Умение находить степень окисления химических элементов является необходимым условием для успешного решения химический уравнений, описывающих окислительно-восстановительные реакции. Без него вы не сможете составить точную формулу вещества, получившегося в результате реакции между различными химическими элементами. В результате решение химических задач, построенных на подобных уравнениях, будет либо невозможным, либо ошибочным.

Понятие степени окисления химического элемента
Степень окисления – это условная величина, с помощью которой принято описывать окислительно-восстановительные реакции. Численно она равна количеству электронов, которое отдает атом приобретающий положительный заряд, или количеству электронов, которое присоединяет к себе атом, приобретающий отрицательный заряд.

В окислительно-восcтановительных реакциях понятие степень окисления используется для определения химических формул соединений элементов, получающихся в результате взаимодействия нескольких веществ.

На первый взгляд может показаться, что степень окисления эквивалентна понятию валентности химического элемента, но это не так. Понятие валентность используется для количественного выражения электронного взаимодействия в ковалентных соединениях, то есть в соединениях, образованных за счет образования общих электронных пар. Степень окисления используется для описания реакций, которые сопровождаются отдачей или присоединением электронов.

В отличии от валентности, являющейся нейтральной характеристикой, степень окисления может иметь положительное, отрицательное, или нулевое значение. Положительное значение соответствует числу отданных электронов, а отрицательная числу присоединенных. Нулевое значение означает, что элемент находится либо в форме простого вещества, либо он был восстановлен до 0 после окисления, либо окислен до нуля после предшествующего восстановления.

Как определить степень окисления конкретного химического элемента
Определение степени окисления для конкретного химического элемента подчиняется следующим правилам:

  1. Степень окисления простых веществ всегда равна нулю.
  2. Щелочные металлы, которые находятся в первой группе периодической таблицы, имеют степень окисления +1.
  3. Щелочноземельные металлы, занимающие в периодической таблице вторую группу, имеют степень окисления +2.
  4. Водород в соединениях с различными неметаллами всегда проявляет степень окисления +1, а в соединениях с металлами +1.
  5. Степень окисления молекулярного кислорода во всех соединениях, рассматриваемых в школьном курсе неорганической химии, равна -2. Фтора -1.
  6. При определении степени окисления в продуктах химических реакций исходят из правила электронейтральности, в соответствии с которым сумма степеней окисления различных элементов, входящих в состав вещества, должна быть равна нулю.
  7. Алюминий во всех соединениях проявляет степень окисления равную +3.
Дальше, как правило, начинаются сложности, так как остальные химические элементы демонстрируют и проявляют переменную степень окисления в зависимости от типов атомов других веществ, участвующих в соединении.

Различают высшую, низшую и промежуточную степени окисления. Высшая степень окисления, как и валентность, соответствует номеру группы химического элемента в периодической таблице, но имеет при этом положительное значение. Низшая степень окисления численно равна разности между числом 8 группой элемента. Промежуточной степенью окисления будет любой число в диапазоне от низшей степени окисления до высшей.

Чтобы помочь вам сориентироваться в многообразии степеней окисления химических элементов предлагаем вашему вниманию следующую вспомогательную таблицу. Выберите в ней интересующий вас элемент и вы получите значения его возможных степеней окисления. В скобках будут указаны редко встречающиеся значения.

Степени окисления элементов. Как найти степени окисления?

1) В простом веществе степень окисления любого элемента равна 0. Примеры: Na 0 , H 0 2 , P 0 4 .

2) Необходимо запомнить элементы, для которых характерны неизменные степени окисления. Все они перечислены в таблице.


3) Поиск степеней окисления остальных элементов основан на простом правиле:

В нейтральной молекуле сумма степеней окисления всех элементов равна нулю, а в ионе - заряду иона.


Рассмотрим применение этого правила на простых примерах.

Пример 1 . Необходимо найти степени окисления элементов в аммиаке (NH 3).

Решение . Мы уже знаем (см. 2), что ст. ок. водорода равна +1. Осталось найти эту характеристику для азота. Пусть х - искомая степень окисления. Составляем простейшее уравнение: х + 3*(+1) = 0. Решение очевидно: х = -3. Ответ: N -3 H 3 +1 .


Пример 2 . Укажите степени окисления всех атомов в молекуле H 2 SO 4 .

Решение . Степени окисления водорода и кислорода уже известны: H(+1) и O(-2). Составляем уравнение для определения степени окисления серы: 2*(+1) + х + 4*(-2) = 0. Решая данное уравнение, находим: х = +6. Ответ: H +1 2 S +6 O -2 4 .


Пример 3 . Рассчитайте степени окисления всех элементов в молекуле Al(NO 3) 3 .

Решение . Алгоритм остается неизменным. В состав "молекулы" нитрата алюминия входит один атом Al(+3), 9 атомов кислорода (-2) и 3 атома азота, степень окисления которого нам и предстоит вычислить. Соответствующее уравнение: 1*(+3) + 3х + 9*(-2) = 0. Ответ: Al +3 (N +5 O -2 3) 3 .


Пример 4 . Определите степени окисления всех атомов в ионе (AsO 4) 3- .

Решение . В данном случае сумма степеней окисления будет равна уже не нулю, а заряду иона, т. е., -3. Уравнение: х + 4*(-2) = -3. Ответ: As(+5), O(-2).


А можно ли определить степени окисления сразу нескольких элементов, пользуясь похожим уравнением? Если рассматривать данную задачу с точки зрения математики, ответ будет отрицательным. Линейное уравнение с двумя переменными не может иметь однозначного решения. Но ведь мы решаем не просто уравнение!

Пример 5 . Определите степени окисления всех элементов в (NH 4) 2 SO 4 .

Решение . Степени окисления водорода и кислорода известны, серы и азота - нет. Классический пример задачи с двумя неизвестными! Будем рассматривать сульфат аммония не как единую "молекулу", а как объединение двух ионов: NH 4 + и SO 4 2- . Заряды ионов нам известны, в каждом из них содержится лишь один атом с неизвестной степенью окисления. Пользуясь опытом, приобретенным при решении предыдущих задач, легко находим степени окисления азота и серы. Ответ: (N -3 H 4 +1) 2 S +6 O 4 -2 .

Вывод: если в молекуле содержится несколько атомов с неизвестными степенями окисления, попробуйте "разделить" молекулу на несколько частей.


Пример 6 . Укажите степени окисления всех элементов в CH 3 CH 2 OH.

Решение . Нахождение степеней окисления в органических соединениях имеет свою специфику. В частности, необходимо отдельно находить степени окисления для каждого атома углерода. Рассуждать можно следующим образом. Рассмотрим, например, атом углерода в составе метильной группы. Данный атом С соединен с 3 атомами водорода и соседним атомом углерода. По связи С-Н происходит смещение электронной плотности в сторону атома углерода (т. к. электроотрицательность С превосходит ЭО водорода). Если бы это смещение было полным, атом углерода приобрел бы заряд -3.

Атом С в составе группы -СН 2 ОН связан с двумя атомами водорода (смещение электронной плотности в сторону С), одним атомом кислорода (смещение электронной плотности в сторону О) и одним атомом углерода (можно считать, что смещения эл. плотности в этом случае не происходит). Степень окисления углерода равна -2 +1 +0 = -1.

Ответ: С -3 H +1 3 C -1 H +1 2 O -2 H +1 .

Copyright Repetitor2000.ru, 2000-2015

Во многих школьных учебниках и пособиях учат составлять формулы по валентностям, даже для соединений с ионными связями. Для упрощения процедуры составления формул это, на наш взгляд, допустимо. Но нужно понимать, что это не совсем корректно ввиду вышеизложенной причины.

Более универсальным понятием является понятие о степени окисления. По значениям степеней окисления атомов так же как и по значениям валентности можно составлять химические формулы и записывать формульные единицы.

Степень окисления - это условный заряд атома в частице (молекуле, ионе, радикале), вычисленный в приближении того, что все связи в частице являются ионными.

Прежде чем определять степени окисления, необходимо сравнить электроотрицательности связуемых атомов. Атом с большим значением электроотрицательности имеет отрицательную степень окисления, а с меньшим положительную.


С целью объективного сравнения значений электроотрицательности атомов при расчёте степеней окисления, в 2013 году IUPAC дал рекомендацию использовать шкалу Аллена.

* Так, например, по шкале Аллена электроотрицательность азота 3,066, а хлора 2,869.

Проиллюстрируем данное выше определение на примерах. Составим структурную формулу молекулы воды.

Ковалентные полярные связи O-H обозначены синим цветом.

Представим, что обе связи являются не ковалентными, а ионными. Если бы они были ионными, то с каждого атома водорода на более электроотрицательный атом кислорода перешло бы по одному электрону. Обозначим эти переходы синими стрелками.

*В этом примере, стрелка служит для наглядной иллюстрации полного перехода электронов, а не для иллюстрации индуктивного эффекта.

Легко заметить, что число стрелок показывает количество перешедших электронов, а их направление - направление перехода электронов.

На атом кислорода направлено две стрелки, это значит, что к атому кислорода переходит два электрона: 0 + (-2) = -2. На атоме кислорода образуется заряд равный -2. Это и есть степень окисления кислорода в молекуле воды.

С каждого атома водорода уходит по одному электрону: 0 - (-1) = +1. Значит, атомы водорода имеют степень окисления равную +1.

Сумма степеней окисления всегда равняется общему заряду частицы.

Например, сумма степеней окисления в молекуле воды равна: +1(2) + (-2) = 0. Молекула - электронейтральная частица.

Если мы вычисляем степени окисления в ионе, то сумма степеней окисления, соответственно, равна его заряду.

Значение степени окисления принято указывать в верхнем правом углу от символа элемента. Причём, знак пишут впереди числа . Если знак стоит после числа - то это заряд иона.


Например, S -2 - атом серы в степени окисления -2, S 2- - анион серы с зарядом -2.

S +6 O -2 4 2- - значения степеней окисления атомов в сульфат-анионе (заряд иона выделен зелёным цветом).

Теперь рассмотрим случай, когда соединение имеет смешанные связи: Na 2 SO 4 . Связь между сульфат-анионом и катионами натрия - ионная, связи между атомом серы и атомами кислорода в сульфат-ионе - ковалентные полярные. Запишем графическую формулу сульфата натрия, а стрелками укажем направление перехода электронов.

*Структурная формула отображает порядок ковалентных связей в частице (молекуле, ионе, радикале). Структурные формулы применяют только для частиц с ковалентными связями. Для частиц с ионными связями понятие структурной формулы не имеет смысла. Если в частице имеются ионные связи, то применяют графическую формулу.

Видим, что от центрального атома серы уходит шесть электронов, значит степень окисления серы 0 - (-6) = +6.

Концевые атомы кислорода принимают по два электрона, значит их степени окисления 0 + (-2) = -2

Мостиковые атомы кислорода принимают по два электрона, их степень окисления равна -2.

Определить степени окисления возможно и по структурно-графической формуле, где черточками указывают ковалентные связи, а у ионов указывают заряд.

В этой формуле мостиковые атомы кислорода уже имеют единичные отрицательные заряды и к ним дополнительно приходит по электрону от атома серы -1 + (-1) = -2, значит их степени окисления равны -2.


Степень окисления ионов натрия равна их заряду, а т.е. +1.

Определим степени окисления элементов в надпероксиде (супероксиде) калия. Для этого составим графическую формулу супероксида калия, стрелочкой покажем перераспределение электронов. Связь O-O является ковалентной неполярной, поэтому в ней перераспределение электронов не указывается.

* Надпероксид-анион является ион-радикалом. Формальный заряд одного атома кислорода равен -1, а другого, с неспаренным электроном, 0.

Видим, что степень окисления калия равна +1. Степень окисления атома кислорода, записанного в формуле напротив калия, равна -1. Степень окисления второго атома кислорода равна 0.

Точно также можно определить степени окисления и по структурно-графической формуле.

В кружочках указаны формальные заряды иона калия и одного из атомов кислорода. При этом значения формальных зарядов совпадают со значениями степеней окисления.

Так как оба атома кислорода в надпероксид-анионе имеют разные значения степени окисления, то можно вычислить средне-арифметическую степень окисления кислорода.


Она будет равна / 2 = - 1/2 = -0,5.

Значения среднеарифметических степеней окисления обычно указывают в брутто-формулах или формульных единицах, чтобы показать что сумма степеней окисления равна общему заряду системы.

Для случая с надпероксидом: +1 + 2(-0,5) = 0

Легко определить степени окисления используя электронно-точечные формулы, в которых указывают точками неподеленные электронные пары и электроны ковалентных связей.

Кислород - элемент VIА - группы, следовательно в его атоме 6 валентных электронов. Представим, что в молекуле воды связи ионные, в этом случае атом кислорода получил бы октет электронов.

Степень окисления кислорода соответственно равна: 6 - 8 = -2.

А атомов водорода: 1 - 0 = +1

Умение определять степени окисления по графическим формулам бесценно для понимания сущности этого понятия, так же это умение потребуется в курсе органической химии. Если же мы имеем дело с неорганическими веществами, то необходимо уметь определять степени окисления по молекулярным формулам и формульным единицам.

Для этого прежде всего нужно понять, что степени окисления бывают постоянными и переменными. Элементы, проявляющие постоянную степень окисления необходимо запомнить.

Любой химический элемент характеризуется высшей и низшей степенями окисления.

Низшая степень окисления - это заряд, который приобретает атом в результате приёма максимального количества электронов на внешний электронный слой.


Ввиду этого, низшая степень окисления имеет отрицательное значение, за исключением металлов, атомы которых электроны никогда не принимают ввиду низких значений электроотрицательности. Металлы имеют низшую степень окисления равную 0.


Большинство неметаллов главных подгрупп старается заполнить свой внешний электронный слой до восьми электронов, после этого атом приобретает устойчивую конфигурацию (правило октета ). Поэтому, чтобы определить низшую степень окисления, необходимо понять сколько атому не хватает валентных электронов до октета.

Например, азот - элемент VА группы, это значит, что в атоме азота пять валентных электронов. До октета атому азота не хватает трёх электронов. Значит низшая степень окисления азота равна: 0 + (-3) = -3

Н.П.Танцура

Периодическая система: некоторые теоретические сведения

Главными характеристиками вещества являются его кислотно-основные и окислительно-восстановительные свойства. Именно они определяют, с какими веществами в окружающей среде, химической или биохимической системе, технологической установке будет реагировать рассматриваемое вещество. В пособии уделено большое внимание рассмотрению кислотно-основных свойств веществ и закономерностям их изменения в периодической системе.

В периодической системы (ПС) можно выделить два полюса свойств элементов: металлические и неметаллические. К металлам относят элементы, атомы которых могут только отдавать электроны в химических процессах. При этом степень окисления металлов в образующихся соединениях положительна (+). Неметаллы - это вещества, атомы которых способны как присоединять, так и отдавать электроны, поэтому степени окисления у них могут быть положительными и отрицательными по знаку.

В восьми групповой периодической системе типичные металлы находятся в ее левой части, а неметаллы - в правой верхней части. При этом нарастание металлических свойств по главным подгруппам усиливается сверху вниз, так что самые активные металлы находятся в левом нижнем углу ПС(цезий,франций), а самые типичные неметаллы- в правом верхнем углу ПС (самый активный из них фтор – в переводе с греческого «разрушающий», атом этого элемента может только принимать электрон). Перечислим типичные неметаллы: H , B , C , N , O , F , Si , P , S , Cl , Br , I .

Большинство элементов в ПС (начиная главным образом с IV группы) имеет несколько степеней окисления в соединениях, правила определения максимальных и минимальных значений степеней окисления приведены ниже. Ограниченное количество элементов имеют одну степень окисления в соединениях, наиболее распространенные из них следующие: щелочные металлы и Ag- +1; Be, Mg, Ca, Ba, Sr, Zn, Cd, Hg- +2, Al, Ga - +3

Зная положение элементов IV – VIII групп в ПС, можно указать некоторые степени окисления, которые они могут проявлять в соединениях:

максимальная степень окисления любого элемента (+) =№ группы (у некоторых элементов, например, Fe, Co, Ni , соединения с такими степенями окисления не существуют). Укажем для примера максимальные степени окисления некоторых элементов: N (азот) – V группа (+5); Сr(хром) – VI группа (+6); Cl и Mn –VII группа (+7). Формулы соответствующих оксидов: N 2 O 5 , CrO 3 , Cl 2 O 7 , Mn 2 O 7 .

Минимальная степень окисления для металлов и неметаллов определяется следующим образом:

минимальная степень окисления металла (+) = +1, +2 (IV - VIII группа).

минимальная степень окисления неметалла (-) = № группы-8 (все неметаллы – р-элементы и разность представляет собой число электронов, необходимое для завершения внешнего энергетического уровня атома неметалла). Например, у таких металлов, как хром Cr (VI группа) и Mn (VII группа) минимальные степени окисления составляют +2 и им соответствуют оксиды CrO (неустойчив) и МnO. У неметаллов V группы (N и Р) минимальная степень окисления составляет « -3» (NH 3 , РН 3). Неметаллы VII группы, например хлор Cl, имеет наименьшую степень окисления равную -1 (HCl).

Контрольное задание 1:

    Укажите максимальную и минимальную степень окисления для следующих элементов: S, W, P, Pb. Запишите формулы соответствующих оксидов.

    Укажите атомы неметаллов в периодической системе.

    Определите степени окисления элементов в следующих соединениях:

Сr 2 O 3 , NO 2 , Bi 2 O 5 , K 2 O, Fe 2 O 3 .

Номенклатура неорганических соединений

Международный союз по теоретической и прикладной химии сформулировал общие правила для формирования названий химических соединений – так называемая систематическая международная номенклатура. Она является наиболее строгой, достаточно простой и универсальной; название неорганических соединений строится по следующим правилам:

Если соединение состоит только из двух элементов, то первый называют по - русски (на национальном языке страны), указывая приставками (ди, три, тетра и т.д.) число его атомов. Второй элемент называют по латыни с суффиксом -ид (и соответствующими количественными приставками): например: NaCl - натрий хлорид, BaO - барий оксид, BN –бор нитрид, GaAs – галлий арсенид, N 2 O –диазот оксид, СеO 2 - церий диоксид, S 2 O 3 -дисера триоксид. Аналогично называют гидроксиды металлов: Сa(OH) 2 –кальций дигидроксид (ион ОН - называют в неорганической химии гидроксид-ионом).

Если соединение состоит из трех и более элементов (например, кислородные кислоты, некоторые соли), то кислотный остаток называют справа налево, указывая количество атомов кислорода – оксо, диоксо, триоксо и т.д., а затем по латыни элемент с суффиксом -ат (в скобках записывают римскими цифрами его степень окисления (при условии, элемент имеет несколько значений степеней окисления в соединениях), например:

SiO 3 2- - триоксосиликат ион (метасиликат-ион – полусистематическая номенклатура,

использование которой допустимо);

Na 2 SiO 3 - динатрий триоксосиликат или динатрий метасиликат;

PO 4 3- -тетраоксофосфат(V) или ортофосфат- ион;

АLPO 4 –алюминий тетраоксофосфат(V) , или алюминий ортофосфат;

СО 3 2- - триоксокарбонат-ион (карбонат- ион);

СaCO 3 кальций триоксокарбонат, кальций карбонат;

РО 3 - –триоксофосфат (V) - ион или метафосфосфат- ион;

Zn(PO 3) 2 – цинк триоксофосфат(V) или цинк метафосфат.

В настоящее время в России наиболее широко распространена полусистематическая номенклатура (сведения о систематической общепринятой в мире номенклатуре в школьную программу до сих пор не входят). В технической, особенно старой литературе, часто встречается русская номенклатура, которая уже отменена, кроме того, некоторые соединения имеют тривиальные названия. В качестве примера ниже приведена таблица с названиями различных неорганических соединений.

Абитуриентам, поступившим в высшие учебные заведения необходимо так же знать групповые названия элементов:

щелочные металлы (Li, Na, K, Rb, Cs, Fr); щелочно-земельные металлы (Ca, Sr, Ba, Ra); переходные элементы 3d- ряда (3d-элементы)- Sc……Zn; лантаноиды (редкоземельные элементы) – Сe ……Lu; актиноиды (трансурановые элементы) – Th………Lr ; платиноиды (элементы группы платины)- Ru, Rh, Pd, Os, Ir, Pt; халькогены – O, S, Se, Te; галогены – F, Cl, Br, I, At

Химическая номенклатура

соединения систематическая полусисте- русская тривиальная матическая

НСl водород хлорид хлорид водорода хлористый соляная кислота

водород (водный раствор)

Н 2 SO 4 диводород серная кислота - -

тетраоксосульфат(VI) кислота

HNO 3 водород азотная - -

триоксонитрат (V) кислота

NaOH натрий гидроксид гидроокись едкий

гидроксид натрия натрия натр

Ca(OH) 2 кальций гидроксид гидроокись известковая

дигидроксид кальция кальция вода

NaHS натрий гидросульфид кислый -

водородсульфид натрия сернистый натрий

ZnOHCl цинк хлорид основной -

гидроксид гидроксоцинка хлористый цинк -

CaHPO 4 кальций водород гидрофосфат кислый -

тетраоксофосфат(V) кальция двузамещенный

ортофосфорнокислый кальций

PH 3 фосфор гидрид - фосфин

тригидрид фосфора(III)

АlOHSO 3 алюминий сульфит основной -

гидроксид гидроксоалюминия двузамещенный

триоксосульфат(IV) сернистокислый

алюминий

Классификация неорганических соединений

Все неорганические соединения могут быть разделены на четыре основных класса: оксиды, гидроксиды, бескислородные кислоты и соли. Общая схема такой классификации представлена на рис 1. Эта классификация не является полной, так как в нее не входят различные менее часто встречающиеся бинарные (состоящие из двух элементов) соединения

(например, аммиак-NH 3 , сероуглерод –CS 2 и пр.) за исключением широко распространенного класса бинарных соединений- оксидов.

Оксиды + n -2

Соединения элементов с кислородом вида Э 2 О n называются оксидами (степень окисления атома О в оксидах равна «-2»). Систематическая номенклатура оксидов: на первом месте указывают название элемента в именительном падеже с соответствующими греческими количественными приставками, далее - слово «оксид» также с соответствующими количественными приставками, например:SiO 2 - кремний диоксид,Fe 2 O 3 - дижелезо триоксид,P 2 O 5 - дифосфор пентоксид. Полусистематическая номенклатура: на первом месте записывают слово «оксид», за которым следует название элемента в родительном падеже с указанием римскими цифрами в скобках его степени окисления, например:

Fe 2 O 3 – оксид железа (III);

FeO- оксид железа (II)

P 2 O 3 - оксид фосфора (III);

P 2 O 5 - оксид фосфора (V).

Na 2 O – оксид натрия (натрий имеет только одно значение степени окисления в соединениях, в таких случаях ее не указывают).

Устаревшая русская номенклатура в названиях оксидов оперировала словом «окись» с указанием количества атомов кислорода на один атом элемента, например: N 2 O - полуокись азота, Fe 2 O 3 - полутороокись железа, CO 2 - двуокись углерода. Следует отметить, что в русской номенклатуре оксид элемента с низшей степенью окисления часто называли закисью элемента, а оксид того же элемента с высшей степенью окисления- окисью, например: Сu 2 0- закись меди, CuO- окись меди.

Существуют соединения элементов с кислородом, которые не проявляют свойств оксидов (в этих соединениях атом кислорода имеет степень окисления, которая не равна «-2»). Например, Н 2 О 2 -1 - пероксид водорода (перокись водорода), проявляет свойства слабой кислоты,

Na 2 O 2 -1 - пероксид натрия – соль.

Основные способы получения оксидов

1.Прямое взаимодействие элементов или сложных веществ с кислородом (как правило,окисление происходит при высоких температурах - горение):

2 Mg + O 2 = 2 MgO

УФ или катализатор

2 SO 2 + O 2 = 2 SO 3

СН 4 + 2 О 2 = 2 Н 2 О + СО 2

2.Разложение некоторых солей, оснований и кислот:

CaCO 3 = CaO + CO 2

Mg(OH) 2 = MgO + H 2 O

H 2 CO 3 = CO 2 + H 2 O

2 CuSO 4 = 2 CuO + 2 SO 2 + O 2

3.Образование оксидов некоторых неметаллов при взаимодействии азотной и серной кислоты с металлами и неметаллами:

С + 2 H 2 SO 4 к = CO 2 + 2 SO 2 + 2 H 2 O

Cu + 4 HNO 3 к = Cu(NO 3) 2 + 2 NO 2 + 2 H 2 O

4. Взаимодействие солей неустойчивых кислот (H 2 CO 3 , H 2 SО 4) c сильными кислотами или солей неустойчивых оснований со щелочами:

K 2 CO 3 + 2 HCl = 2 KCl + H 2 O + CO 2

2 AgNO 3 + 2 NaOH = Ag 2 O + H 2 O + 2 NaNO 3

Все оксиды подразделяют на соле- и несолеобразующие или безразличные оксиды (общая схема классификации оксидов приведена на схеме 2). Солеобразующие оксиды могут образовывать соли при многочисленных химических реакциях,например:

СаО + СО 2 = СаСО 3

Солеобразующим оксидам соответствуют гидроксиды, которые образуются при прямом взаимодействии оксидов с водой и их получают косвенным путем, например:

СаО + Н 2 О = Са(ОН) 2

Na 2 O + H 2 O = 2NaOH

Al 2 O 3 + H 2 O ≠

Al 2 O 3 + 6 HCl = 2 AlCl 3 + 3 H 2 O

AlCl 3 +3 NaOH =Al(OH) 3  + 3 NaCl (косвенное получение Al(OH) 3)

SO 3 + H 2 O = H 2 SО 4

SiO 2 + H 2 O ≠

SiO 2 + 2 NaOH = Na 2 SiO 3 + H 2 O

Na 2 SiO 3 + 2 HCl = 2 NaCl + H 2 SiO 3 (косвенное получение H 2 SiO 3)

Солеобразующие оксиды подразделяют по свойствам на три группы: основные (ударение на втором слоге), кислотные и амфотерные.

Основные оксиды – это оксиды металлов с низкими степенями окисления, главным образом, +1,+2 (кроме некоторых амфотерных, например, ZnO, BeO и некоторые другие). К ним следует в первую очередь отнести оксиды щелочных и щелочноземельных металлов, а также оксиды других металлов с низкими степенями окисления (CuO, NiO, CoO, FeO, и т.д.). Следует отметить, что непосредственно взаимодействуют с водой оксиды наиболее активных металлов, а именно, щелочных и щелочноземельных (см. выше).

Доказательством основных свойств оксидов являются реакции:

КИСЛОТА

ОСНОВНОЙ ОКСИД + или ===> СОЛЬ + (Н 2 О)

КИСЛОТНЫЙ

ОКСИД

Например, FeO + 2 HCl = FeCl 2 + H 2 O

Na 2 O + CO 2 = Na 2 CO 3

Кислотные оксиды (ангидриды кислот) характерны для неметаллов (см. перечень выше) с любой степенью окисления и металлов с высокими степенями окисления (от +5 до +8), например, СО 2 , SO 2 , N 2 O 5 , P 2 O 5 , Mn 2 O 7 , CrO 3 , RuO 4 .

Такие оксиды при прямом взаимодействии с водой или с помощью косвенных реакций образуют соответствующие кислородные кислоты. Следует отметить, что непосредственно взаимодействуют с водой почти все оксиды неметаллов, например, газообразные -SO 2 , SO 3 , CO 2, твердые - N 2 O 5 , P 2 O 3 и P 2 O 5 и жидкие (Cl 2 O 7). Не растворяются в воде два оксида неметалла – B 2 O 3 и SiO 2 . Многие оксиды металлов в высших степенях окислениz растворяются в воде, например, CrO 3 , некоторые из них неустойчивы (Mn 2 O 7).

Однако независимо от растворимости оксидов в воде легко формально вывести формулу кислоты, соответствующей данному оксиду:

+ H 2 O + H 2 O

H 2 CrO 4 H 2 B 2 O 4 => HBO 2 (кратные индексы у всех атомов сокращаем).

Приведенные записи не являются химическими реакциями, они представляют собой формальный вывод формулы кислоты, которую желательно знать, т.к. в реакциях солеобразования с участием оксидов, проявляющих кислотные свойства, кислотный остаток соответствующей кислоты входит в состав соли. Приведенный вывод является формальным также по той причине, что многие реакции с участием оксидов протекают в безводной среде, например, в расплаве.

Доказательством кислотных свойств оксидов являются реакции:

ОСНОВАНИЕ

КИСЛОТНЫЙ + или ==> C ОЛЬ + (Н 2 О)

ОКСИД ОСНОВНОЙ

+ H 2 O ОКСИД

к-та (формальный вывод ) , кислотный остаток входит в состав соли.

Например, SO 2 + 2 NaOH = Na 2 SO 3 + H 2 O

Mn 2 O 7 + Ca(OH) 2 = Ca(MnO 4) 2 + H 2 O

+ H 2 O

H 2 Mn 2 O 8  HMnO 4 (формальный вывод), (MnO 4 -1 входит в состав соли).

Амфотерные оксиды проявляют кислотные и основные свойства в зависимости от того, с чем реагируют.

Следует запомнить достаточно часто встречающиеся металлы, оксиды которых обладают ярко выраженными амфотерными свойствами:

Be, Al, Zn, Sn, Pb, Cr (III)….

Этим металлам соответствуют амфотерные оксиды:

BeO, Al 2 O 3 , ZnO, SnO, SnO 2 , PbO, PbO 2 , Cr 2 O 3

Многие металлы характеризуются набором степеней окисления в соединениях (как правило, начиная с IVгр.), при этом, с увеличением степени окисления данного металла в его оксидах и гидроксидах, наблюдается возрастание их кислотных свойств. Например, амфотерные оксиды SnO 2 и PbO 2 обладают более ярко выраженными кислотными свойствами, чем SnO и PbO. У такого важного с технической точки зрения металла, как хром, а так же у многих других металлов существуют оксиды и гидроксиды с различными кислотно-основными свойствами:

CrO Cr 2 O 3 CrO 3

основной амфотерный кислотный

Cr(OH) 2 Cr(OH) 3 H 2 CrO 4

========================================>

кислотные свойства оксидов и гидроксидов возрастают

У всех металлов, для которых существуют подобные ряды оксидов, амфотерными свойствами обладают оксиды и гидроксиды с промежуточными степенями окисления металла. В воде амфотерные оксиды не растворяются.

Доказательством амфотерных свойств оксидов являются, по крайней мере, две противоположные реакции, которые позволяют подтвердить основные и кислотные свойства амфотерного оксида:

КИСЛОТА

или ==========> СОЛЬ + (Н 2 О)

КИСЛОТНЫЙ

АМФОТЕРНЫЙ + ОКСИД

ОКСИД ОСНОВАНИЕ

или ========= C ОЛЬ + (Н 2 О)

ОСНОВНОЙ

ОКСИД

Рассмотрим пример:

ZnO + 2 HCl = ZnCl 2 + H 2 O (1)

основн. св-ва

ZnO + 2 NaOH = Na 2 ZnO 2 + H 2 O (2)

кислот. св-ва

+ H 2 O

H 2 ZnO 2 – цинковая к-та (формальный вывод).

Как будет показано ниже, для растворов реакцию (2) более строго записывают в следующем виде:

ZnO + 2 NaOH + Н 2 О = Na 2 тетрагидроксоцинкат натрия (комплексная соль)

Вывод: амфотерный оксид реагирует со щелочью как кислотный, а с кислотой - как основной, в обоих случаях образуются соли.В том случае, когда амфотерный оксид проявляет основные свойства, металл входит в состав образующейся соли в качестве катиона; при проявлении амфотерным оксидом кислотных свойств, металл входит в состав аниона соли.

БЕЗРАЗЛИЧНЫЕ (НЕСОЛЕОБРАЗУЮЩИЕ) ОКСИДЫ

Число таких оксидов невелико, наиболее распространенные из них следующие: CO, N 2 O, NO, NO 2 .В приведенных выше реакциях солеобразования такие оксиды не участвуют.

ОБОБЩЕНИЕ:

1. Обратим внимание на взаимосвязь кислотно-основных свойств оксидов металлов и неметаллов с величинами их степеней окисления: у неметаллов в оксидах (см. перечень неметаллов выше) возможны следующие значения степеней окисления:

+1 +2 +3 +4 +5 +6 +7

Практически все оксиды неметаллов - кислотные (кроме нескольких безразличных).

Примеры: Cl 2 O, B 2 O 3 , CO 2 , N 2 O 5 , SO 3 , Cl 2 O 7 и т.д.

У металлов могут быть основные, амфотерные и кислотные оксиды и следующие степени окисления металлов в них:

1 +2 +3 +4 +5 +6 +7 +8

________ ____________________

основн. оксиды кислотные оксиды

_______________

амфотерные оксиды

2. Реакции с участием оксидов: при изучении химических свойств оксидов часто возникают проблемы с записью продуктов реакций. В связи с этим рекомендуем внимательно изучить ниже приведенные схемы и выводы из них:

кислотный

основной оксид

оксид + или ========== соли

амфотерный

оксид

(кислотн. св-ва)

+ Н 2 О

к-та - формальный вывод ф-лы кислоты, кислотный остаток

основной входит в состав полученной соли

кислотный оксид

оксид или =========== соли

+ Н 2 О амфотерный

ф-ла кислоты оксид (основные св-ва)

(формальный вывод, кислотный остаток входит в состав полученной соли)

Таким образом основные оксиды могут реагировать с кислотными и амфотерными оксидами и гидроксидами, которые проявляют в таких реакциях кислотные свойства. Кислотные оксиды взаимодействуют с основными и амфотерными оксидами и гидроксидами, которые в этом случае проявляют основные свойства. В любом случае рекомендуем формально прибавить к оксиду, проявляющему кислотные свойства, молекулу воды, вывести формулу кислоты, определить вид и заряд кислотного остатка, который войдет в состав соли. Реакции с амфотерными гидроксидами будут приведены ниже. (Следует иметь в виду, что многие реакции с участием оксидов и гидроксидов практически не протекают в водных растворах из-за плохой растворимости веществ, но могут протекать в расплавах при высоких температурах, такие реакции наблюдаются в природных и технологических процессах).

Как следует из выше изложенного материала при изучении реакций с участием оксидов и гидроксидов важно знать их свойства. С учетом п.п. 1 и 2 обобщений можно предложить следующий алгоритм определения свойств оксидов:

1. Оксид Э 2 О n . Э - металл или неметалл (см. перечень стр.). Если Э - неметалл оксид кислотный (безразличные оксиды необходимо помнить).

2.Э-металл - оксид может быть основным, амфотерным и кислотным. Рекомендуем посмотреть перечень наиболее часто встречающихся амфотерных оксидов (если элемент не входит в приведенный перечень, но возникают сомнения относительно его свойств, можно посмотреть в учебнике степени окисления данного металла в соединениях, при наличии у него трех и более степеней окисления промежуточные оксиды будут амфотерными).

3.Оксид металла – неамфотерный, тогда:

ст.ок. Ме высокие (> +5) ст.ок. Ме невысокие (<+2)

оксид - кислотный; оксид - основной (амфотерные – исключены)

Рассмотрим примеры:

FeO + N 2 O 5 = Fe(NO 3) 2

кислотный

+H 2 O

H 2 N 2 O 6 ==> HNO 3

2 NaOH + CrO 3 = 2 Na 2 CrO 4 + H 2 O

кислотный

+H 2 O

H 2 CrO 4 - хромовая кислота

Ba(OH) 2 + Al 2 O 3 = Ba(AlO 2) 2 + H 2 O

амфот.(кислот.св-ва)

+ H 2 O

H 2 Al 2 O 4 ==> HАlO 2 – метаалюминиевая кислота

Контрольное задание 2:

1. Приведите примеры солеобразующих и несолеобразующих оксидов. В чем состоит различие между ними?

2. Какие оксиды называются основными, кислотными и амфотерными? По каким свойствам оксиды можно отнести к той или иной группе?

3. Дайте названия следующим оксидам, используя все виды номенклатур:

Li 2 O, BeO, FeO, Fe 2 O 3 , MnO, MnO 2 , Mn 2 O 7 , WO 3 , P 2 O 5 , CO, CO 2 .

4. Даны оксиды: оксид кремния (IV), оксид магния, оксид свинца (II) и оксид хрома (VI), оксид хрома (III), оксид олова (IV), оксид бора. Определив свойства оксидов, записать возможные реакции с азотной кислотой HNO 3 и КОН.

5. Дописать реакции: оксид хлора (I) + оксид магния; оксид углерода (IV) + оксид алюминия; гидроксид калия + оксид берилия; гидроксид железа (III) + оксид азота (III); оксид алюминия + оксид натрия;

6. Даны оксиды: оксид серы (IV), оксид магния, оксид цинка и оксид марганца (VII). Какие пары оксидов могут взаимодействовать друг с другом, запишите реакции.

7.Укажите свойства оксидов: MnO, MnO 2 , Mn 2 O 7 , запишите формулы соответствующих им гидроксидов.

8.Приведите примеры химических реакций, доказывающих амфотерный характер оксида хрома (III) 3 .

9.Могут ли взаимодействовать между собой и почему следующие оксиды: ZnO и FeO, Na 2 O и ZnO, N 2 O 5 и MgO, Cl 2 O 7 и СO 2 , P 2 O 5 и K 2 O?. Напишите уравнения возможных реакций.

10.Каким образом, зная химические свойства оксидов, очистить FeO от примесей K 2 O и ZnO (используйте воду, кислоту или щелочь)?

11.Какие из нижеперечисленных оксидов можно растворить в кислотах, а какие – в щелочах: Cs 2 O, CaO, GeO 2 , N 2 O 3 ? Запишите уравнения cоответствующих реакций.

13.У какого оксида сильнее выражены кислотные свойства: SnO 2 или PbO 2 ?

14. Какие из приведенных оксидов растворяются в воде, запишите реакции: оксид бора, оксид алюминия, оксид азота (V), оксид железа (II), оксид серы (IV), оксид калия, оксид магния.

Видеокурс «Получи пятерку» включает все темы, необходимые для успешной сдачи ЕГЭ по математике на 60-65 баллов. Полностью все задачи 1-13 Профильного ЕГЭ по математике. Подходит также для сдачи Базового ЕГЭ по математике. Если вы хотите сдать ЕГЭ на 90-100 баллов, вам надо решать часть 1 за 30 минут и без ошибок!

Курс подготовки к ЕГЭ для 10-11 класса, а также для преподавателей. Все необходимое, чтобы решить часть 1 ЕГЭ по математике (первые 12 задач) и задачу 13 (тригонометрия). А это более 70 баллов на ЕГЭ, и без них не обойтись ни стобалльнику, ни гуманитарию.

Вся необходимая теория. Быстрые способы решения, ловушки и секреты ЕГЭ. Разобраны все актуальные задания части 1 из Банка заданий ФИПИ. Курс полностью соответствует требованиям ЕГЭ-2018.

Курс содержит 5 больших тем, по 2,5 часа каждая. Каждая тема дается с нуля, просто и понятно.

Сотни заданий ЕГЭ. Текстовые задачи и теория вероятностей. Простые и легко запоминаемые алгоритмы решения задач. Геометрия. Теория, справочный материал, разбор всех типов заданий ЕГЭ. Стереометрия. Хитрые приемы решения, полезные шпаргалки, развитие пространственного воображения. Тригонометрия с нуля - до задачи 13. Понимание вместо зубрежки. Наглядное объяснение сложных понятий. Алгебра. Корни, степени и логарифмы, функция и производная. База для решения сложных задач 2 части ЕГЭ.