Слайд 2

Генная инженерия-это совокупность методов, позволяющих посредством операций in vitro (в пробирке, вне организма), переносить генетическую информацию из одного организма в другой.

Слайд 3

Цель генной инженерии в получении клеток (в первую очередь бактериальных), способных в промышленных масштабах вырабатывать некоторые «человеческие» белки; в возможности преодолевать межвидовые барьеры и передавать отдельные наследственные признаки одних организмов другим (использование в селекции растений, животных)

Слайд 4

Формальной датой рождения генной инженерии считают 1972 год. Её родоначальником стал американский биохимик Пол Берг.

Слайд 5

Группа исследователей во главе с Полом Бергом, работавшим в Стэнфордском университете, что неподалеку от Сан-Франциско в Калифорнии, сообщила о создании вне организма первой рекомбинантной (гибридной) ДНК. Первая рекомбинантная молекула ДНК состояла из фрагментов кишечной палочки (Eschherihia coli), группы генов самой этой бактерии и полной ДНК вируса SV40, вызывающего развитие опухолей у обезьяны. Такая рекомбинантная структура теоретически могла обладать функциональной активностью в клетках, как кишечной палочки, так и обезьяны. Она могла как челнок «ходить» между бактерией и животным. За эту работу Полу Бергу в 1980 году присуждена Нобелевская премия.

Слайд 6

Вирус SV40

  • Слайд 7

    Основные методы генной инженерии.

    Основные методы генной инженерии были разработаны в начале 70-х годов XX века. Их суть заключается во введении в организм нового гена. Для этого создают специальное генетические конструкции - векторы, т.е. устройство для доставки нового гена в клетку В качестве вектора используют плазмиды.

    Слайд 8

    Плазмида – это кольцевая двухцепочечная молекула ДНК, которая есть в бактериальной клетке.

    Слайд 9

    ГМ-картофель

    Экспериментальное создание генетически модифицированных организмов началось ещё в 70-е годы ХХ века. В Китае стали выращивать табак, устойчивый к пестицидам. В США появились: ГМ-помидоры

    Слайд 10

    Сегодня в США насчитывается более 100 наименований генетически модифицированных продуктов- «трансгенов»-это соя, кукуруза, горох, подсолнечник, рис, картофель, помидоры и другие. Соя Подсолнечник Горох

    Слайд 11

    Генетически модифицированные животные:

    Кролик, светящийся в темноте Лосось

    Слайд 12

    ГМИ входят в состав многих продуктов питания:

    ГМ кукуруза добавляется в кондитерские и хлебобулочные изделия, безалкогольные напитки.

    Слайд 13

    ГМ соя входит в состав рафинированных масел, маргаринов, жиров для выпечки, соусов для салатов, майонезов, макаронных изделий, даже детского питания и других продуктов.

    Слайд 14

    ГМ картофель используется для приготовления чипсов

    Слайд 15

    Чья продукция содержит трансгенные компоненты:

    Nestle (Нестле) Hershey’s (Хёршис) Coca-Cola (Кока-Кола) McDonald’s (Макдоналдс)

    Слайдов: 19 Слов: 971 Звуков: 0 Эффектов: 0

    История генной инженерии. Использованием мутаций, т.е. селекцией, люди начали заниматься задолго до Дарвина и Менделя. Флуоресцентный кролик, выведенный методом генной инженерии. Возможности генной инженерии. Чем же отличается генная инженерия растений (ГИР) от обычной селекции? Отношение к ГМО в мире. Томатное пюре – первый ГМ-продукт, появившийся в Европе в 1996 году. Демонстрация противников ГМ-продуктов в Лондоне. Маркировки, обозначающие отсутствие ГМ компонентов в продукте. Новые ГМ-сорта. Сегодня мало открытой информации о ГМ-продуктах в России. Учёные гарантируют безвредность. - Генная инженерия.ppt

    Генетическая инженерия

    Слайдов: 23 Слов: 2719 Звуков: 0 Эффектов: 0

    Генная инженерия. Генной инженерия. Хромосомный материал состоит из дезоксирибонуклеиновой кислоты (ДНК). История развития и достигнутый уровень технологии. Но такие изменения нельзя контролировать или направлять. Синтезированная таким способом ДНК называется комплементарной (РНК) или кДНК. С помощью рестриктаз ген и вектор можно разрезать на кусочки. Плазмидные технологии легли в основу введения искусственных генов в бактериальные клетки. Такой процесс получил название трансфекция. Полезное влияние генной инженерии. Практическое применение. В сельском хозяйстве удалось генетически изменить десятки продовольственных и кормовых культур. - Генетическая инженерия.ppt

    Генно-инженерные технологии

    Слайдов: 30 Слов: 2357 Звуков: 0 Эффектов: 0

    Этические проблемы генно-инженерных технологий. Поддержание биологического разнообразия. Генная инженерия. Последние годы XX века. Использование новых биотехнологий. Большое внимание. Область человеческих знаний. Эффективная система оценки безопасности ГИО. Вопросы биобезопасности. Глобальный проект. Суть новой технологии. Живой организм. Перенос трансгенов в отдельные живые клетки. Процесс генетической модификации. Технология. Цифра. Треонин. Разработка технологии производства искусственного инсулина. Болезнь. Настоящее время. Промышленное производство антибиотиков. - Генно-инженерные технологии.ppt

    Развитие генной инженерии

    Слайдов: 14 Слов: 447 Звуков: 0 Эффектов: 2

    Биотехнологии Генная инженерия. Одним из видов биотехнологий является генная инженерия. Генная инженерия начала развиваться с 1973 года, когда американские исследователи Стэнли Коэн и Энли Чанг встроили бартериальную плазмиду в ДНК лягушки. Таким образом был найден метод, позволяющий встраивать чужеродные гены в геном определенного организма. Одним из наиболее значимых отраслей в генной инженерии является производство лекарственных препаратов. В основе генной инженерии лежит технология получения рекомбинантной молекулы ДНК. Основной единицей наследовательности любого организма является ген. - Развитие генной инженерии.pptx

    Методы генной инженерии

    Слайдов: 11 Слов: 315 Звуков: 0 Эффектов: 34

    Генная инженерия. Направления генной инженерии. История развития. Раздел молекулярной генетики. Процесс клонирования. Процесс клонирования. Продукты питания. Модифицированные культуры. Продукты питания, полученные на основе генетически модифицированных источников. Возможности генной инженерии. Генетическая инженерия. - Методы генной инженерии.pptx

    Продукты генной инженерии

    Слайдов: 19 Слов: 1419 Звуков: 0 Эффектов: 1

    Генная инженерия. В сельском хозяйстве удалось генетически изменить десятки продовольственных и кормовых культур. Генная инженерия человека. В настоящее время эффективные методы изменения генома человека находятся на стадии разработки. Ребёнок в результате наследует генотип от одного отца и двух матерей. С помощью генотерапии в будущем возможно улучшение генома и нынеживущих людей. Научные факторы опасности генной инженерии. 1. Генная инженерия в корне отличается от выведения новых сортов и пород. Поэтому невозможно предвидеть место встраивания и эффекты добавленного гена. - Продукты генной инженерии.ppt

    Сравнительная геномика

    Слайдов: 16 Слов: 441 Звуков: 0 Эффектов: 0

    Системная биология - модели. Потоковые линейное программирование. Потоковые модели – стационарное состояние. Уравнения баланса. Пространство решений. Что получается (кишечная палочка). Мутанты. Кинетические модели. Пример (абстрактный). Система уравнений. Разные виды кинетических уравнений. Пример (реальный) – синтез лизина в corynebacterium glutamicum. Кинетические уравнения. Проблемы. Результаты. Кинетический анализ регуляции. - Сравнительная геномика.ppt

    Биотехнология

    Слайдов: 17 Слов: 1913 Звуков: 0 Эффектов: 0

    Открытия в области биологии в эпоху нтр. Содержание. Введение. Отдельные биотехнологические процессы (хлебопечение, виноделие) известны с древних времен. Современное состояние биотехнологии. Биотехнология в растениеводстве. Так, азотобактерин обогащает почву не только азотом, но и витаминами, фитогормонами и биорегуляторами. Промышленное получение биогумуса освоено во многих странах. Метод культура тканей. Биотехнологии в животноводстве. Для повышения продуктивности животных нужен полноценный корм. Так, 1 т кормовых дрожжей позволяет сэкономить 5-7 т зерна. Клонирование. Успех Вильмута стал международной сенсацией. - Биотехнология.ppt

    Клеточная биотехнология

    Слайдов: 23 Слов: 1031 Звуков: 0 Эффектов: 1

    Современные достижения клеточной биотехнологии. Получение и применение культур. Культуры клеток животного. Факторы. Преимущества иммобилизированных клеток. Методы иммобилизации клеток. Иммобилизованные клетки в биотехнологии. Культуры клеток. Клеточная биотехнология. Классификация СК. Клеточная биотехнология. Функциональные характеристики СК. Пластичность. Механизмы дифференцировки. Линии мышиной и человеческой тератокарцином. Недостатки линий ЭСК тератокарцином. Перспективы ЭСК в медицине. Эмбрион человека. Гибридомы-продуценты моноклональных антител. Схема получения гибридом. - Клеточная биотехнология.ppt

    Перспективы биотехнологии

    Слайдов: 53 Слов: 2981 Звуков: 0 Эффектов: 3

    Государственная программа развития биотехнологии. Биотехнология в мире и России. Крупнейшие секторы мировой экономики. Системообразующая роль биотехнологии. Глобальные проблемы современности. Мировой рынок биотехнологий. Тренды развития биотехнологии в мире. Возрастание роли и значения биотехнологии. Доля России в мировой биотехнологии. Биоиндустрия в СССР. Биотехнологические производства в РФ. Биотехнология в России. Программа развития биотехнологии. Направления программы. Структура бюджета. Механизмы реализации программы. Государственные целевые программы. Технологические платформы. - Перспективы биотехнологии.ppt

    Генная инженерия и биотехнология

    Слайдов: 69 Слов: 3281 Звуков: 0 Эффектов: 0

    Биотехнология и генетическая инженерия. Биотехнология. Приемы экспериментального вмешательства. Разделы биотехнологии. Операции. Генная инженерия и биотехнология. Ферменты. Расщепление фрагмента ДНК. Схема действия рестриктазы. Расщепление фрагмента ДНК рестриктазой. Нуклеотидные последовательности. Отжиг комплементарных липких концов. Выделение фрагментов ДНК. Схема ферментативного синтеза гена. Нумерация нуклеотидов. Фермент. Синтез кДНК. Выделение фрагментов ДНК, содержащих нужный ген. Векторы в генной инженерии. Генетическая карта. Генетическая карта плазмидного вектора. - Генная инженерия и биотехнология.ppt

    Сельскохозяйственная биотехнология

    Слайдов: 48 Слов: 2088 Звуков: 0 Эффектов: 35

    Сельскохозяйственная биотехнология как основа повышения урожайности. Литература. Сельскохозяйственная биотехнология. Фитобиотехнология. Этапы развития фитобиотехнологии. Способность к неограниченному росту. Значение микро-и макроэлементов. Метод получения изолированных протопластов. Метод электрослияния изолированных протопластов. Направления генетической модификации растений. Трансгенные растения. Этапы получения трансгенных растений. Введение гена и его экспрессия. Трансформация растений. Структура Ti-плазмиды. Vir-область. Векторная система. Промотор. Гены-маркеры. - Сельскохозяйственная биотехнология.ppt

    Биообъекты

    Слайдов: 12 Слов: 1495 Звуков: 0 Эффектов: 0

    Методы совершенствования биообъектов. Классификация продуктов биотехнологических производств. Сверхсинтез. Механизмы координации химических превращений. Низкомолекулярные метаболиты. Продуценты. Метаболит-индуктор. Репрессия. Катаболитная репрессия. Методология селекции мутантов. Выключение механизма ретроингибирования. Высокопродуктивные организмы. - Биообъекты.ppsx

    Множественные выравнивания

    Слайдов: 30 Слов: 1202 Звуков: 0 Эффектов: 2

    Множественные выравнивания. Можно ли редактировать множественное выравнивание? Локальные множественные выравнивания. Что такое множественное выравнивание? Какое выравнивание интереснее? Какие бывают выравнивания? Выравнивания. Зачем нужно множественное выравнивание? Как выбрать последовательности для множественного выравнивания? Подготовка выборки. Как можно строить глобальное множественное выравнивание? Алгоритм ClustalW – пример эвристического прогрессивного алгоритма. Руководящее дерево. Современные методы построения множественного выравнивания (MSA, multiple sequence alignment). -

    Генная Инженерия
    Работу выполнил ученик 10 класса – Кириллов Роман.

    Генетическая инженерия
    Генетическая инжене́рия (генная инженерия) - совокупность приёмов, методов и технологий получения рекомбинантных РНК и ДНК, выделения генов из организма (клеток), осуществления манипуляций с генами и введения их в другие организмы.

    Генетическая инженерия не является наукой в широком смысле, но является инструментом биотехнологии, используя методы таких биологических наук, как молекулярная и клеточная биология, цитология, генетика, микробиология, вирусология.
    Жители Кении проверяют, как растет новый трансгенный сорт зерновых, устойчивых к насекомым-вредителям

    История развития и достигнутый уровень технологии
    Во второй половине XX века было сделано несколько важных открытий и изобретений, лежащих в основе генной инженерии. Успешно завершились многолетние попытки «прочитать» ту биологическую информацию, которая «записана» в генах. Эта работа была начата английским учёным Ф. Сенгером и американским учёным У. Гилбертом (Нобелевская премия по химии 1980 г.). Как известно, в генах содержится информация-инструкция для синтеза в организме молекул РНК и белков, в том числе ферментов. Чтобы заставить клетку синтезировать новые, необычные для неё вещества, надо чтобы в ней синтезировались соответствующие наборы ферментов. А для этого необходимо или целенаправленно изменить находящиеся в ней гены, или ввести в неё новые, ранее отсутствовавшие гены. Изменения генов в живых клетках - это мутации. Они происходят под действием, например, мутагенов - химических ядов или излучений.
    Фредерик Сенгер
    Уолтер Гилберт

    Генная инженерия человека
    В применении к человеку генная инженерия могла бы применяться для лечения наследственных болезней. Однако, технически, есть существенная разница между лечением самого пациента и изменением генома* его потомков.
    *Гено́м - совокупность всех генов организма; его полный хромосомный набор.
    Нокаутные мыши


    Нокаут гена. Для изучения функции того или иного гена может быть применен нокаут гена (gene knockout). Так называется техника удаления одного или большего количества генов, что позволяет исследовать последствия подобной мутации. Для нокаута синтезируют такой же ген или его фрагмент, изменённый так, чтобы продукт гена потерял свою функцию.

    Применение в научных исследованиях
    Искусственная экспрессия. Логичным дополнением нокаута является искусственная экспрессия, то есть добавление в организм гена, которого у него ранее не было. Этот способ генной инженерии также можно использовать для исследования функции генов. В сущности процесс введения дополнительных генов таков же, как и при нокауте, но существующие гены не замещаются и не повреждаются.

    Применение в научных исследованиях
    Визуализация продуктов генов. Используется, когда задачей является изучение локализации продукта гена. Одним из способов мечения является замещение нормального гена на слитый с репортёрным элементом, например, с геном зелёного флуоресцентного белка
    Схема строения зелёного флуоресцентного белка.

    1 слайд

    2 слайд

    Историческая справка В 1953 году Дж. Уотсон и Ф. Крик создали двуспиральную модель ДНК, на рубеже 50 – 60-х годов 20 века были выяснены свойства генетического кода. В 1970 году Г.Смитом был впервые выделен ряд ферментов – рестриктаз, пригодных для генно-инженерных целей. Комбинирование ДНК-рестриктаз (для разрезания молекул ДНК на определенные фрагменты) и выделенных еще в 1967 г. ферментов – ДНК-лигаз (для «сшивания» фрагментов в произвольной последовательности) по праву можно считать центральным звеном в технологии генной инженерии. В 1972 году П. Берг, С. Коэн, Х. Бойер создали первую рекомбинантную ДНК. С начала 1980-х гг. достижения генной инженерии начинают использоваться на практике. С 1996 г. генетически модифицированные начинают использоваться в сельском хозяйстве. Уотсон и Крик

    3 слайд

    Задачи генной инженерии Придание устойчивости к ядохимикатам Придание устойчивости к вредителям и болезням Повышение продуктивности Придание особых качеств

    4 слайд

    Технология 1. Получение изолированного гена. 2. Введение гена в вектор для встраивания в организм. 3. Перенос вектора с конструкцией в модифицируемый организм-рецепиент. 4. Молекулярное клонирование. 5. Отбор ГМО

    5 слайд

    Суть технологии заключается в направленном, по заданной программе конструировании молекулярных генетических систем вне организма с последующим внедрением созданных конструкций в живой организм. В результате достигается их включение и активность в данном организме и у его потомства. Возможности генной инженерии – генетическая трансформация, перенос чужеродных генов и других материальных носителей наследственности в клетки растений, животных и микроорганизмов, получение генно-инженерно-модифицированных организмов с новыми уникальными генетическими, биохимическими и физиологическими свойствами и признаками, делают это направление стратегическим. Трансгенная мышь

    6 слайд

    Практические достижения современной генной инженерии Созданы клонотеки, представляющие собой коллекции клонов бактерий. Каждый из этих клонов содержит фрагменты ДНК определенного организма (дрозофилы, человека и других). На основе трансформированных штаммов вирусов, бактерий и дрожжей осуществляется промышленное производство инсулина, интерферона, гормональных препаратов. На стадии испытаний находится производство белков, позволяющих сохранить свертываемость крови при гемофилии, и других лекарственных препаратов. Созданы трансгенные высшие организмы, в клетках которых успешно функционируют гены совершенно других организмов. Широко известны генетически защищенные генно-модифицированные растения, устойчивые к высоким дозам определенных гербицидов, к вредителям. Среди трансгенных растений лидирующие позиции занимают: соя, кукуруза, хлопок, рапс. Овечка Долли

    7 слайд

    Эколого-генетические риски ГМ-технологий Генная инженерия относится к технологиям высокого уровня. Высокие биотехнологии характеризуются высокой наукоемкостью. ГМ-технологии используются как в рамках обычного сельскохозяйственного производства, так и в других областях человеческой деятельности: в здравоохранении, в промышленности, в различных областях науки, при планировании и проведении природоохранных мероприятий. Любые технологии высокого уровня могут быть опасными для человека и окружающей его среды, поскольку последствия их применения непредсказуемы. Для снижения вероятности неблагоприятных эколого-генетических последствий применения генно-инженерных технологий постоянно разрабатываются новые подходы. Например, трансгенез (внедрение в геном генетически модифицируемого организма чужеродных генов) в ближайшем будущем может быть вытеснен цисгенезом (внедрение в геном генетически модифицируемого организма генов этого же или близкородственного вида).

    Генная инженерия находит широкое практическое применение в отраслях народного хозяйства, таких как микробиологическая промышленность, фармакологическая промышленность, пищевая промышленность и сельское хозяйство. Генная инженерия находит широкое практическое применение в отраслях народного хозяйства, таких как микробиологическая промышленность, фармакологическая промышленность, пищевая промышленность и сельское хозяйство.


    Одним из наиболее значимых отраслей в генной инженерии является производство лекарственных препаратов. Современные технологии производства различных лекарств позволяют излечивать тяжелейшие заболевания, или хотя бы замедлять их развитие. Одним из наиболее значимых отраслей в генной инженерии является производство лекарственных препаратов. Современные технологии производства различных лекарств позволяют излечивать тяжелейшие заболевания, или хотя бы замедлять их развитие.


    С развитием генной инженерии всё чаще стали проводить различные опыты над животными, в результате которых ученые добивались своеобразной мутации организмов. С развитием генной инженерии всё чаще стали проводить различные опыты над животными, в результате которых ученые добивались своеобразной мутации организмов. Так, например, компания «Lifestyle Pets» создала с помощью генной инженерии гипоаллергенного кота, названного Ашера ГД. В организм животного был введен некий ген, позволявший «обходить заболевания стороной». Так, например, компания «Lifestyle Pets» создала с помощью генной инженерии гипоаллергенного кота, названного Ашера ГД. В организм животного был введен некий ген, позволявший «обходить заболевания стороной».



    С помощью генной инженерии исследователи из Университета Пенсильвании представили новый метод производства вакцин: с помощью генетически сконструированных грибов. В результате был ускорен процесс производства вакцин, что может, по мнению пенсильванцев, пригодиться в случае биотеррористической атаки или вспышки птичьего гриппа. С помощью генной инженерии исследователи из Университета Пенсильвании представили новый метод производства вакцин: с помощью генетически сконструированных грибов. В результате был ускорен процесс производства вакцин, что может, по мнению пенсильванцев, пригодиться в случае биотеррористической атаки или вспышки птичьего гриппа.


    Как уже упоминалось выше, развитие генной инженерии не могло не отразиться на производстве препаратов, способствующих скорейшему выздоровлению пациента. Так, полученные путем все той же генной инженерии, бактерии семейства Clostridium, введенные в тело, растут и размножаются только в бедных кислородом частях опухолей, которые являются наиболее сложно излечимыми и по сей день. Как уже упоминалось выше, развитие генной инженерии не могло не отразиться на производстве препаратов, способствующих скорейшему выздоровлению пациента. Так, полученные путем все той же генной инженерии, бактерии семейства Clostridium, введенные в тело, растут и размножаются только в бедных кислородом частях опухолей, которые являются наиболее сложно излечимыми и по сей день.


    Теперь умеют уже синтезировать гены, и с помощью таких синтезированных генов, введенных в бактерии, получают ряд веществ, в частности гормоны и интерферон. Их производство составило важную отрасль биотехнологии. Теперь умеют уже синтезировать гены, и с помощью таких синтезированных генов, введенных в бактерии, получают ряд веществ, в частности гормоны и интерферон. Их производство составило важную отрасль биотехнологии. Интерферон – белок, синтезируемый организмом в ответ на вирусную инфекцию, изучают сейчас как возможное средство лечения рака и СПИДа. Понадобились бы тысячи литров крови человека, чтобы получить такое количество интерферона, какое дает всего один литр бактериальной культуры. Ясно, что выигрыш от массового производства этого вещества очень велик. Очень важную роль играет также получаемый на основе микробиологического синтеза инсулин, необходимый для лечения диабета. Методами генной инженерии удалось создать и ряд вакцин, которые испытываются сейчас для проверки их эффективности против вызывающего СПИД вируса иммунодефицита человека (ВИЧ). С помощью рекомбинантной ДНК получают в достаточных количествах и человеческий гормон роста, единственное средство лечения редкой детской болезни – гипофизарной карликовости. Интерферон – белок, синтезируемый организмом в ответ на вирусную инфекцию, изучают сейчас как возможное средство лечения рака и СПИДа. Понадобились бы тысячи литров крови человека, чтобы получить такое количество интерферона, какое дает всего один литр бактериальной культуры. Ясно, что выигрыш от массового производства этого вещества очень велик. Очень важную роль играет также получаемый на основе микробиологического синтеза инсулин, необходимый для лечения диабета. Методами генной инженерии удалось создать и ряд вакцин, которые испытываются сейчас для проверки их эффективности против вызывающего СПИД вируса иммунодефицита человека (ВИЧ). С помощью рекомбинантной ДНК получают в достаточных количествах и человеческий гормон роста, единственное средство лечения редкой детской болезни – гипофизарной карликовости.


    Еще одно перспективное направление в медицине, связанное с рекомбинантной ДНК, – т.н. генная терапия. В этих работах, которые пока еще не вышли из экспериментальной стадии, в организм для борьбы с опухолью вводится сконструированная по методу генной инженерии копия гена, кодирующего мощный противоопухолевый фермент. Генную терапию начали применять также для борьбы с наследственными нарушениями в иммунной системе. Еще одно перспективное направление в медицине, связанное с рекомбинантной ДНК, – т.н. генная терапия. В этих работах, которые пока еще не вышли из экспериментальной стадии, в организм для борьбы с опухолью вводится сконструированная по методу генной инженерии копия гена, кодирующего мощный противоопухолевый фермент. Генную терапию начали применять также для борьбы с наследственными нарушениями в иммунной системе. В сельском хозяйстве удалось генетически изменить десятки продовольственных и кормовых культур. В животноводстве использование гормона роста, полученного биотехнологическим путем, позволило повысить удои молока; с помощью генетически измененного вируса создана вакцина против герпеса у свиней. В сельском хозяйстве удалось генетически изменить десятки продовольственных и кормовых культур. В животноводстве использование гормона роста, полученного биотехнологическим путем, позволило повысить удои молока; с помощью генетически измененного вируса создана вакцина против герпеса у свиней.


    Генная инженерия человека В применении к человеку генная инженерия могла бы применяться для лечения наследственных болезней. Однако, технически, есть существенная разница между лечением самого пациента и изменением генома его потомков. В применении к человеку генная инженерия могла бы применяться для лечения наследственных болезней. Однако, технически, есть существенная разница между лечением самого пациента и изменением генома его потомков.генома В настоящее время эффективные методы изменения генома человека находятся на стадии разработки. Долгое время генетическая инженерия обезьян сталкивалась с серьезными трудостями, однако в 2009 году эксперименты увенчались успехом: дал потомство первый генетически модифицированный примат - игрунка обыкновенная. В этом же году в Nature появилась публикация об успешном исцелении взрослого самца обезъяны от дальтонизма. В настоящее время эффективные методы изменения генома человека находятся на стадии разработки. Долгое время генетическая инженерия обезьян сталкивалась с серьезными трудостями, однако в 2009 году эксперименты увенчались успехом: дал потомство первый генетически модифицированный примат - игрунка обыкновенная. В этом же году в Nature появилась публикация об успешном исцелении взрослого самца обезъяны от дальтонизма.игрунка обыкновеннаяNatureдальтонизмаигрунка обыкновеннаяNatureдальтонизма


    Генная инженерия человека Хотя и в небольшом масштабе, генная инженерия уже используется для того, чтобы дать шанс забеременеть женщинам с некоторыми разновидностями бесплодия. Для этого используют яйцеклетки здоровой женщины. Ребёнок в результате наследует генотип от одного отца и двух матерей. Хотя и в небольшом масштабе, генная инженерия уже используется для того, чтобы дать шанс забеременеть женщинам с некоторыми разновидностями бесплодия. Для этого используют яйцеклетки здоровой женщины. Ребёнок в результате наследует генотип от одного отца и двух матерей.генотип При помощи генной инженерии можно получать потомков с улучшенной внешностью, умственными и физическими способностями, характером и поведением. С помощью генотерапии в будущем возможно улучшение генома и нынеживущих людей. В принципе можно создавать и более серьёзные изменения, но на пути подобных преобразований человечеству необходимо решить множество этических проблем. При помощи генной инженерии можно получать потомков с улучшенной внешностью, умственными и физическими способностями, характером и поведением. С помощью генотерапии в будущем возможно улучшение генома и нынеживущих людей. В принципе можно создавать и более серьёзные изменения, но на пути подобных преобразований человечеству необходимо решить множество этических проблем. генотерапии


    Научные факторы опасности генной инженерии 1. Генная инженерия в корне отличается от выведения новых сортов и пород. Исскуственное добавление чужеродных генов сильно нарушает точно отрегулированный генетический контроль нормальной клетки. Манипулирование генами коренным образом отличается от комбинирования материнских и отцовских хромосом, которое происходит при естественном скрещивании. 2. В настоящее время генная инженерия технически несовершенна, так как она не в состоянии управлять процессом встраивания нового гена. Поэтому невозможно предвидеть место встраивания и эффекты добавленного гена. Даже в том случае, если местоположение гена окажется возможным установить после его встраивания в геном, имеющиеся сведения о ДНК очень неполны для того, чтобы предсказать результаты.


    3. В результате искусственного добавления чужеродного гена непредвиденно могут образоваться опасные вещества. В худшем случае это могут быть токсические вещества, аллергены или другие вредные для здоровья вещества. Сведения о подобного рода возможностях ещё очень неполны. 4. Не существует совершенно надёжных методов проверки на безвредность. Более 10% серьёзных побочных эффектов новых лекарств не возможно выявить несмотря на тщательно проводимые исследования на безвредность. Степень риска того, что опасные свойства новых, модифицированных с помощью генной инженерии продуктов питания, останутся незамеченными, вероятно, значительно больше, чем в случае лекарств. 5. Существующие в настоящее время требования по проверке на безвредность крайне недостаточны. Они совершенно явно составлены таким образом, чтобы упростить процедуру утверждения. Они позволяют использовать крайне нечувствительные методы проверки на безвредность. Поэтому существует значительный риск того, что опасные для здоровья продукты питания смогут пройти проверку незамеченными.


    6. Созданные до настоящего времени с помощью генной инженерии продукты питания не имеют сколько-нибудь значительной ценности для человечества. Эти продукты удовлетворяют, главным образом, лишь коммерческие интересы. 7. Знания о действии на окружающую среду модифицированных с помощью генной инженерии организмов, привнесённых туда, совершенно недостаточны. Не доказано ещё, что модифицированные с помощью генной инженерии организмы не окажут вредного воздействия на окружающую среду. Экологами высказаны предположения о различных потенциальных экологических осложнениях. Например, имеется много возможностей для неконтролируемого распространения потенциально опасных генов, используемых генной инженерией, в том числе передача генов бактериями и вирусами. Осложнения, вызванные в окружающей среде, вероятно, невозможно будет исправить, так как выпущенные гены невозможно взять обратно.


    8. Могут возникнуть новые и опасные вирусы. Экспериментально показано, что встроенные в геном гены вирусов могут соединяться с генами инфекционных вирусов (так называемая рекомбинация). Такие новые вирусы могут быть более агрессивными, чем исходные. Вирусы могут стать также менее видоспецифичными. Например, вирусы растений могут стать вредными для полезных насекомых, животных, а также людей. 9. Знания о наследственном веществе, ДНК, очень неполны. Известно о функции лишь трёх процентов ДНК. рискованно манипулировать сложными системами, знания о которых неполны. Обширный опыт в области биологии, экологии и медицины показывает, что это может вызвать серьёзные непредсказуемые проблемы и расстройства. 10. Генная инженерия не поможет решить проблему голода в мире. Утверждение, что генная инженерия может внести существенный вклад в разрешение проблемы голода в мире, является научно необоснованным мифом.


    Продукты питания, подвергавшиеся генной инженерии или которые могут содержать генетически созданные ингридиетны Амилаза - используется при приготовлении хлеба муки, крахмала Амилаза - используется при приготовлении хлеба муки, крахмала Сидр, вино, пиво и так далее Сидр, вино, пиво и так далее Разрыхлитель (пекарский порошок) – добавки Разрыхлитель (пекарский порошок) – добавки Хлеб - содержит сою Хлеб - содержит сою Масло Канола Масло Канола Каталаза - используется при приготовлении напитков, яичного порошка, сыворотки Каталаза - используется при приготовлении напитков, яичного порошка, сыворотки Зерновые культуры (крупы) - содержат сою Зерновые культуры (крупы) - содержат сою Химозин Химозин Продукты из зерновых культур (круп) Продукты из зерновых культур (круп) Крахмал из зерновых культур Крахмал из зерновых культур Сироп из зерновых культур Сироп из зерновых культур


    Пищевые добавки - содержат дрожжи Пищевые добавки - содержат дрожжи Фруктовые соки - могут изготовляться их генетических модифицированных фруктов Фруктовые соки - могут изготовляться их генетических модифицированных фруктов Сироп глюкозы Сироп глюкозы Мороженое - может содержать сою, сироп глюкозы Мороженое - может содержать сою, сироп глюкозы Кукуруза (маис) Кукуруза (маис) Макароны (спагетти, вермишель) - могут содержать сою Макароны (спагетти, вермишель) - могут содержать сою Картофель Картофель Легкие напитки - могут содержать сироп глюкозы Легкие напитки - могут содержать сироп глюкозы Соевые бобы, продукты, мясо Соевые бобы, продукты, мясо Газированные Фруктовые напитки Газированные Фруктовые напитки Тофу Тофу Помидоры Помидоры Дрожжи (закваска) Дрожжи (закваска) Сахар Сахар


    Какие перспективы генной инженерии? С развитием генетических технологий человечество впервые в истории получает возможность с помощью медицинской генетики уменьшить груз патологической наследственности, накопленной в процессе эволюции, избавиться от многих наследственных заболеваний, в частности, путем замены патологического гена нормальным.