педагогического воздействия. Аналогичный вывод сделан Р.М. Боскис, (1963, С. 202) относительно использования слуха слабослышащими детьми.

Литература

Бондаренко, М. П. Как ребенок с нарушением зрения видит окружающий мир / М. П. Бондаренко, Н. С. Комова // Воспитание и обучение детей с нарушениями развития. - 2010. - № 3. - Странички для занятий с детьми «Мы вместе».

Боскис, Р. М. Глухие и слабослышащие дети / Р. М. Боскис. - М., 1963.

Власова, Т. А. Знание особенностей дефекта - важное условие улучшения учебно-воспитательной работы с аномальными детьми / Т. А. Власова // Дефектология. - 1970. - № 2. - С. 3–20.

Денискина, В. З. Взаимосвязь дошкольного и начального образования детей с нарушением зрения / В. З. Денискина // Воспитание и обучение детей с нарушениями развития. - 2007. - № 5. - С. 20–28.

Сверлов, В. С. Пространственная ориентировка слепых / В. С. Сверлов. - М. : Учпедгиз, 1951. - С. 31–38.