Такие дефекты могут говорить о разных офтальмологических заболеваниях, а периметрия позволяет выявить признаки некоторых из них , а следовательно – назначить адекватное для каждого случая лечение.


Справка! Метод периметрии позволяет определить границы зрения. Полем зрения называют видимое человеком окружающее пространство при фиксации на определенных объектах.

Но при неподвижном взгляде виден не только предмет, на котором сфокусирован взгляд: при попадании в поле зрения глаз видит и другие объекты, правда, не с такой четкостью и при этом невозможно различить многие мелкие детали.

Так работает менее четкое периферийное зрение, определить границы которого можно путем процедуры статической или кинетической периферии .

Для первого случая используется метод изменения степени освещенности объекта, на который направлен взгляд пациента , при этом объект должен оставаться в том же положении и на том же расстоянии.

Кинетический метод наоборот предполагает перемещение объекта , который в определенные моменты может появляться и исчезать в поле зрения.

Обратите внимание! Если наблюдаются существенные изменения поля зрения и его границ – можно сделать вывод о развитиях таких патологических процессов, как заболевания зрительного нерва, поражения, затрагивающие сетчатку и нарушения в работе головного мозга.

Иногда с помощью периметрии можно обнаружить не только сужение границ поля зрения, но и выявить выпадение некоторых участков (образуются так называемые «слепые зоны»).

Исследования такого рода выполняются с помощью специального офтальмологического прибора – периметра.

Такие устройства делятся на три вида:

  • компьютерные;
  • проекционные;
  • дуговые (настольные).

Вне зависимости от типа прибора суть его работы всегда одинаков.

Для каждого глаза исследование происходит отдельно (второй орган зрения при обследовании первого закрывают специальной повязкой).

Пациент садится перед периметром и кладет подбородок на подставку аппарата – уровень ее высоты специалист регулирует так, чтобы взгляд обследуемого падал точно на отметку, которая присутствует в самом центре прибора.

Важно! В ходе обследования, которое длится по-разному в зависимости от типа периметра, сводить взгляд с этой точки нельзя.


Офтальмолог же в это время начинает перемещать какой-нибудь объект к центру поля зрения, делая остановки через каждые 150 меридианов.

Теперь задача пациента – сообщить врачу, когда он периферийным зрением увидит объект, не отводя при этом взгляда от отметки .

Офтальмолог фиксирует такие моменты, делая пометки на бланке со специальной схемой.

На ней схематично обозначено поле зрения с разбивкой по градусам. Перемещение объекта выполняется строго до контрольной точки.

Исследование производится по восьми или двенадцати меридианам для получения максимально точных результатом, при этом предварительно необходимо выяснить у пациента степень остроты зрения.


Для пациентов с близорукостью и дальнозоркостью используются объекты разного размера (большие и маленькие соответственно).

Периметрия служит для выявления следующих офтальмологических дефектов и заболеваний:

  • процессы дистрофического характера в сетчатке глаза ;
  • ожоги органов зрения и степень их тяжести;
  • появление в области глаз онкологических новообразований ;
  • глаукома;
  • травмы зрительного нерва ;
  • кровоизлияние , локализующееся в районе сетчатки.

Помните! Также метод помимо офтальмологических нарушений позволяет выявить наличие черепно-мозговых травм, гипертонию в хронической форме, инсульты, невриты, ишемию.

Процедура часто назначается для определения границ поля зрения при приеме на работу, когда от сотрудника может потребоваться повышенная внимательность .

Процесс периметрии – безболезненный, быстрый и безопасный, и к нему нет никаких противопоказаний.

В настоящее время наиболее точным и распространенным считается компьютерная периметрия глаза– для этого используется электронный компьютерный периметр , на котором офтальмолог устанавливает отметку для концентрации взгляда пациента.

В ходе обследования врач меняет уровень освещенности такой точки, которая при этом остается совершенно неподвижной.

Когда пациент подтверждает, что он сфокусировал взгляд на отметке, запускается программа, выдающая по сторонам от точки другие похожие объекты, которые отличаются друг от друга цветом.

Если человек видит периферийным зрением новую появляющуюся точку – он должен подтвердить это нажатием клавиши.

После пятнадцатиминутного сеанса компьютер выдает результаты в виде сводной таблицы, расшифровкой которых предстоит заняться офтальмологу .


Результат выглядит как трехмерная карта-график, на которой обозначены цифрами границы поля зрения.

После нанесения на такую карту (которая в офтальмологии называется еще «зрительным холмом») можно увидеть, где обрывается граница поля зрения пациента .

Нормой считаются:

  • внутренняя и нижняя границы – на отметке 60 градусов;
  • верхняя граница – 50 градусов;
  • внешняя – не менее 90 градусов.

При множественных и обширных скотомах в виде выпадения некоторых участков поля зрения, пациент направляется на дополнительные обследования.

Осторожно! Причина может быть как в заболеваниях органов зрения, так и в поражениях некоторых участков головного мозга.

Статическая периметрия

Другой вариант – статическая периметрия. В этом случае выявить границы поля зрения можно посредством проекции ее на поверхность округлой формы .

Пациент также фиксирует взгляд одним глазом на неподвижной точке, положив подбородок на подставку устройства, а на второй глаз накладывается повязка.

Офтальмолог начинает двигать объекты со стороны периферии к центральной точке-отметке со скоростью два сантиметра в секунду.

Пациент должен сказать специалисту, когда начинает видеть движущийся объект.

На основе этой информации врач в эти моменты отмечает на карте момент и расстояние, когда объект попадает в поле зрения . Это – граница поля, за пределами которой человек не видит периферийным зрением.

Определение внутренних границ производится при помощи объектов, размер которых составляет один миллиметр в диаметре.

Для определения наружных границ используют более крупные объекты – 3 миллиметра. Перемещение объектов происходит по разным меридианам.

Учитывая, что такой мануальный метод требует более внимательного отношения и дополнительных действий от офтальмолога, на процедуру уходит почти в два раза больше времени, чем на компьютерную периметрию (около получаса).

В разных клиниках и в зависимости от региона стоимость периметрии варьируется в широком диапазон е.

Так, в небольших городах и при условии, что используются устаревшие дуговые приборы, цена процедуры будет составлять примерно 250-500 рублей .

В то же время обследование с помощью современных компьютерных периметров в Москве может обойтись в 1 500 рублей .

Знайте! В среднем же можно рассчитывать на цену в пределах 600-800 рублей.

Полезное видео

Из данного видео вы узнаете, что такое периметрия:

В любом случае, экономить на такой процедуре не стоит, так как периметрия может помочь выявить многие опасные патологии .

А правильный и своевременный диагноз – это эффективное и быстрое лечение.

Когда человек начинает замечать сужение полей зрения или у него обнаруживают общие заболевания, так или иначе влияющие на орган зрения, глазной врач или специалист иного профиля назначает периметрию.

Давайте подробно разберемся,что собой представляет процедура и что она определяет.

Периметрия глаза – это метод определения полей зрения с помощью специального прибора или компьютерного устройства.

Чаще всего поле зрения страдает при таких заболеваниях:

  • Патологические процессы в зрительном нерве: травма, неврит.
  • Глаукома в любой стадии развития.
  • Отслойка сетчатки, кровоизлияния и новообразования в ней.
  • Травмы мозга.
  • Новообразования ЦНС.
  • Рассеянный склероз.
  • Нарушение кровообращения мозга.
  • Гипертония.
  • Профилактические осмотры (например, для водителя).

В зависимости от того, каким именно устройством осуществляют процедуру, техника исследования полей зрения отличается.

Периметр Ферстера

Обследование периметром

Сначала проводят исследование к белому цвету :

  1. Пациента просят присесть рядом с прибором спиной к источнику света. Подбородок помещается на подставку аппарата. Один глаз закрывается повязкой-заслонкой, а другой глядит на белую метку, размещенную в центральной части периметра. Именно на эту точку человеку придется смотреть всю процедуру.
  2. По прошествии нескольких минут, выделенных на привыкание, пациента информируют, что он фиксирует взгляд на неподвижной метке, а после того, как заметит на периферии движущуюся точку, нужно сказать об этом специалисту.
  3. Доктор начинает перемещать метку по меридианам в направлении с периферии к центральной части, а исследуемый дает знать, когда он видит предмет.
  4. Врач поворачивает прибор поочередно на 45˚ и 135˚.
  5. С другим глазом проводят такие же действия, как с первым.

По завершении обследования специалист создает схематическое изображение полей зрения человека.

Затем осуществляется периметрия с помощью цветных меток .

  1. Исследуемый не должен знать о том, с каким именно цветом ему проведут процедуру. Поэтому во время обследования человеку нужно не только отметить метку, но и правильно определить ее окраску.
  2. После этого на схематическом изображении полей зрения ставят указание границ. Если пациент ошибается с цветом, метка двигается дальше, пока специалист не получит правильный ответ.

Чаще всего используются предметы красного, желтого, зеленого и синего цветов. Процедура совершается с 8 меридианами и интервалом 45˚ либо 12 меридианами и 30˚.

Компьютерная периметрия глаза занимает больше времени – около 5-10 минут. Суть процедуры состоит в том, что яркость и размер статичного объекта постоянно изменяются. Исследование определяет чувствительность сетчатой оболочки к цвету в любых ее зонах.

Данные считаются более точными по сравнению с исследованием, проведенным периметром Ферстера. Полученные результаты сохраняются в компьютере, а при необходимости можно их вновь посмотреть и оценить.

Что может помешать получить корректные данные:

  • Птоз верхнего века;
  • Нависание бровей в зрительную зону;
  • Глубоко посаженные глаза;
  • Наличие высокой переносицы.

Если у человека имеются подобные признаки, рекомендуется пройти обследование при помощи компьютерного устройства и периметра. Это позволит получить более точные результаты.

Интерпретация результатов зависит от того, насколько они отличаются от нормальных значений, и прибора, которым проводилось исследование.

  • Границы поля зрения по отношению к белому цвету, выполненные периметром :

Кверху – 50˚;

Книзу – 65˚;

Кнаружи – 90˚;

Кнутри – 55˚.

  • Нормальные показатели при проведении компьютерной периметрии :

Считается, что самый большой размер полей зрения существует для синего цвета, а наименьший – для зеленого. Это объясняется разницей их длины волны.

Средние значения полей зрения на цвета такие:

Кверху: 50˚ – на синий, 40˚ – красный, 30˚ – зеленый.

Книзу: 50 – синий; красный – 40˚, 30˚ – зеленый.

Кнаружи: 70˚, 50˚, 30˚соответственно.

Кнутри: 50˚, 40˚, 30˚.

Нормальные показатели

Расшифровка результатов

Получив данные периметрии, каждому хочется понять, отличаются ли они от нормы или все в порядке. Что делать, если запись к врачу не скоро, а узнать очень хочется?

Можно попробовать самостоятельно интерпретировать результаты, однако это не отменяет необходимость посетить окулиста для получения точного диагноза! Расшифровка данных должна осуществляться специалистом.

Бывает, что во время процедуры исследуемый вдруг начинает видеть кратковременные выпадения участков полей зрения, а при зажмуривании – яркие линии, которые уходят с центральной зоны на периферию. Подобные мерцательные скотомы свидетельствуют о спазме сосудов мозга, которые требуют приема спазмолитиков.

Стоимость исследования напрямую зависит от того, каким именно аппаратом проводится процедура и регион, где она осуществляется. Средняя цена на периметрию составляет от 200 до 700 рублей .

Исследование проводится с помощью периметра Ферстера или компьютера и не требует какой-либо подготовки со стороны пациента. Периметрия позволяет специалисту подтвердить глазные, неврологические и общие заболевания, поэтому это незаменимая процедура в практике окулиста, невролога и терапевта.

Видео:

Статьи по теме:

Участок, который человек может видеть, зафиксировав взгляд на одной точке, называется полем зрения. При сужении полей зрения значительно ухудшается и качество зрения человека, кроме того, сужение полей зрения всегда сигнализирует о наличии офтальмологического заболевания и может быть симптомом некоторых болезней нервной системы или головного мозга. Сегодня безопасной и дающей точные результаты диагностикой нарушения полей зрения является компьютерная периметрия глаза.

Изучение полей зрения можно проводить с помощью обычного статического аппарата. Для проведения диагностики используют специальное оборудование – в вогнутую сферу с подставкой. Испытуемому нужно зафиксировать подбородок на этой подставке и сосредоточить взгляд на точке в центре сферы. К центру сферы движется точка, которую в определенный момент должен зафиксировать взгляд пациента. Суть исследования заключается в регистрации показателя, когда глаз пациента зафиксировал (заметил) движущейся на периферии предмет. Момент, когда этот предмет видит глаз и называется границей поля зрения. Данное обследование проводится монокулярно (для одного глаза). Фиксируются внутренние поля, расположенные со стороны носа, и наружные (со стороны виска) для каждого глаза. В результате диагностики рисуют карту полей зрения, а затем проводится ее расшифровка. В норме показатели будут близки к следующим.

Стандартное инструментальное исследование с помощью в вогнутой сферы сегодня можно заменит более точным и быстрым обследованием с помощью компьютера.

Компьютерная периметрия глаза длится меньшее количество времени, ее результаты будут точнее от инструментальной, кроме того, она исключает погрешности и симуляцию пациента.

Проводится это исследование на современном офтальмологическом оборудовании с использованием компьютерной техники.

Пациент размещается напротив современного офтальмологического оборудования, помещает подбородок на специальную подставку и фиксирует взгляд на точку внутри сферы. Для фиксации результатов в руки ему дается джойстик (он будет нажимать кнопку каждый раз, когда увидит точку).

В ходе проведения диагностики, с помощью оборудования меняется интенсивность свечения точки в центре, а также по периметру будут возникать другие движущиеся точки (их скорость 2 см/с) с разной интенсивностью свечения. Задача испытуемого увидеть их и нажать на кнопку.

Затем появятся движущиеся цветные точки с разной интенсивностью свечения. Их появления также нужно зафиксировать с помощью нажатия на кнопку. Это позволяет установить цветовые поля зрения.

Тест проводится повторно, в режиме контроля. Это нужно для того, чтобы результаты были более точными. Иногда, в ходе исследования, человек не успевает нажать на кнопку, после того как увидел точку.

По времени компьютерная периметрия глаза занимает до 15 минут (обычная до 25 м).

Никаких негативных последствий после диагностики у испытуемых не наблюдается.

Все результаты фиксируются компьютером и обрабатываются. Затем заносятся в специальную карту.

Среди показаний к проведению компьютерной периметрии будут:

  1. Офтальмологические заболевания:
    • глаукома,
    • изменения глазного дна,
    • отслоение сетчатки,
    • заболевания желтого пятна (макулы),
    • пигментный ретинит,
    • заболевания (воспалительные и сосудистые) зрительного нерва.
  2. Неврологические патологии:
    • поражения зрительного нерва,
    • патологические процессы в коре головного мозга при инсультах,
    • черепно-мозговые травмы,
    • мозговые опухоли.
  3. Опухоли в глазном яблоке.

Данное обследование не является инвазивным, т. е. не требует вмешательства в структуры глаза и не предполагает использование медпрепаратов, поэтому имеет минимальное количество противопоказаний. Так, среди тех, кому не следует назначать данное обследование глаза, окажутся:

  • пациенты, имеющиеся психические отклонения;
  • лица, с отклонениями умственного развития (малоконтактные).

Не будет информативным данное обследование и в случае, если испытуемый находится в состоянии алкогольного или наркотического опьянения.

Результаты данного обследования записывают в специальную карту. В центре будет нормальное изображено состояние фоторецепторов сетчатки глаза. Оно должно совпадать со среднестатистическими результатами. Рассматривая расшифровку можно увидеть выпадения полей зрения даже при нормальном зрении. Существует допустимые отклонения от нормы (сужение полей зрения), которые имеют название «скотомы». Офтальмологи различают следующие виды скотом:

  • спектральные,
  • концентрические, односторонние, двухсторонние,
  • гемианопсии (частичная, квадратная, полная).

Само наличие скотом не является диагностикой заболевания. Но их обнаружение, в количестве, превышающем норму, всегда будет свидетельствовать о патологии зрительного тракта. Это, в свою очередь, может быть результатом заболевания глаз или же неврологической, мозговой патологии, например, оно свидетельствует о глаукоме, перенесенном инсульте, мигрени.

После получения результатов, производится их расшифровка. Консультация офтальмолога поможет более правильно их прочитать. При необходимости доктор даст направление к другому специалисту или посоветует пройти дополнительные виды обследований.

Компьютерная периметрия глаза одна из самых бюджетных платных диагностик, ее стоимость вместе с расшифровкой будет стартовать от 1 тыс. р., если нужно провести полное обследование, то стоимость возрастет до 1 500 р.

Лечитесь и будьте здоровы!

Поле зрения – это пространство, объекты которого могут быть одновременно видимы при фиксированном взгляде. Исследование полей зрения весьма важно для оценки состояния зрительного нерва и сетчатки, для диагностики глаукомы и других опасных заболеваний, способных привести к утрате зрения, а также для контролирования развития патологических процессов и эффективности их лечения.

Графически поле зрения удобней всего представить в виде трехмерного изображения - зрительного холма (рис. Б). Основание холма дает представление о границах поля зрения, а высота – о степени светочувствительности каждого участка сетчатки, уменьшающейся в норме от центра к периферии. Для простоты оценки результаты отображаются на плоскости в виде карты (рис. А). За норму принято считать периферические границы: верхняя – 50°, внутренняя – 60°, нижняя – 60°, наружная > 90°

Каждый участок глазного дна на карте поля зрения представлен таким образом, что, например, нарушения функционирования нижних отделов сетчатки выявляются изменениями в верхних ее участках. Центр поля зрения, или точка фиксации, представлен фоторецепторами центральной ямки. Диск зрительного нерва не имеет светочувствительных клеток, и, как следствие, на карте имеет вид «слепого» пятна (физиологическая скотома, пятно Мариотта). Оно локализуется в височной (наружной) части поля зрения в горизонтальном меридиане в 10-20° от точки фиксации. В норме также выявляются ангиоскотомы – проекции сосудов сетчатки. Они всегда связаны со «слепым» пятном и напоминают по форме ветви дерева.

При проведении периметрии могут выявляться следующие аномалии:
- сужение поля зрения;
- скотома.

Характеристики, размеры и локализация сужения поля зрения зависят от уровня поражения зрительного тракта. Данные изменения могут быть концентрическими (по всем меридианам) или секторальными (на определенном участке при неизмененных границах на остальном протяжении), односторонними и двухсторонними. Дефекты, локализующиеся в каждом глазу только в одной половине поля зрения, называются гемианопсией. Она в свою очередь делится на гомонимную (выпадение с височной стороны на одном глазу и с носовой – на другом) и гетеронимную (симметричное выпадение носовых (биназальная) или теменных (битемпоральная) половин поля зрения на обоих глазах). По размерам выпавших участков гемианопсия бывает полной (выпадает вся половина), частичной (происходит сужение соответствующих зон) и квадрантной (изменения локализуются в верхних или нижних квадрантах).

Скотома – область выпадения части поля зрения, окруженная сохранной зоной, т.е. не совпадающая с периферическими границами. Она бывает относительной, когда имеет место снижение чувствительности и могут определяться только объекты с бóльшими размерами и яркостью, и абсолютной - при полном выпадении зоны поля зрения.

Скотома может быть любой формы (овальная, круглая, дугообразная и т.д.) и расположения (центральная, пара- и перицентральная, периферическая). Скотома, которую пациент видит, называется положительной. Если же она выявляется только при проведении обследования, то именуется отрицательной. При мигрени пациент может отмечать появление мерцающей (сцинтиллирующей) скотомы – внезапно появляющееся, кратковременное, перемещающееся в поле зрения выпадение. Ранним признаком глаукомы является парацентральная скотома Бьерумма, которая дугообразно окружает точку фиксации, располагаясь на 10-20° от нее, а затем увеличивается и сливается с ней.

Показания к проведению периметрии :
установление и уточнение диагноза глаукомы, наблюдение за динамикой процесса;
диагностика заболеваний макулы или ее токсического поражения, например, при приеме некоторых препаратов;
диагностика отслоек сетчатки и пигментного ретинита;
установление фактов аггравации (преувеличения симптомов) и симуляции пациентами;
диагностика поражения зрительного нерва, тракта и корковых центров при новообразованиях, травмах, ишемии или инсульте, компрессионном повреждении, тяжелом нарушении питания.

В настоящее время существует несколько методик оценки поля зрения. Наиболее простым является тест Дондерса , позволяющий ориентировочно оценить его границы. Пациент располагается на расстоянии около 1 метра напротив обследующего и фиксирует взглядом его нос. Затем пациент закрывает правый глаз, а доктор – левый (противоположный) или наоборот, в зависимости от того, какой глаз исследуется. Доктор начинает демонстрировать какой-нибудь хорошо различимый объект, ведя его в одном из меридианов от периферии к центру до тех пор, пока пациент не заметит его. В норме оба должны заметить данный объект одновременно. Эти действия повторяют в 4-8 меридианах, получая таким образом представление об ориентировочных границах поля зрения. Естественно, неотъемлемым условием теста является сохранность таковых у обследующего.

При помощи теста Дондерса можно ориентировочно оценить периферические границы поля зрения. Для диагностики центрального поля зрения используют более простой метод – тест Амслера , позволяющий оценить зону до 10о от точки фиксации. Он представляет собой решетку из вертикальных и горизонтальных линий, в центре которой имеется точка. Пациент фиксирует взгляд на ней с расстояния около 40 см. Искривление линий, появление пятен на решетке являются признаками патологии. Тест незаменим в первичной диагностике и наблюдении за течением заболеваний макулы. Имеющаяся у пациентов аметропия (особенно астигматизм) должна быть скорректирована при выполнении теста.

Для диагностики центрального поля зрения также может использоваться метод кампиметрии . Пациент с расстояния 1 метра фиксирует одним глазом на специальной черной доске размером 1×1 метр белую точку в центре. Объект белого цвета, диаметром от 1 до 10 мм, ведут по исследуемым меридианам до момента исчезновения. Обнаруженные скотомы отмечают мелом на доске, а затем переносят на специальный бланк.

При проведении кинетической периметрии оценивают поля зрения с помощью движущегося светового объекта-стимула заданной яркости. Его перемещают по заданным меридианам, а точки, в которых он становится видимым или невидимым, отмечаются на бланке. Соединив эти точки, мы получаем границу между зонами, в которых глаз различает стимул заданных параметров и не различает его – изоптеру. Размеры, яркость и цвет объектов могут изменяться. При этом границы поля зрения будут зависеть от этих показателей.

Статическая периметрия – более сложная, но и более информативная методика оценки поля зрения. Она позволяет определять светочувствительность участка поля зрения (вертикальную границу зрительного холма). Для этого пациенту демонстрируют неподвижный объект, изменяя его интенсивность, тем самым устанавливая порог чувствительности. Может проводиться надпороговая периметрия, которая предполагает использование стимулов с характеристиками, близким к норме порогового значения в разных точках поля зрения. Полученные отклонения от этих значений дают основание предположить патологию.

Данный метод больше подходит для скрининга. Для более детальной оценки зрительного холма применяется пороговая периметрия. При ее проведении интенсивность стимула изменяется с определенным шагом до достижения порогового значения. В настоящее время наиболее распространена компьютерная периметрия по Humphrey или Octopus.

Теоретически результаты статической и кинетической периметрии должны совпадать. Однако на практике движущиеся объекты более видимы, чем стационарные, особенно в зонах с дефектами полей зрения (феномен Риддоха).

Компетенции: УК-1, ПК -5, ПК-6, ПК-7

Периферическое зрение является функцией палочкового и колбочкового аппарата всей оптически деятельной сетчатки и определяется полем зрения. Поле зрения - это видимое глазом (глазами) пространство при фиксированном взоре. Периферическое зрение помогает ориентироваться в пространстве.

Техника:

Поле зрения исследуют с помощью периметрии. Самый простой способ - контрольное (ориентировочное) исследование по Дондерсу. Обследуемый и врач располагаются лицом друг к другу на расстоянии 50-60 см, после чего врач закрывает правый глаз, а обследуемый - левый. При этом обследуемый открытым правым глазом смотрит в открытый левый глаз врача и наоборот. Поле зрения левого глаза врача служит контролем при определении поля зрения обследуемого. На срединном расстоянии между ними врач показывает пальцы, перемещая их в направлении от периферии к центру. При совпадении границ обнаружения демонстрируемых пальцев врачом и обследуемым поле зрения последнего считается неизмененным. При несовпадении отмечается сужение поля зрения правого глаза обследуемого по направлениям движения пальцев (кверху, книзу, с носовой или височной стороны, а также в радиусах между ними). После проверки поля зрения правого глаза определяют поле зрения левого глаза обследуемого при закрытом правом, при этом у врача закрыт левый глаз. Данный метод считается ориентировочным, так как не позволяет получить числового выражения степени сужения границ поля зрения. Метод может быть применен в тех случаях, когда нельзя провести исследование на приборах, в том числе у лежачих больных.

Наиболее простым прибором для исследования поля зрения является периметр Ферстера, представляющий собой дугу черного цвета (на подставке), которую можно смещать в различных меридианах. При проведении исследования на этом и других приборах необходимо соблюдать следующие условия. Голову обследуемого устанавливают на подставке таким образом, чтобы исследуемый глаз находился в центре дуги (полусферы), а второй глаз был закрыт повязкой. Кроме того, в течение всего исследования обследуемый должен фиксировать метку в центре прибора. Обязательна также адаптация пациента к условиям проведения исследования в течение 5-10 мин. Врач перемещает по дуге периметра Ферстера в различных меридианах исследования белую или цветные метки от периферии к центру, определяя таким образом границы их обнаружения, т. е. границы поля зрения.

Периметрию на широко вошедшем в практику универсальном проекционном периметре (ППУ) также проводят монокулярно. Правильность центровки глаза контролируют с помощью окуляра. Сначала проводят периметрию на белый цвет. При исследовании поля зрения на различные цвета включают светофильтр: красный (К), зеленый (З), синий (С), желтый (Ж). Объект перемещают от периферии к центру вручную или автоматически после нажатия на клавишу «Движение объекта» на панели управления. Изменение меридиана исследования осуществляют поворотом проекционной системы периметра. Регистрацию величины поля зрения проводит врач на бланке-графике (отдельно для правого и левого глаза).

Более сложными являются современные периметры, в том числе на компьютерной основе. На полусферическом или каком-либо другом экране в различных меридианах передвигаются или вспыхивают белые либо цветные метки. Соответствующий датчик фиксирует показатели испытуемого, обозначая границы поля зрения и участки выпадения в нем на специальном бланке или в виде компьютерной распечатки.

При определении границ поля зрения на белый цвет обычно используют круглую метку диаметром 3 мм. При низком зрении можно увеличить яркость освещения метки либо использовать метку большего диаметра. Периметрию на различные цвета проводят с меткой 5 мм. В связи с тем что периферическая часть поля зрения является ахроматичной, цветная метка поначалу воспринимается как белая или серая разной яркости и лишь при входе в хроматическую зону поля зрения она приобретает соответствующую окраску (синюю, зеленую, красную), и только после этого обследуемый должен регистрировать светящийся объект. Наиболее широкие границы имеет поле зрения на синий и желтый цвета, немного уже поле на красный цвет и самое узкое - на зеленый (рис. 48).

Рис. 48.Нормальные границы поля зрения на белый и хроматические цвета.

Нормальными границами поля зрения на белый цвет считают кверху 45-55°, кверху кнаружи 65°, кнаружи 90°, книзу 60-70°, книзу кнутри 45°, кнутри 55°, кверху кнутри 50 o . Изменения границ поля зрения могут происходить при различных поражениях сетчатки, хориоидеи и зрительных путей, при патологии головного мозга.

Информативность периметрии увеличивается при использовании меток разных диаметра и яркости - так называемая квантитативная, или количественная, периметрия. Она позволяет определить начальные изменения при глаукоме, дистрофических поражениях сетчатки и других заболеваниях глаз. Для исследования сумеречного и ночного (скотопического) поля зрения применяют самую слабую яркость фона и низкую освещенность метки, чтобы оценить функцию палочкового аппарата сетчатки.

В последние годы в практику входит визоконтрастопериметрия, представляющая собой способ оценки пространственного зрения с помощью черно-белых или цветных полос разной пространственной частоты, предъявляемых в виде таблиц или на дисплее компьютера. Нарушение восприятия разных пространственных частот (решеток) свидетельствует о наличии изменений на соответствующих участках сетчатки или поля зрения.

Концентрическое сужение поля зрения со всех сторон характерно для пигментной дистрофии сетчатки и поражения зрительного нерва. Поле зрения может уменьшиться вплоть до трубочного, когда остается только участок 5-10 o в центре. Пациент еще может читать, но не может самостоятельно ориентироваться в пространстве (рис. 4.6).

Рис. 49.Концентрическое сужение поля зрения разной степени.

Симметричные выпадения в полях зрения правого и левого глаза - симптом, свидетельствующий о наличии опухоли, кровоизлияния или очага воспаления в основании мозга, области гипофиза или зрительных трактов.

Гетеронимная битемпоралъная гемианопсия - это симметричное половинчатое выпадение височных частей полей зрения обоих глаз.

Рис. 50.Гетеронимная гемианопсия. а - битемпоральная; б - биназальная.

Оно возникает при поражении внутри хиазмы перекрещивающихся нервных волокон, идущих от носовых половин сетчатки правого и левого глаза (рис. 50).

Гетеронимная биназальная симметричная гемианопсия встречается редко, например при выраженном склерозе сонных артерий, одинаково сдавливающих хиазму с двух сторон.

Гомонимная гемианопсия - это половинчатое одноименное (правоили левостороннее) выпадение полей зрения в обоих глазах (рис. 51). Оно возникает при наличии патологии, затрагивающей один из зрительных трактов. Если поражается правый зрительный тракт, то возникает левосторонняя гомонимная гемианопсия, т. е. выпадают левые половины полей зрения обоих глаз. При поражении левого зрительного тракта развивается правосторонняя гемианопсия.

Рис. 51.Гомонимная гемианопсия.

В начальной стадии опухолевого или воспалительного процесса может быть сдавлена только часть зрительного тракта. В этом случае регистрируются симметричные гомонимные квадрантные гемианопсии, т. е. выпадает четверть поля зрения в каждом глазу, например пропадает левая верхняя четверть поля зрения как в правом, так и в левом глазу (рис. 52).

Рис. 52.Квадрантная гомонимная гемианопсия.

Когда опухоль мозга затрагивает корковые отделы зрительных путей, вертикальная линия гомонимных выпадений полей зрения не захватывает центральные отделы, она обходит точку фиксации, т. е. зону проекции желтого пятна. Это объясняется тем, что волокна от нейроэлементов центрального отдела сетчатки уходят в оба полушария головного мозга (рис. 53).

Рис. 53.Гомонимная гемианопсия с сохранением центрального зрения.

Патологические процессы в сетчатке и зрительном нерве могут вызывать изменения границ поля зрения различной формы. Для глаукомы, например, характерно сужение поля зрения с носовой стороны.

Локальные выпадения внутренних участков поля зрения, не связанных с его границами, называютскотомами. Их определяют с использованием объекта диаметром 1 мм также в различных меридианах, при этом особенно тщательно исследуют центральный и парацентральный отделы. Скотомы бываютабсолютными (полное выпадение зрительной функции) иотносительными (понижение восприятия объекта в исследуемом участке поля зрения). Наличие скотом свидетельствует об очаговых поражениях сетчатки и зрительных путей. Скотома может бытьположительной иотрицательной. Положительную скотому видит сам больной как темное или серое пятно перед глазом. Такое выпадение в поле зрения возникает при поражениях сетчатки и зрительного нерва. Отрицательную скотому сам больной не обнаруживает, ее выявляют при исследовании. Обычно наличие такой скотомы свидетельствует о поражении проводящих путей (рис. 54).

Рис.54.Виды скотом.

Мерцательные скотомы - это внезапно появляющиеся кратковременные перемещающиеся выпадения в поле зрения. Даже в том случае, когда пациент закрывает глаза, он видит яркие, мерцающие зигзагообразные линии, уходящие на периферию. Этот симптом является признаком спазма сосудов головного мозга. Мерцательные скотомы могут повторяться с неопределенной периодичностью. При их появлении пациент должен немедленно принимать спазмолитические средства.

По месту расположения скотом в поле зрения выделяют периферические, центральные ипарацентральные скотомы. На удалении 12-18 o от центра в височной половине располагаетсяслепое пятно. Это физиологическая абсолютная скотома. Она соответствует проекции диска зрительного нерва. Увеличение слепого пятна имеет важное диагностическое значение.

Центральные и парацентральные скотомы выявляют при кампиметрии. Пациент фиксирует взглядом светлую точку в центре плоской черной доски и следит за появлением и исчезновением белой (или цветной) метки, которую врач перемещает по доске, и отмечает границы дефектов поля зрения.

Центральные и парацентральные скотомы появляются при поражении папилломакулярного пучка зрительного нерва, сетчатки и хориоидеи. Центральная скотома может быть первым проявлением рассеянного склероза.

Периметрией называют одну из методик обследования зрительного аппарата, которая позволяет изучить границы полей зрения при их проекции на сферическую поверхность. Поле зрения – это часть пространства, которое глаз человека видит при фокусировке взгляда и неподвижности головы.

В этой статье мы ознакомим вас с сутью этой диагностического методики, показаниями, противопоказаниями к ее выполнению, способом подготовки к обследованию, принципами проведения и расшифровки результатов компьютерной периметрии. Эта информация позволит составить представление о таком способе измерения границ полей зрения, и вы сможете задать лечащему врачу возникшие вопросы.

При фокусировке взгляда на одном предмете мы видим его четко, но кроме него в поле зрения попадают и другие окружающие рассматриваемый предмет объекты. Это означает, что у человека есть не только четкое центральное зрение, но и периферическое. Оно менее острое, чем центральное, но имеет немаловажное значение. При сужении полей зрения у человека нарушается качество зрения в общем, и такой симптом всегда указывает на наличие офтальмологических заболеваний или некоторых патологий головного мозга либо центральной нервной системы.

Ранее для измерения границ полей зрения применялись простые статические аппараты, представляющие собой вогнутую сферу на подставке. Пациенту было необходимо зафиксировать свой подбородок на подставке и направить взгляд на точку в середине сферы. После этого к центру сферы двигалась точка, а взгляд человека должен был ее зафиксировать в определенный момент. Суть обследования заключалась в регистрации этого момента. Исследование выполнялось для каждого глаза отдельно, а момент фиксации движущейся на периферии точки и назывался границей поля зрения. После обследования результаты отображались на карте, которая впоследствии расшифровывалась специалистом.

Сегодня такое исследование может с легкостью проводиться при помощи компьютера. Компьютерная периметрия позволяет получать более точные результаты и полностью исключает все возможные погрешности в измерениях или попытки симуляции ухудшения зрения обследуемым. Кроме этого, длительность такого исследования стала намного меньшей и составляет всего 10-15 минут (обычная периметрия занимала до 25 минут).

Суть и методика проведения обследования

Исследование проводят на специальном компьютерном оборудовании.

Для проведения компьютерной периметрии применяется специальное компьютерное оборудование.

Исследование происходит следующим образом:

  1. Пациент садится перед аппаратом, закрывает специальной заслонкой один глаз и берет в руки джойстик.
  2. Специалист просит обследуемого зафиксировать взгляд на световой точке. Голова при этом должна оставаться неподвижной.
  3. После этого вокруг световой точки на экране монитора начинают хаотично и с разной скоростью загораться другие световые сигналы. Врач просит пациента замечать эти появляющиеся огоньки и в момент их видимости нажимать на кнопку джойстика.
  4. Вначале обследование границ полей зрения проводится для одного глаза, а затем выполняется для второго.
  5. После окончания процедуры специалист расшифровывает полученные результаты. При помощи компьютерной программы составляется карта границ полей зрения, на которой отображаются все полученные данные. Анализируя эти результаты, врач составляет заключение о состоянии структур зрительного анализатора.

Во время и после компьютерной периметрии пациент не ощущает никакого дискомфорта или болезненных ощущений. После завершения исследования он может сразу же отправляться домой.

Показания

Компьютерная периметрия проводится при следующих офтальмологических заболеваниях и патологиях:

  • глаукома;
  • нарушения со стороны сетчатки: , опухоли, ожоги, кровоизлияния, дистрофия;
  • пигментный ретинит;
  • патологии глазного дна;
  • воспалительные и сосудистые поражения зрительного нерва;

Кроме этого, данное исследование может применяться в практике офтальмолога при попытках симуляции признаков нарушений зрения или при склонности пациента к аггравации (преувеличению симптомов).

Компьютерная периметрия может назначаться и больным с некоторыми неврологическими заболеваниями:

  • патологические изменения в коре головного мозга после ;
  • поражения зрительного нерва;

Противопоказания

Для выполнения компьютерной периметрии не проводятся инвазивные манипуляции и не применяются лекарственные препараты, и поэтому данное обследование практические не имеет противопоказаний. Методика не может применяться только в таких случаях:

  • малоконтактные пациенты с отклонениями умственного развития;
  • больные с психическими патологиями.

Противопоказаниями к выполнению компьютерной периметрии являются состояния наркотического или алкогольного опьянения (даже в легкой степени), так как такой пациент не может адекватно воспринимать информацию на мониторе. При попытках проведения им исследования результаты будут не информативными и не дадут возможности составить правильное заключение.

Подготовка пациента

Для выполнения компьютерной периметрии не требуется специальной подготовки.

На точность исследования границ полей зрения могут повлиять следующие факторы:

  • признаки раздражения глаза вблизи крупных сосудов;
  • выраженное снижение остроты зрения;
  • помехи от неудобной оправы очков;
  • опущение верхнего века;
  • особенности внешности: глубоко посаженные глаза, высокая переносица, нависшие брови.

Результаты

Получаемые во время компьютерной периметрии данные фиксируются на специальной карте, которая распечатывается и выдается на руки пациенту или отправляется лечащему врачу. Она отображает состояние фоторецепторов сетчатки глаза. Рассматривая ее, специалист может выявлять выпадение полей зрения.

Очаговые дефекты полей зрения называются «скотомами». Специалисты выделяют следующие разновидности скотом:

  • концентрические (одно- и двухсторонние);
  • спектральные.

Наличие некоторых скотом не является признаком заболевания. Однако при выявлении скотом в количестве, которое превышает показатели нормы, врач может делать заключение о наличии патологии зрительного аппарата. Такой признак может указывать на присутствие офтальмологического или неврологического заболевания.

Кроме скотом во время изучения карты полей зрения могут выявляться гемианопсии (выпадения крупных сегментов):

  • полная;
  • частичная;
  • квадрантная.

Такое нарушение указывает на поражение зрительного нерва.

При получении карты компьютерной периметрии не следует пытаться самостоятельно расшифровывать результаты. Их точную оценку может провести только врач-офтальмолог.


К какому врачу обратиться

Назначить проведение компьютерной периметрии может офтальмолог или невролог. При выявлении нарушений границ зрения доктор назначит консультацию другого специалиста и дополнительные методы обследования: тонометрия, биомикроскопия и офтальмоскопия глаза, КТ, МРТ и пр.

Компьютерная периметрия является безопасным, неинвазивным и безболезненным обследованием, которое позволяет определять границы полей зрения. Это исследование может назначаться для комплексной диагностики офтальмологических или неврологических заболеваний.

Врач-офтальмолог Яковлева Ю. В. рассказывает о компьютерной периметрии:


Перечень практических навыков и данные по технике их проведения и интерпретации полученных результатов.

  1. Исследование цветоощущения по полихроматическим
таблицам Е.Б. Рабкина……………………………………………………………………...1

  1. Исследование остроты зрения по таблицам Ландольта и Поляка……………2

  2. Исследование поля зрения на периметре Ферстера………………………………3

  3. Исследование поля зрения контрольным методом………………………………..4

  4. Определение характера зрения………………………………………………………..5

  5. Осмотр при фокальном освещении…………………………………………………..6

  6. Осмотр в проходящем свете………………………………………………………….7

  7. Исследование век…………………………………………………………………………8

  8. Пальпаторная офтальмотонометрия………………………………………………9

  9. Исследование рефракции глаза субъективным и объективным методами.10

  10. Измерение угла косоглазия по Гиршбергу………………………………………….11

  11. Исследование слезопродукции………………………………………………………..12

  12. Исследование слезооттока. Массаж слезного мешка…………………………13

  13. Подбор очковой коррекции при аметропиях и пресбиопии…………………….14

1.Исследование цветоощущения по полихроматическим

таблицам Е.Б. Рабкина

В основе построения таблиц лежит принцип уравнения яркости и насыщенности. Каждая таблица состоит из кружков основного и дополнительного цветов. Из кружков основного цвета разной насыщенности и яркости составлена цифра или фигура, которая легко различима нормальным трихроматом и не видна пациентам

1. Исследуемый сидит спиной к источнику освещения (окну или лампам дневного света).

Уровень освещенности должен быть в пределах 500-1000 лк.

2. Таблицы предъявляют с расстояния I метра, на уровне глаз исследуемого, располагая их вертикально.

3. Длительность экспозиции каждого теста таблицы 3-5 секунд, но не более 10 секунд. Если исследуемый пользуется очками, то он должен рассматривать таблицы в очках.

4. Для выявления врожденной патологии исследование проводят бинокулярно; для выявления приобретенной патологии исследуют поочередно правый и левый глаз.

Оценку результатов исследования по полихроматическим таблицам Е.Б. Рабкина проводят в следующей последовательности.

1) Все таблицы (25) основной серии названы правильно - у исследуемого нормальная трихромазия.

2) Неправильно названы таблицы в количестве от I до 12 аномальная трихромазия.

Основной признак, позволяющий отличить аномальную трихромазию от дихромазии – правильное чтение одной или нескольких таблиц из группы: 3,7,8,9,11,12,13,16-19.

4) Для точного определения вида и степени цветоаномалии результаты исследования по каждому тесту регистрируют и согласуют с указаниями, имеющимися в приложении к таблицам Е.Б. Рабкина. Пациента направляют к офтальмологу.


  1. Исследование остроты зрения по таблицам Ландольта и Поляка
Оптотипы Ландольта

1. Пациент садится на расстоянии 5 метров от таблицы Ландольта. Исследование проводят попеременно: сначала правого (OD), зачем левого (OS) глаза. Второй глаз закрывают щитком (листом бумаги, ладонью).

2. Знаки таблицы предъявляют в течение 2-3 с. Следят за тем, чтобы указка не мешала пациенту определять направление разрезов в оптотипах.

3. Остроту зрения характеризуют знаки наименьшего размера, которые исследуемый различает. При чтении первых 7 строк ошибок быть не должно, начиная с 8-й строки одной ошибкой в строке пренебрегают (острота зрения указана в каждом ряду справа от оптотипов).

Пример регистрации данных: Visus OD = 1,0; Visus OS = 0,6.

4. При остроте зрения менее 0,1 (исследуемый не видит с расстояния 5 метров 1-й строки таблицы) следует подвести его на расстояние (d), с которого он сможет назвать знаки 1-го ряда (нормальный глаз различает знаки этого ряда с 50 м; D = 50 м). Расчет по формуле Снеллена:

Где Visus (Vis, V) - острота зрения; d - расстояние, с которого исследуемый читает 1-й ряд;

D - расчетное расстояние, с которого детали знаков данного ряда видны под углом зрения в 1 минуту (оно указано в каждом ряду слева от оптотипов). Удобнее демонстрировать раздвинутые пальцы руки врача с разных расстояний, т.к. угловые размеры толщины пальцев примерно соответствуют размерам разрезов колец 1-го ряда. Больной должен правильно определить количество показываемых пальцев.

5. Если пациент различает пальцы с расстояния 50 см - Visus =0,01, при счете пальцев на более близком расстоянии - Visus = счет пальцев у лица .

7. Самой низкой остротой зрения является способность глаза отличать свет от темноты; это проверяется в затемненном помещении при освещении глаза ярким световым пучком. Если исследуемый видит свет, то острота зрения равна светоощущению (Visus OD = 1/∞, или perceptio lucis). Наводя на глаз пучок света с разных направлений (сверху, снизу, справа, слева), проверяют, как сохранилась способность отдельных участков сетчатки воспринимать свет. Правильные ответы указывают на правильную проекцию света (Visus OD = l/∞ proectio lucis certa). Если пациент не может определить локализацию источника света хотя-бы с 1-й стороны - Visus = l/∞ proectio lucis incerta. При отсутствии светоощущения - Visus = 0.

^ Оптотипы Поляка

Используют при Visus менее 0,1. Они представляют из себя кольца Ландольта либо параллельные полосы разных размеров, наклеенные на картон. Каждый оптотип имеет заранее рассчитанные расстояния до больного с соответствующим значением Visus. Острота зрения определяется с точностью до 0,01. Подобная точность необходима для определения динамики Visus у пациентов с низким зрением, для решения вопросов об установлении группы инвалидности по зрению и в случаях аггравации и симуляции.


  1. ^ Исследование поля зрения на периметре Ферстера
Периметрия - это метод исследования поля зрения на сферической поверхности с целью определения его границ.

Исследование проводят при помощи специальных приборов - периметров, имеющих вид дуги или полусферы. Широко распространен недорогой периметр Ферстера. Это дуга 180°, покрытая с внутренней стороны черной матовой краской и имеющая на наружной поверхности деления на градусы - от 0 в центре до 90 на периферии. Для определения наружных границ поля зрения используют белые объекты диаметром 3-5 мм.

Исследуемый сидит спиной к окну (освещенность дуги периметра дневным светом не менее 160 лк), подбородок и лоб размещает на специальной подставке и фиксирует одним глазом белую метку в центре дуги. Второй глаз пациента закрывают. Объект ведут по дуге от периферии к центру со скоростью 2 см/с. Исследуемый сообщает о появлении объекта, а врач замечает, какому делению дуги соответствует в это время положение объекта.

Это и будет наружная граница поля зрения для данного меридиана. Определение наружных границ поля зрения проводят по 8 (через 45 °) или (лучше) по 12 (через 30 °) меридианам.

Нормальные границы поля зрения на белый цвет в среднем составляют: сверху - 55°, сверху снаружи - 65°, снаружи - 90°, снизу снаружи - 90°, снизу - 70°, снизу кнутри - 45°, кнутри - 55°, сверху кнутри - 50°.

Изменения поля зрения могут проявиться в виде выпадения в нем отдельных участков (скотом). Для точного исследования лучше всего пользоваться кампиметрическим методом . Больного помещают на расстоянии 1 м перед черной доской (кампиметром) размером 2х2 м. Для фиксации служит точка фиксации белого цвета в центре доски. Исследование производят объектом белого цвета (кружок диаметром 1 или 3 мм). Иногда используют цветные объекты, что необходимо для ранней диагностики патологии сетчатой и зрительного нерва. Объект ведут от периферии к центру или от центра к периферии по горизонтали, пересекающей фиксационную точку в поле зрения. Отмечается момент исчезновения объекта. Затем исследуют границы скотомы по вертикали и в промежуточных меридианах. Таким образом, можно определить форму и угловые размеры патологических скотом и слепого пятна. Последнее имеет важное диагностическое и прогностическое значение. Исследуют отдельно каждый глаз.

^ 4. Исследование поля зрения контрольным методом

1. Врач и исследуемый сидят друг против друга на расстоянии 50-60 см.

2. Исследуемый закрывает ладонью левый глаз, а врач закрывает свой правый глаз. Открытым правым глазом пациент фиксирует находящийся против него открытый левый глаз врача.

3. Объект (слегка шевелящиеся пальцы врача) двигают от периферии к центру на равном расстоянии между врачом и пациентом, а при определении височной границы поля зрения объект предъявляют сбоку, со стороны исследуемого глаза, из-за головы больного. Объект двигают до точки фиксации сверху, снизу, с височной и носовой сторон, а также в промежуточных радиусах.

При оценке результатов исследования необходимо учитывать, что эталоном является поле зрения врача (оно не должно иметь патологических изменений). Поле зрения пациента считают нормальным, если врач и пациент одновременно замечают появление объекта и видят его во всех участках поля зрения

В случае, если пациент заметил появление объекта в каком-то радиусе позже врача, то поле зрения оценивают как суженное с соответствующей стороны. Если в поле зрения больного объем исчезает на каком-то участке, то имеется скотома.


  1. Определение характера зрения
Опыт Соколова

1. Правой рукой пациент держит перед правым глазом свернутый в трубку лист бумаги.

2. Ребро ладони левой руки исследуемый располагает на боковой поверхности конца трубки.

3. Оба глаза пациента открыты.

Оценку результатов исследования проводят следующим образом.

При бинокулярном зрении пациент видит «дыру» в ладони, сквозь которую видна та же картина, что и через трубку. При монокулярном либо одновременном зрении «дыра» в ладони отсутствует.

^ Исследование характера зрения на 4-х точечном приборе

Исследование на четырехточечном цветовом приборе

Методика исследования

1. С помощью 4-точечного цветового прибора или проектора знаков пациенту предъявляют с расстояния 5 метров 4 кружка -2 зеленых (3), красный (К) и белый (Б).

2. Используют красно-зеленые очки (перед правым глазом - красный светофильтр, перед левым - зеленый).

3. При аномалии рефракции у пациента исследование проводят дважды - без коррекции и с коррекцией.

При оценке результатов исследования учитывают следующее.

Если исследуемый видит 4 кружка - 2 зеленых и 2 – красных либо 3 зеленых и 1 красный, это свидетельствует о наличии у пациента бинокулярного зрения.

Если пациент видит 5 кружков - 3 зеленых и 2 красных, то зрение одновременное.

В случае, если исследуемый видит 2 красных кружка (то есть видит только правый глаз) или 3 зеленых (то есть видит только левый глаз), то зрение монокулярное.


  1. ^ Осмотр при фокальном освещении
Метод бокового освещения используют при исследовании конъюнктивы век и глазного яблока, склеры, роговицы, передней камеры, радужки, зрачка и передней поверхности хрусталика. Этот метод позволяет выявить даже незначительные изменения в переднем отделе глаза.

Исследование проводят в затемненной комнате. Настольную лампу устанавливают на уровне глаз сидящего пациента, на расстоянии 40-50 см, слева и немного спереди от него. Голову пациента поворачивают в сторону источника света. В правую руку врач берет лупу 13 D и держит ее на расстоянии 7-8 см от глаза пациента, перпендикулярно лучам, идущим от источника света, фокусирует свет на том участке глаза, который подлежит осмотру.

Благодаря контрасту между ярко освещенным небольшим участком глаза и неосвещенными соседними его частями изменения лучше видны. Необходимо следить, чтобы рука не дрожала и не смещался фокус. Для этого при осмотре левого глаза руку фиксируют, упираясь мизинцем правой руки на скуловую кость, при осмотре правого глаза - на спинку носа или лоб.

Вместо настольной лампы и лупы для освещения можно использовать электрический фонарик. Для рассматривания патологического участка можно пользоваться бинокулярной лупой.

Определение дефектов эпителия роговицы проводят с помощью закапывания в конъюнктивальный мешок 1 % раствора флюоресцеина. При этом они окрашиваются в зеленый цвет.

Исследование зрачковых реакций. В норме зрачки одинаковые по величине и имеют равномерно округлую форму. При освещении одного глаза происходит сужение зрачка (прямая реакция зрачка на свет), а также сужение зрачка другого глаза (содружественная реакция зрачка на свет). Сужение зрачка называется миозом, расширение - мидриазом, разность в величине зрачков - анизокорией. Встречаются такие врожденные изменения, как смещение зрачка - корэктопия или наличие нескольких зрачков - поликория.

Зрачковую реакцию считают «живой», если под влиянием света зрачок быстро сужается, и «вялой», если реакция зрачка замедленна и недостаточна. Прямая реакция зрачка на свет может отсутствовать (при полной слепоте глаза, задних синехиях и при нейросифилисе).

Реакция зрачков на аккомодацию и конвергенцию проверяется при переводе взгляда с отдаленного предмета на палец врача, который он держит на расстоянии 20-30 см от лица. В норме зрачки суживаются равномерно.


  1. ^ Осмотр в проходящем свете
Для исследования прозрачности оптических сред глаза применяется осмотр в проходящем свете. Нарушения прозрачности роговицы и передних отделов хрусталика видны при боковом освещении глаза, а нарушения прозрачности задних отделов хрусталика и стекловидного тела - в проходящем свете.

При проведении исследования в проходящем свете пациент и врач находятся в затемненной комнате. Осветительную лампу (60-100 Вт) располагают слева и сзади от пациента, врач сидит напротив. С помощью офтальмоскопического зеркала, расположенного перед правым глазом врача, в зрачок обследуемого глаза направляется пучок света. Исследователь рассматривает зрачок через отверстие офтальмоскопа. Отраженные от глазного дна (преимущественно от сосудистой оболочки) лучи имеют розовый цвет. При прозрачных преломляющих средах глаза врач видит равномерное розовое свечение зрачка. Это свечение называется рефлексом с глазного дна. Различные препятствия на пути прохождения светового пучка, то есть помутнения сред глаза, задерживают часть отраженных от глазного дна лучей, и на фоне розового зрачка эти помутнения видны как темные пятна разной формы и величины. При движении исследуемого глаза помутнения хрусталика перемещаются до тех пор, пока двигается глаз. Помутнения в стекловидном теле, обычно, продолжают беспорядочно перемещаться и после остановки глаза. Если помутнение расположено в роговице или перед плоскостью зрачка, то при движении исследуемого глаза оно будет смещаться в ту же сторону. При расположении помутнения в задних слоях хрусталика и стекловидном теле, помутнение сместится в сторону противоположную движению глаза. Точно определить глубину залегания и интенсивность помутнений в роговице и хрусталике позволяет биомикроскопия.


  1. ^ Исследование век
Проводят при общем осмотре, фокальном освещении и при биомикроскопии.

При осмотре век следует обращать внимание на их положение, подвижность, состояние их кожного покрова, переднего и заднего ребра, интермаргинального пространства, выводных протоков мейбомиевых желез, ресниц, наличие новообразований, травматических повреждений.

В норме кожа век тонкая, нежная, под ней расположена рыхлая подкожная клетчатка, вследствие чего легко развиваются отеки и гематомы.

При общих заболеваниях (болезни почек и сердечно-сосудистой системы) и аллергическом отеке Квинке отеки кожи век двусторонние, кожа век светлая.

Цвет кожи век от розового до ярко-красного наблюдается при воспалительных процессах:

Века (абсцесс, ячмень, укус насекомого);

Конъюнктивы в сочетании с хемозом (отек конъюнктивы глазного яблока);

Глазного яблока (радужка, цилиарное тело, все оболочки глаза, инфицированные ранения глаза);

Слезного мешка или слезной железы;

Орбиты или окружающих ее пазух.

Следует отметить, что сходная с отеком картина отмечается при подкожной эмфиземе, возникающей при травме в результате попадания в рыхлую подкожную клетчатку век воздуха из придаточных пазух носа. При этом при пальпации определяется крепитация.

При некоторых состояниях может происходить изменение цвета кожи век. Так, усиление пигментации наблюдается при базедовой болезни и болезни Аддисона, во время беременности, уменьшение пигментации - при альбинизме.

Резкая болезненность при надавливании на верхний край орбиты в области надглазничной вырезки, а также под нижним краем орбиты, в области fossa canina, указывает на поражение первой или второй ветви тройничного нерва.

При осмотре краев век следует обращать внимание на переднее, слегка закругленное ребро (limbus palpebralis anterior), вдоль которого растут ресницы, на заднее острое ребро (limbus palpebralis posterior), плотно прилегающее к глазному яблоку, а также на узкую полоску между ними - межреберное пространство, где открываются выводные протоки заложенных в толще хряща мейбомиевых желез. Ресничный край может быть гиперемирован, покрыт чешуйками или корочками, после удаления которых обнаруживаются кровоточащие язвочки.

Обращают внимание на правильность роста ресниц, их количество. Уменьшение или даже облысение (madarosis), неправильный рост ресниц (trichiasis) указывают на текущий тяжелый хронический воспалительный процесс или на перенесенное заболевание век и конъюнктивы (трахома, блефарит). Полиоз (частичное или полное поседение ресниц) наблюдается при хронических блефаритах, псориазе, после ожогов и удаления ресниц.

В норме длина глазной щели составляет 30-35 мм, ширина 8-15 мм, верхнее веко прикрывает роговицу на 1-2 мм, край нижнего века не доходит до лимба на 0,5-1 мм.

Из патологических состояний следует выделить:

Лагофтальм (lagophthalmus), или «заячий глаз», несмыкание век, зияние глазной щели, наблюдающееся при параличе n. facialis, вывороте век, злокачественном экзофтальме.

Птоз (ptosis) - опущение верхнего века, отмечающееся при поражении n. oculomotorius (полный птоз) и синдроме Горнера (частичный птоз);

Широкую глазную щель, наблюдающуюся при раздражении симпатического нерва и базедовой болезни;

Сужение глазной щели - спастический блефароспазм, который возникает при инородных телах и воспалении конъюнктивы и роговицы.


  1. ^ Пальпаторная офтальмотонометрия
Пальпаторный способ дает приблизительное представление о внутриглазном давлении (ВГД). Больного просят смотреть вниз. Врач фиксирует указательные пальцы правой и левой руки над хрящом верхнего века и осторожно попеременно надавливает на глаз. Подушечки пальцев ощущают податливость глазного яблока. Чем выше давление, тем глаз менее податлив. В случае низкого давления глазное яблоко мягкое. Нормальное внутриглазное давление обозначается буквами TN. Различают 3 степени повышения внутриглазного давления при пальпаторном исследовании: Т+1 – умеренное повышение тонуса глаза, Т+2 – более значительное повышение, Т+3 – резкое повышение тонуса, и 3 степени понижения – соответственно Т-1, Т-2 и Т-3 (резкая гипотония). Этот метод необходим для ориентировки в уровне внутриглазного давления в случае, когда тонометрия не показана (язва роговой, кератит). В такой ситуации тонус одного глаза сравнивают с тонусом другого.

Высокое ВГД наблюдается при врожденной, первичной и вторичной глаукоме, эндофтальмитах, а также при офтальмогипертензии.

Гипотония глаза встречается при проникающих травмах, перфорациях роговой оболочки, отслойке сетчатой и сосудистой оболочках, субатрофии глазного яблока и хронических увеитах. Пальпаторное исследование ВГД в глазах с острым иридоциклитом вызывает резкую боль.


  1. ^ Исследование рефракции глаза субъективным и объективным методами
Все методы определения рефракции возможно подразделить на субъективные и объективные.

Субъективный состоит в подборе пациенту корригирующих стекол под контролем определения остроты зрения (максимальное зрение без коррекции стеклами называется относительным, с коррекцией - абсолютным). Относительная и абсолютная острота зрения равны у эмметропов и в случае гиперметропии слабой степени.

Вначале определяют остроту зрения, а затем раздельно к каждому глазу пациента приставляют слабые собирающие или рассеивающие линзы (+0,5 Д или –0,5 Д) У эмметропа собирающие линзы вызовут ухудшение, а рассеивающие линзы не улучшат зрения; у миопа наступит повышение остроты зрения от рассеивающих стекол, а у гиперметропа от собирающих. После этого соответствующим усилением улучшающих остроту зрения стекол определяют такое, которое предельно повышает остроту зрения и хорошо переносится больным. Это стекло определит клиническую рефракцию. Например, стекло sph +5,0D – соответствует гиперметропии в 5,0D.

Нередко больной называет последующие буквы и не может назвать буквы предыдущего ряда или меняет положение головы для улучшения зрения. В таком случае речь может идти об астигматизме. При этом с помощью только сферических линз невозможно добиться максимально хорошей абсолютной остроты зрения, и требуется коррекция с использованием цилиндрического стекла. Пример коррекции астигматизма.

К методам объективного определения рефракции относят скиаскопию, и рефрактометрию.

Скиаскопия - или теневая проба, проводится при наличии у пациента розового рефлекса с глазного дна при исследовании в проходящем свете (светопроводящие среды глаза должны быть прозрачны). Эту пробу осуществляют после выключения аккомодации путем инстилляций мидриатиков (например, атропина). Если при освещении офтальмоскопом глаза пациента появляется розовое свечение зрачка, врач производит легкие качательные движения плоским зеркалом офтальмоскопа слева направо или сверху вниз, то на область зрачка будет набегать тень. Она может двигаться либо в сторону движения офтальмоскопа, либо в противоположную. В зависимости от характера движения тени определяют вид клинической рефракции. Затем приставляют к глазу исследуемого стекла в соответствии с видом клинической рефракции и продолжают исследование, постепенно увеличивая силу стекла до тех пор, пока тень не исчезнет или не станет двигаться в противоположную сторону (что означает - врач взял стекло уже большее, чем необходимо для нейтрализации данной степени рефракции и тень стала двигаться в противоположную сторону). Обычно скиаскопия проводится с расстояния в 1,0 м., при этом врач искусственно превращает исследуемого в миопа в 1,0 D. Поэтому для определения степени аномалии клинической рефракции к тому стеклу с которым произошла нейтрализация тени необходимо прибавить -1,0 D.

Например, нейтрализация тени при скиаскопии произошла после приставления к глазу больного собирательного стекла +4,0 Д. Для определения степени гиперметропии в данном случае необходимо к величине этого стекла прибавить -1,0 D. Тогда получается: +4,0 D + (-1,0 D)= +3,0 D.

Другой метод объективного определения клинической рефракции и ее степени - рефрактометрия, в настоящее время используется все шире и заключается в том, что пациента усаживают к прибору, называемому рефрактометром и проецируют на глаз специально установленные в аппарате метки. Путем перемещения этих меток добиваются наиболее четкого их изображения и при этом по специальной шкале или автоматически (в автоматизированном рефрактометре) определяют клиническую рефракцию и ее степень. При этом возможно и объективное исследование меридианов астигматизма и его степеней.


  1. ^ Измерение угла косоглазия по Гиршбергу
Косоглазие бывает односторонним и двусторонним (альтернирующим), при котором наблюдается попеременное отклонение глаз. В зависимости от того, в какую сторону отклоняется глаз, различают внутреннее и наружное косоглазие, а также косоглазие кверху и книзу.

Величина отклонения глаза (угол косоглазия) выражается в градусах и определяется различными способами. Наиболее простым из них является способ Гиршберга. Заключается он в том, что больного просят фиксировать взором офтальмоскоп. Пучок света от него на роговой совпадает с центром зрачка некосящего глаза. Во втором глазу роговичное отражение света будет смещено. Если при средней ширине зрачка (3-3,5 мм) роговичное отражение света расположится по краю зрачка, то угол косоглазия составит 15º, между краем зрачка и лимбом – 25-30º, на лимбе - 45º, за лимбом - 60º и более.

Необходимо различать явное косоглазие от мнимого. При последнем, световой рефлекс также не будет соответствовать центру зрачка. Самый простой метод дифдиагноза – определение характера зрения на 4-х точечном приборе. При явном косоглазии бинокулярное зрение всегда отсутствует.


  1. ^ Исследование слезопродукции
Обычно проводят при жалобах больных на чувство «сухости», неприятные ощущения в глазах, а также при хронических кератитах неясной этиологии.

При осмотре слезных органов определяют величину слезных точек (в норме d = 0,35-0,5мм), их положение по отношению к слезному озеру. Надавливая на область слезного мешка, выявляют возможные отхождения через слезные точки патологического содержимого канальцев и слезного мешка. Подняв верхнее веко кверху и кнутри и предложив больному смотреть на кончик своего носа, осматривают пальпебральную часть слезной железы.

Проба Ширмера – служит критерием оценки уровня слезопродукции. За нижнее веко закладывается полоска промокательной бумаги 1х5 см. Свободный конец полоски остаётся на коже века. При нормальной слезопродукции бумага через 5 мин. намокает от края века на 15-18 мм. Намокание полоски менее чем на 15 мм говорит о снижении уровня слезопродукции.

Последнее является важным диагностическим симптомом синдрома Съегрена. Синдром характеризуется аутоиммунным воспалением и разрушением слезных и слюнных желез.


  1. ^ Исследование слезооттока. Массаж слезного мешка.
Канальцевая проба или проба Веста (West) применяется для исследования присасывающей функции слезных канальцев. Капнув за нижнее веко 1-2 капли 2% р-ра колларгола, предлагают больному делать частые, легкие мигательные движения. Если слезные точки и канальцы функционируют нормально, то колларгол через 0,5-2 мин исчезает из конъюнктивального мешка, что узнают по побелению конъюнктивы склеры. При надавливании на слезные канальцы из слезных точек выходит колларгол. В этом случае проба положительная. При отрицательной канальцевой пробе глазное яблоко надолго остается окрашенным в коричневый цвет.

Носовая проба служит для исследования проходимости слезно-носового канала. Появление колларгола в носу (легкое высмаркивание в ватку) через 5 мин после инстилляции 1-2 капель 2% р-ра колларгола в конъюнктивальный мешок говорит о нормальной проходимости канала. Отсутствие колларгола в носу через 10 минут говорит о непроходимости слезно-носового канала.

При положительной канальцевой пробе в сочетании с отрицательной носовой, как правило, имеет место хр. дакриоцистит. Иногда носовая проба может быть отрицательной в связи с блокадой выходного отверстия под нижней носовой раковиной (хронический ринит, инородное тело, новообразование), при переломе костей носа. Подобное также встречается при дакриоцистите новорожденных из-за атрезии окончания носо-слезного протока. Лечение дакриоцистита новорожденных начинают с массажа слезного мешка, заключающегося в осторожном надавливании пальцем у внутреннего угла глазной щели (сверху - вниз). Если массаж не дает эффекта, проводят зондирование носо-слезного протока через нижнюю слезную точку – каналец – слезный мешок.

^ 14. Подбор очковой коррекции при аметропиях и пресбиопии

1. Исследуемый сидит на расстоянии 5 метров от таблицы для проверки остроты зрения.

2. Пациенту надевают пробную оправу, перед левым глазом в оправу помещают непрозрачный экран.

3. Необходимо иметь набор пробных очковых линз. Использовать в работе следует только сферические линзы: собирающие (положительные (+), sph. convex) или рассеивающие (отрицательные (-), sph. concav).

Рассмотрим несколько примеров определения рефракции.

1. У пациента Visus OD = 1,0. При такой остроте зрения у него может быть эмметропия или гиперметропия слабой степени, но не миопия. Гиперметропия слабой степени самокорригируется напряжением аккомодации.

Для определения рефракции в пробную оправу помещают сферическое стекло +0,5 D. У пациента могут быть 2 варианта ответа.

1-й вариант. Исследуемый видит хуже: Visus OD = 1,0 sph. convex +0,5 D = 0,9.

Следовательно, имеется эмметропия.

Запись результатов определения рефракции: Visus OD=1,0; Rf Em.

2-й вариант. Пациент видит так же: Visus OD = 1,0 sph. convex +0,5 D = 1,0. Тогда заменяют линзу на более сильную (+0,75 D): Visus OD = 1,0 sph. convex +0,75 D = 1,0. Снова заменяют линзу на более сильную (+1,0 D): Visus OD=1,0 sph. convex +1,0 D = 0,8.

Следовательно, у пациента гиперметропия 0,75 D.

Запись данных исследования: Visus OD = 1,0; Rf Hm 0,75 D.

2. У пациента пониженное зрение. Visus OS = 0,2. Такая острота зрения (при отсутствии патологии) свидетельствует о гиперметропии или миопии.

В пробную оправу перед проверяемым глазом помещают сферическое стекло +0,5 D и просят пациента прочитать 3-ю строку. Пациент может иметь 2 варианта ответа.

1-й вариант. Пациент видит лучше, то есть читает 3-ю строку. Следовательно, имеется гиперметропия.

Для определения степени гиперметропии в пробной оправе следует менять стекла, усиливая их с интервалом 0,5 или 1,0 D. Получив высокую остроту зрения (1,0), исследование продолжают - в оправу вставляют все более сильные положительные линзы, чтобы устранить самокоррекцию за счет напряжения аккомодации. Когда острота зрения у пациента начинает снижаться, исследование прекращают. Степень гиперметропии определяется самым сильным положительным стеклом, которое дает наиболее высокую остроту зрения. Пример записи хода исследования:

Cтекло Острота зрения

Результат определения рефракции. Visus OS = 0,2 sph. сonvex +2,0 D = 1,0; Rf Hm 2.0 D.

2-й вариант. Пациент видит хуже со стеклом + 0,5 D. Тогда в пробную оправу вставляют сферическое отрицательное стекло -0,5 D. Улучшение остроты зрения у пациента свидетельствует о миопии. Для определения степени миопии в пробную оправу вставляют стекла, постепенно увеличивая их силу, с интервалом 0,5 или 1,0 D. Степень миопии определяется самым слабым минусовым стеклом, дающим наилучшее зрение.

Пример записи хода исследования

Cтекло Острота зрения

Результат определения рефракции: Visus OS = 0,2 sphю concav - 1,5 D = 1,0; Rf M 1,5 D.

Необходимо отметить, что если при определении рефракции острота зрения под влиянием сферических линз у пациента улучшается незначительно или вообще не улучшается, то следует думать о наличии астигматизма, амблиопии или органических изменений, вызывающих понижение остроты зрения.

У лиц молодого возраста субъективное и объективное определение рефракции проводят в условиях мидриаза. Окончательно вопрос о рациональной оптической коррекции решают после прекращения действия мидриатиков на основании результатов предыдущего исследования, а также после пробного ношения очков в течение 15-20 минут (чтение, ходьба).

При этом следует учитывать хорошую бинокулярную переносимость очков как для дали, так и для работы на близком расстоянии.

Периметрия – это метод исследования границ полей зрения с их проекцией на сферическую поверхность. Поле зрения – это часть пространства, которое видит глаз при определённой фиксации взгляда и неподвижной голове. Если зафиксировать глазами какой-нибудь предмет, то кроме чёткого различения этого предмета видны и другие предметы, расположенные на различном расстоянии от него и попадающие в поле зрения человека. Таким образом, глазу присуще периферическое зрение, которое менее чёткое, чем центральное.

Периметрия может быть кинетической и статической. При кинетической периметрии используется движущийся объект, при этом отмечается момент его возникновения и исчезновения, а при статической варьирует освещённость объекта в одной и той же позиции.

При помощи данного метода исследования можно судить о характере изменения поля зрения, по которому можно судить о локализации патологического процесса. Изменения поля зрения будут отличаться при поражениях сетчатки, зрительного нерва, зрительных путей и зрительных центров головного мозга. Помимо сужения границ поля зрения могут быть и выпадения некоторых участков. Такой ограниченный дефект называется скотомой.

Статическая периметрия проводится на современных автоматизированных периметрах. Она позволяет оценить светочувствительность сетчатки. При этом виде периметрии объект не движется, а возникает в различных частях поля зрения, при этом изменяются его размер и яркость.

Показаниями к периметрии являются:

1. Глаукома.
2. Заболевания зрительного нерва (неврит, травма, ишемия).
3. Патология сетчатки (дистрофия, кровоизлияния, лучевой ожог, отслойка, опухоль).
4. Гипертоническая болезнь.
5. Опухоли головного мозга.
6. Черепно-мозговые травмы.
7. Нарушения мозгового кровообращения.
8. Оценка зрения при профилактических осмотрах.

Противопоказания к проведению периметрии:

1. Психические заболевания пациента.
2. Алкогольное или наркотическое опьянение.

Для проведения кинетической периметрии необходимо наличие специального прибора, называемого периметром. Периметры бывают настольными (дуговыми), проекционными и компьютерными. Исследование проводят в отдельности для каждого глаза, при этом второй глаз прикрывают повязкой. Во время исследования поля зрения на периметре пациент садится перед аппаратом так, чтобы удобно разместить подбородок на специальной подставке, исследуемый глаз должен находиться точно напротив фиксируемой взглядом точки, которая расположена в центре периметра. Пациент должен не отрываясь смотреть на эту точку. При этом врач находится сбоку от прибора и перемещает один из объектовв направлении к центру по меридианам через каждые 150. Пациент должен отметить тот момент, когда смотря неподвижно на фиксационную метку, увидит появление движущегося объекта, врач при этом фиксирует градусы, при которых объект был замечен и отмечает их на специальной схеме. Движение объекта необходимо продолжать непосредственно до фиксационной метки, чтобы удостовериться в сохранности зрения на протяжении всего меридиана. В зависимости от остроты зрения применяют объекты различного диаметра. Так при высокой остроте зрения используют объект диаметром 3 мм, при низкой остроте зрения – 5-10 мм. Исследование проводится в основном по 8 меридианам, но более точные результаты можно получить при исследовании по 12 меридианам.

На самой периферии сетчатки светоощущения нет, крайняя периферия её воспринимает только белый свет, а по мере продвижения к центру появляется ощущение синего, жёлтого, красного и зелёного. В центральной части сетчатки различаются все цвета. Таким образом, поле зрения каждого глаза на белый объект характеризуется следующими границами: кнаружи (к виску) – 900, кверху кнаружи – 700, кверху – 50-550, кверху кнутри – 600, кнутри (к носу) – 550, книзу кнутри – 500, книзу – 65-700, книзу кнаружи – 900. Возможны небольшие колебания в пределах 5-100. Исследование полей зрения на другие цвета производится также, как и для белого цвета, но цветными объектами, при этом пациент должен отметить не тот момент, когда он заметил движущийся объект, а тот момент, когда он может назвать его цвет. Очень часто бывает так, что изменений полей зрения на белый цвет нет, при этом на другие цвета можно выявить сужение.

Все результаты врач вносит в специальный бланк, на котором обозначены поля зрения в норме для каждого глаза. Все “выпавшие” участки заштриховываются.

Схема нормальных границ поля зрения, полученная при периметрии левого глаза с использованием белого и цветных тест-объектов (черной линией обозначены границы поля зрения, исследуемого белым тест-объектом, серым цветом закрашено слепое пятно).

При проведении компьютерной периметрии пациент также фиксирует свой взгляд на определённой метке. В различных точках прибора в хаотичном порядке с меняющейся скоростью начинают появляться объекты различной яркости. Как только пациент замечает такой объект, он нажимает на специальную кнопку прибора. Прибор выдаёт результаты обследования, на основании которых врач выставляет точный диагноз.

Длительность процедуры зависит от прибора: от 5 минут на компьютерном периметре и до 20 минут на дуговом и проекционном периметрах.

Необходимо помнить, что сильно нависшие брови, глубоко посаженные глазные яблоки, опущение верхнего века, высокая переносица, попадание раздражителя на область крупного сосуда возле диска зрительного нерва, некачественная коррекция зрения, слишком низкое зрение, а также помехи от оправы очков могут имитировать изменения полей зрения.

Осложнений данный метод обследования не имеет.

Врач офтальмолог Одноочко Е.А