• Кровь берут путем пункции артерии или из артериального катетера (если он уже введен) в шприц, содержащий гепарин.
  • Шприц сразу помещают в контейнер со льдом, предварительно удалив из него воздух.
  • Место пункции артерии придавливают стерильным ватным шариком в течение 3-5 мин до остановки кровотечения.
  • После остановки кровотечения на место пункции накладывают стерильную салфетку и фиксируют ее лейкопластырем (не следует накладывать пластырь на всю окружность руки).
  • При наблюдении за пациентом определяют основные физиологические показатели следует особенно внимательно отнестись к признакам нарушения кровообращения в конечности дистальнее места пункции (отек, изменение цвета кожи, появление боли, ощущения покалывания).
  • Следует проверять периодически, нет ли кровотечения из места пункции.
  • Определяют парциальное давление кислорода (PO 2) и парциальное давление углекислого газа (PCO 2) в пробе крови, а также атмосферное давление (Pb), давление водяных паров (PH 2 O), фракцию кислорода во вдыхаемом газе (F i O 2), которая при дыхании воздухом равна 21%. На основании этих показателей с помощью формул выводят значение давления кислорода в альвеолярном газе (P A O 2), артериально-кислородное отношение (а/А) и альвеолярно-артериальную разницу по кислороду P (А-а) O 2: P A O 2 = F i O 2 (Pb- PH2Q) -1,25 (P a CO 2) а/А = PO 2 , деленное на P A O 2 P (А-а) O 2 = P A O 2 - PO 2 .
  • Основываясь на значениях полученных из формул показателей, проводят коррекцию выявленных у пациента нарушений.

Страница 4 из 31

3 Оценка газообмена в лёгких у постели больного

ВЕНТИЛЯЦИОННО-ПЕРФУЗИОННЫЕ ОТНОШЕНИЯ

Альвеолярно-капиллярные единицы (рис. 3-1) используют для описания различных вариантов газообмена. Как известно, отношение альвеолярной вентиляции (V) к перфузии капилляров альвеол (Q) называется вентиляционно-перфузионным отношением (V/Q). Примеры газообмена, связанные с отношением V/Q, см. на рис. 3-1. В верхней его части (А) показано идеальное соотношение между вентиляцией и кровотоком и идеальное отношение V/Q в альвеолярно-капиллярной единице.

ВЕНТИЛЯЦИЯ МЕРТВОГО ПРОСТРАНСТВА

Воздух, находящийся в воздухоносных путях, не участвует в газообмене, а их вентиляция называется вентиляцией мёртвого пространства. Отношение V/Q в этом случае больше 1 (см. рис. 3-1, часть Б). Различают два типа мёртвого пространства.

Рис. 3-1.

Анатомическое мёртвое пространство - просвет воздухоносных путей. В норме его объём составляет около 150 мл, причём на гортань приходится примерно половина.

Физиологическое (функциональное) мёртвое пространство - все те участки дыхательной системы, в которых не происходит газообмена. К физиологическому мёртвому пространству относятся не только воздухоносные пути, но и альвеолы, которые вентилируются, но не перфузируются кровью (в таких альвеолах газообмен невозможен, хотя их вентиляция и происходит). Объём функционального мёртвого пространства (Vd) составляет у здоровых людей около 30% дыхательного объёма (т.е. Vd/Vt=0,3, где Vt - дыхательный объём) . Увеличение Vd ведёт к гипоксемии и гиперкапнии. Задержка СО 2 обычно отмечается при увеличении отношения Vd/Vt до 0,5 .

Мёртвое пространство увеличивается при перерастяжении альвеол или уменьшении воздушного потока. Первый вариант наблюдается при обструктивных лёгочных заболеваниях и искусственной вентиляции лёгких с сохранением положительного давления к концу выдоха, второй - при недостаточности сердца (правого или левого отдела), острой лёгочной эмболии и эмфиземе.

ФРАКЦИЯ ШУНТА

Часть сердечного выброса, которая не полностью уравновешивается с альвеолярным газом, называется фракцией шунта (Qs/Qt, где Qt - общий кровоток, Qs - кровоток через шунт). При этом отношение V/Q меньше 1 (см. часть В рис. 3-1). Различают два типа шунта.

Истинный шунт указывает на отсутствие газообмена между кровью и альвеолярным газом (отношение V/Q равно 0, т.е. лёгочная единица перфузируется, но не вентилируется), что эквивалентно наличию анатомического сосудистого шунта.

Венозное примешивание представлено кровью, которая не полностью уравновешивается с альвеолярным газом, т.е. не подвергается в лёгких полноценной оксигенации. При увеличении венозного примешивания этот шунт приближается к истинному шунту.

Влияние фракции шунта на парциальное давление O 2 и СО 2 в артериальной крови (соответственно pаO 2 PaCO 2) показано на рис. 3-2. В норме шунтовый кровоток составляет менее 10% общего (т.е. отношение Qs/Qt менее 0,1, или 10%), при этом около 90% сердечного выброса принимает участие в газообмене . При увеличении фракции шунта раО 2 прогрессивно снижается, а раСО 2 не повышается до тех пор, пока отношение Qs/Qt не достигнет 50% . У больных с внутрилёгочным шунтом в результате гипервентиляции (из-за патологии или вследствие гипоксемии) рaСО 2 часто бывает ниже нормы.

Фракция шунта определяет способность к повышению рaО 2 при вдыхании кислорода, как показано на рис. 3-3. При возрастании доли шунта (Qs/Qt) увеличение фракционной концентрации кислорода во вдыхаемом воздухе или газовой смеси (FiO 2) сопровождается меньшим повышением раО 2 . Когда отношение Qs/Qt достигает 50%, рaО 2 уже не реагирует на изменения FiO 2 ; . В таком случае внутрилёгочный шунт ведёт себя как истинный (анатомический). Исходя из изложенного, можно не применять токсических концентраций кислорода, если величина шунтового кровотока превышает 50%, т.е. FiO 2 можно уменьшить без значительного снижения р a О 2 . Это помогает уменьшить риск токсического действия кислорода.

Рис. 3-2. Влияние фракции шунта на рО 2 (Из D"Alonzo GE, Dantzger DR. Mechanisms of abnormal gas exchange. Med Clin North Am 1983;67:557-571). Рис. 3-3. Влияние фракции шунта на соотношение фракционной концентрации кислорода во вдыхаемом воздухе или газовой смеси (Из D"Alonzo GE, Dantzger DR. Mechanisms of abnormal gas exchange. Med Clin North Am 1983;67:557-571)

Этиологические факторы. Наиболее часто увеличение фракции шунта вызывают пневмония, отёк лёгких (кардиальной и некардиальной природы), тромбоэмболия лёгочной артерии (ТЛА). При отёке лёгких (преимущественно некардиогенном) и ТЛА нарушение газообмена в лёгких больше напоминает истинный шунт и PaО 2 слабее реагирует на изменения FiO 2 . Так, например, при ТЛА шунт является результатом переключения кровотока из эмболизированной области (где поступление крови через сосуды затруднено и перфузирование невозможно) в другие участки лёгкого с увеличением перфузии [З].

РАСЧЕТ ПОКАЗАТЕЛЕЙ ГАЗООБМЕНА

Уравнения, которые будут рассмотрены ниже, используют для количественного определения выраженности нарушений вентиляционно-перфузионных отношений. Эти уравнения применяют при исследовании функции лёгких, в частности, у больных с дыхательной недостаточностью.

ФИЗИОЛОГИЧЕСКОЕ МЁРТВОЕ ПРОСТРАНСТВО

Измерить объём физиологического мёртвого пространства можно методом Бора. Объём функционального мёртвого пространства рассчитывают на основании разницы между значениями pCO 2 в выдыхаемом альвеолярном воздухе и капиллярной (артериальной) крови (точнее, крови конечных отрезков лёгочных капилляров). У здоровых людей в лёгких капиллярная кровь полностью уравновешивается с альвеолярным газом и рСО 2 в выдыхаемом альвеолярном воздухе практически равно рСО 2 в артериальной крови. При увеличении физиологического мёртвого пространства (т.е. отношения Vd/Vt) pCO 2 в выдыхаемом воздухе (Р Е СО 2) будет ниже, чем pCO 2 в артериальной крови. На этом принципе основано уравнение Бора, применяемое для расчёта отношения Vd/Vt :

Vd/Vt = (РаСО 2 - реСО 2) / р а СО 2 . В норме отношение Vd/Vt = 0,3.

Для определения pаCO 2 выдыхаемый воздух собирают в большой мешок и с помощью инфракрасного СО 2 -анализатора измеряют среднее рСО 2 в воздухе. Это достаточно просто и обычно необходимо в отделении терапии респираторных расстройств.

ФРАКЦИЯ ШУНТА

Для определения фракции шунта (Qs/Qt) используют содержание кислорода в артериальной (СаО 2), смешанной венозной (СvО 2) и лёгочной капиллярной крови (CcO 2). Имеем уравнение шунта:

Q s /Q t = C c O 2 - C a O 2 / (C c О 2 - C v O 2).

В норме отношение Qs/Qt =0,1.

Так как СcО 2 непосредственно измерить невозможно, то рекомендуют дышать чистым кислородом, чтобы полностью насытить им гемоглобин крови лёгочных капилляров (ScO 2 = 100%). Однако в такой ситуации измеряют только истинный шунт. Дыхание 100% кислородом - очень чувствительный тест на наличие шунтов, поскольку когда PaО 2 высоко, небольшое снижение концентрации кислорода в артериальной крови может быть причиной значительного падения PaO 2 .

АЛЬВЕОЛЯРНО-АРТЕРИАЛЬНАЯ РАЗНИЦА ПО КИСЛОРОДУ (ГРАДИЕНТ А-а рО 2)

Разность между значениями рО 2 в альвеолярном газе и артериальной крови называют альвеолярно-артериальной разницей по рО 2 , или градиентом А-а рО 2 . Альвеолярный газ описывают с помощью следующего упрощённого уравнения:

Р A О 2 = р i О 2 - (p a CO 2 /RQ).

Это уравнение основано на том, что альвеолярное рО 2 (р A O 2) зависит, в частности, от парциального давления кислорода во вдыхаемом воздухе (p i O 2) и альвеолярного (артериального) pCO 2 x p i O 2 - функция от FiO 2 , барометрического давления (P B) и парциального давления водяных паров (pH 2 O) в увлажнённом воздухе (р i О 2 = FiO 2 (P B - рН 2 О). При нормальной температуре тела рН 2 О составляет 47 мм рт. ст. Дыхательный коэффициент (RQ) - отношение между продукцией СО 2 и потреблением O 2 , причём газообмен происходит между полостью альвеолы и просветом оплетающих её капилляров путём простой диффузии (RQ = VCO 2 /VO 2). У здоровых людей при дыхании комнатным воздухом при нормальном атмосферном давлении градиент А-а РO 2 рассчитывается с учётом перечисленных показателей (FiО 2 = 0,21, Р B = 760 мм рт.ст., р a O 2 = 90 мм рт.ст., p a CO 2 = 40 мм рт.ст., RQ = 0,8) следующим образом:

P a O 2 = FiO 2 (Р B - pH 2 O) - (paCO 2 /RQ) = 0,21 (760 - 47) - (40/0,8) = 100 мм рт.ст.

Нормальная величина градиента А-а pO 2 = 10-20 мм рт.ст.

В норме градиент А-а pO 2 изменяется с возрастом и с содержанием кислорода во вдыхаемом воздухе или газе. Изменение его с возрастом представлено в конце книги (см. Приложение), а влияние FiO 2 - на рис. 3-4 .

Обычное изменение градиента А-а рО 2 у здоровых взрослых людей при нормальном атмосферном давлении (вдыхание комнатного воздуха или чистого кислорода) показано ниже .

Рис. 3-4. Влияние FiO 2 ; на градиент А-а рО 2 и отношение а/А рО 2 у здоровых людей.

Отмечается увеличение градиента А-а рО 2 на 5-7 мм рт.ст. на каждое 10% возрастание FiO 2 . Влияние кислорода в высоких концентрациях на градиент А-а рО 2 объясняется устранением действия гипоксических стимулов, которые ведут к вазоконстрикции и изменению кровоснабжения плохо вентилируемых участков лёгких. Вследствие этого кровь возвращается в плохо вентилируемые сегменты, в результате чего может увеличиться фракция шунта.

Искусственная вентиляция лёгких. Так как нормальное атмосферное давление составляет около 760 мм рт.ст., то искусственная вентиляция лёгких с положительным давлением будет увеличивать p i O 2 . Среднее давление в дыхательных путях следует добавлять к атмосферному давлению, что повышает точность расчёта . Например, среднее давление в дыхательных путях, равное 30 см водяного столба (вод.ст.), может повысить градиент А-а рO 2 до 16 мм рт.ст., что соответствует 60% увеличению.

ОТНОШЕНИЕ а/А рО 2

Отношение а/А рО 2 практически не зависит от FiO 2 , что видно на рис. 3-4 . Это объясняет следующее уравнение:

а/А рO 2 = 1 - (А-а рО 2)/рaO 2

Наличие р A О 2 и в числителе, и знаменателе формулы исключает влияние FiO 2 через р A О 2 на отношение а/А рО 2 . Нормальные величины для отношения а/А рО 2 представлены ниже .

ОТНОШЕНИЕ р A O 2 /FiO 2

Вычисление отношения paO 2 /FiO 2 - простой способ расчёта показателя, который достаточно хорошо коррелирует с изменениями фракции шунта (Qs/Qt). Эта корреляция выглядит следующим образом :

PaO 2 /FiO 2

ПОДХОД К ГИПОКСЕМИИ

Подход к гипоксемии показан на рис. 3-5. Для установления причины гипоксемии необходимо наличие катетера в лёгочной артерии, что имеет место только у больных, находящихся в отделениях интенсивной терапии. Сначала следует рассчитать градиент А-а рO 2 для определения происхождения проблемы. Нормальное значение градиента свидетельствует об отсутствии патологии лёгких (например, мышечная слабость). Увеличение градиента указывает на нарушение вентиляционно-перфузионных отношений или низкое парциальное давление кислорода в смешанной венозной крови (p v O 2). Связь между р v О 2 и р a O 2 , объясняется в следующем разделе.

СМЕШАННАЯ ВЕНОЗНАЯ КРОВЬ И ОКСИГЕНАЦИЯ

Оксигенация артериальной крови происходит за счёт кислорода, содержащегося в смешанной венозной крови (лёгочная артерия), с добавлением кислорода из альвеолярного газа. При нормальной функции лёгких показатель р A O 2 в основном определяет величину р a О 2 .

Рис. 3-5. Подход к установлению причины гипоксемии. Объяснение в тексте.

При нарушении газообмена показатель р а О 2 вносит меньший вклад, а венозная оксигенация (т.е. показатель p v O 2) - напротив, больший в конечное значение р a О 2 , что и представлено на рис. 3-6 (горизонтальная ось на нём идёт вдоль капилляров, также показан транспорт кислорода из альвеол в капилляры). При снижении кислородного обмена (на рисунке это обозначено как шунт) р a О 2 уменьшается. Когда степень повышения p a O 2 постоянна, но p v O 2 снижено, конечное значение p a O 2 такое же, как и в описанной выше ситуации. Этот факт указывает на то, что лёгкие не всегда являются причиной гипоксемии .

Влияние р v О 2 на р a О 2 будет зависеть от фракции шунта. При нормальной величине шунтового кровотока р v О 2 оказывает незначительное влияние на p a O 2 . При увеличении фракции шунта р v О 2 , становится все более значимым фактором, который определяет p a O 2 . В крайнем случае возможен 100% шунт, когда p v O 2 может быть единственным показателем, определяющим р а O 2 . Следовательно, показатель p v O 2 будет играть важную роль только у больных с существующей лёгочной патологией.

ЗАДЕРЖКА УГЛЕКИСЛОГО ГАЗА

Парциальное давление (напряжение) СО 2 в артериальной крови определяется отношением между величиной метаболической продукции СО 2 и скоростью его выделения лёгкими:

p a СО 2 = К х (VСО 2 /Va),

где p a CО 2 - артериальное pCO 2 ; VCO 2 - скорость образования СО 2 ; V A - минутная альвеолярная вентиляция; К - константа . Альвеолярная вентиляция устанавливается хорошо известным соотношением , и тогда предыдущая формула приобретает следующий вид:

р a СO 2 = К х ,

где ve - выдыхаемый минутный объём (измеренная на выдохе минутная вентиляция). Из уравнения видно, что основными причинами задержки СО 2 являются следующие: 1.) повышение продукции СO 2 ; 2) снижение минутной вентиляции лёгких; 3) увеличение мёртвого пространства (рис. 3-7). Каждый из указанных факторов кратко рассмотрен ниже.

Рис. 3-6. Механизмы развития гипоксемии. Объяснение в тексте.

Рис. 3-7. Объяснение в тексте.

УВЕЛИЧЕНИЕ ПРОДУКЦИИ СО 2

Количество CO 2 может быть измерено у интубированных больных с помощью «метаболической тележки», которая применяется при непрямой калориметрии. Это устройство снабжено инфракрасным анализатором СО 2 , который измеряет его содержание в выдыхаемом воздухе (при каждом выдохе). Для определения скорости выделения СО 2 регистрируют частоту дыхания.

Дыхательный коэффициент. Величина продукции СО 2 определяется интенсивностью метаболических процессов и видом веществ (углеводы, жиры, белки), которые окисляются в организме. Нормальная скорость образования CO 2 (VCO 2) у здорового взрослого человека составляет 200 мл в 1 мин, т.е. около 80% скорости поглощения (потребления) кислорода (обычная величина VO 2 = 250 мл/мин). Отношение VCO 2 /VO 2 называют дыхательным (респираторным) коэффициентом (RQ), который широко используют в клинической практике. RQ различен при биологическом окислении углеводов, белков и жиров. Для углеводов он самый высокий (1,0), несколько меньше для белков (0,8) и самый маленький для жиров (0,7). При смешанной пище величина RQ определяется метаболизмом всех трёх названных видов питательных веществ. В норме RQ составляет 0,8 для среднего человека при диете, имеющей 70% общей калорийности за счёт углеводов и 30% за счёт жиров. Более детально RQ разбирается в главе 39.

Этиологические факторы. Обычно увеличение VCO 2 наблюдается при сепсисе, политравме, ожогах, повышении работы дыхания, усилении метаболизма углеводов, метаболическом ацидозе и в послеоперационном периоде. Предполагают, что сепсис является наиболее типичной причиной возрастания VCO 2 . Увеличение работы дыхательной системы может привести к задержке СО 2 во время отключения больного от аппарата искусственного дыхания, если элиминация CO 2 через лёгкие ухудшена. Чрезмерное потребление углеводов может повысить RQ до 1,0 или выше и вызвать задержку CO 2 , поэтому важно определять РаСO 2 , которое прямо зависит от VCO 2 , а не RQ. Действительно, VCO 2 может возрастать и при нормальном RQ (если VO 2 также увеличено). Рассмотрение только одного RQ может привести к заблуждению, следовательно, этот показатель нельзя интерпретировать изолированно от других параметров.

СИНДРОМ АЛЬВЕОЛЯРНОЙ ГИПОВЕНТИЛЯЦИИ

Гиповентиляция - снижение минутной вентиляции лёгких без существенного изменения их функции (сходное с задержкой дыхания). На рис. 3-7 показано, что важно измерять градиент А-а РО 2 для идентификации синдрома альвеолярной гиповентиляции. Градиент А-а PO 2 может быть в норме (или неизменным), если имеется альвеолярная гиповентиляция. В противоположность этому сердечно-лёгочная патология может сопровождаться увеличением градиента А-а РО 2 . Исключение - значительная задержка СО 2 при заболевании лёгких, когда величина градиента А-а рО 2 близка к нормальной. В такой ситуации повышение сопротивления дыхательных путей может быть так выражено, что воздух будет практически не способен достигать альвеол (сходно с задержкой дыхания). Основные причины синдрома альвеолярной гиповентиляции у больных, находящихся в отделениях интенсивной терапии, приведены в табл. 3-1. Если градиент А-а рО 2 нормальный или неизменный, то состояние дыхательной мускулатуры можно оценить, используя максимальное давление на вдохе, как описано ниже.

Слабость дыхательной мускулатуры. У больных, находящихся в отделениях интенсивной терапии, ряд заболеваний и патологических состояний может привести к слабости дыхательных мышц. Наиболее распространённые - сепсис, шок, нарушения электролитного баланса и последствия операций на сердце. При сепсисе и шоке наблюдается снижение кровотока в диафрагме . Повреждение диафрагмального нерва может отмечаться при хирургических вмешательствах в условиях искусственного кровообращения в связи с местным охлаждением поверхности сердца (см. главу 2).

Слабость дыхательной мускулатуры можно определить, измеряя максимальное давление на вдохе (Р мвд) непосредственно у постели больного . Для этого пациент после максимально глубокого выдоха (до остаточного объёма) должен сделать вдох с максимальным усилием через закрытый клапан. Р мвд зависит от возраста и пола (см. табл. 30-2) и колеблется от 80 до 130 см вод.ст. у большинства взрослых людей . Задержка CO 2 отмечается тогда, когда Р мвд падает до 30 см вод.ст. Следует помнить, что Р мвд измеряется при участии всех дыхательных мышц, исключая диафрагму. Следовательно, дисфункция только диафрагмы, в том числе повреждение диафрагмального нерва, может быть пропущена при определении Р мвд, потому что добавочные мышцы способны поддерживать Р мвд на желаемом уровне.

Таблица 3-1

Причины альвеолярной гиповентиляции в отделениях интенсивной терапии

Идиопатические синдромы. Классификация идиопатических гиповентиляционных синдромов связана с массой тела и временем дня (или ночи). Дневную гиповентиляцию у больных с ожирением называют тучно-гиповентиляционным синдромом (ТГС), аналогичную патологию у худых - первичной альвеолярной гиповентиляцией (ПАГ). Синдром апноэ во сне (ночное апноэ) характеризуется нарушением дыхания во время сна и никогда не сопровождается дневной гиповентиляцией . Состояние больных с ТГС и синдромом ночного апноэ во сне улучшается с уменьшением избыточной массы тела; кроме того, при ТГС может быть эффективен прогестерон (см. главу 26). Нарушение функции диафрагмального нерва способно ограничить успех при лечении ПАГ.

ЛИТЕРАТУРА

Forster RE, DuBois AB, Briscoe WA, Fisher A, eds. The lung. 3rd ed. Chicago: Year Book Medical Publishers, 1986.

Tisi GM. Pulmonary physiology in clinical medicine. Baltimore: Williams & Wilkins, 1980.

  1. Dantzger DR. Pulmonary gas exchange. In: Dantzger DR. ed. Cardiopulmonary critical care. Orlando: Grune & Stratton, 1986:25-46.
  2. D"Alonzo GE, Dantzger DR. Mechanisms of abnormal gas exchange. Med Clin North Am 1983; 67:557-571.
  3. Dantzger DR. Ventilation-perfusion inequality in lung disease. Chest 1987; 91:749-754.
  4. Dantzger DR. The influence of cardiovascular function on gas exchange. Clin Chest. Med 1983; 4:149-159.
  5. Shapiro В. Arterial blood gas monitoring. Crit Care Clin 1988; 4:479-492.
  6. ВЕНТИЛЯЦИОННО-ПЕРФУЗИОННЫЕ ОТНОШЕНИЯ И ИХ НАРУШЕНИЯ

  7. Buohuys A. Respiratory dead space. In: Fenn WO, Rahn H. eds. Handbook of physiology: Respiration. Bethesda: American Physiological Society, 1964:699-714.
  8. Dean JM, Wetzel RC, Rogers MC. Arterial blood gas derived variables as estimates of intrapulmonary shunt in critically ill children. Crit Care Med 1985; 13:1029-1033.
  9. Carroll GC. Misapplication of the alveolar gas equation. N Engi J Med 1985; 312:586.
  10. Gilbert R, Kreighley JF. The arterial/alveolar oxygen tension ratio. An index of gas exchange applicable to varying inspired oxygen concentrations. Am Rev Respir Dis 1974; 109:142-145.
  11. Harris EA, Kenyon AM, Nisbet HD, Seelye ER, Whitlock RML. The normal alveolar-arterial oxygen tension gradient in man. Clin Sci 1974; 46:89-104.
  12. Covelli HD, Nessan VJ, Tuttle WK. Oxygen derived variables in acute respiratory failure. Crit Care Med 1983; 31:646-649.
  13. СИНДРОМ АЛЬВЕОЛЯРНЫЙ ГИПОВЕНТИЛЯЦИИ

  14. Glauser FL, Fairman P, Bechard D. The causes and evaluation of chronic hvpercapnia. Chest 1987; 93.755-759,
  15. Praher MR, Irwin RS, Extrapulmonary causes of respiratory failure. J Intensive Care Med 1986; 3:197-217.
  16. Rochester D, Arora NS. Respiratory muscle failure. Med Clin North Am 1983; 67:573-598.

В норме альвеолярно-артериальная разница по кислороду D(A-а)02 (РЛ02- Ра02) составляет 9-15 мм рт.ст. При дыхательной недостаточности разность РЛ02-Ра02 увеличивается более чем на 20-30 мм рт.ст. Эта разность характеризует степень тяжести дыхательной недостаточности и гипоксии.

Градиент РЛ02-Ра02 зависит, в основном, от степени шунтирования венозной крови справа налево, от нарушения вентиля-ционно-перфузионных соотношений и напряжения кислорода в смешанной венозной крови. В свою очередь, Pv02 зависит от сердечного выброса, потребления кислорода и содержания гемоглобина, т. е. уменьшается при снижении сердечного выброса, снижении содержания гемоглобина и при увеличении потребления кислорода.
В наибольшей степени градиент Рл02-Ра02 зависит от шунтирования венозной крови (классический пример - блокада альвеол при ОРДС). На определенной стадии патологического процесса (шунтирование > 30-35 %) увеличение Fi02 уже не приводит к заметному повышению Ра02, что сопровождается существенным ростом градиента Рл02- Ра02 (> 100-200 мм рт.ст.). Например, при ОРДС исследование газов крови показывает Ра02 = 60 мм рт.ст. при Fi02 = 50 %. Отсюда"РА02 = 50 х 5 = 250 мм рт.ст. Градиент РА02-Ра02 = 250-60 = 190 мм рт.ст. свидетельствует о значительном венозном шунтировании и тяжелой дыхательной недостаточности.
После поступления в сосудистое русло кислород проникает в эритроциты и транспортируется в виде оксигемоглоби-на. Кислородная емкость крови (КЕК) напрямую зависит от содержания гемоглобина, каждый грамм которого способен связать максимально 1,34 мл 02:
Ключевым фактором, определяющим количество кислорода, связанного с гемоглобином, является показатель степени насыщения кислородом гемоглобина артериальной крови (Sa02). Показатель Sa02 довольно точно отражает отношение между оксигемоглобином и КЕК. Иными словами, Sa02 является отношением оксигемоглобина ко всему гемоглобину, потенциально способному переносить кислород:
Уровень Sa02 является интегральным показателем газообмена и транспорта кислорода и довольно точно отражает степень дыхательной недостаточности различного генеза. Sa02 легко определяется и мониторируется неиивазивным способом (методом пульсоксиметрии) и в норме составляет у взрослых 96-98 %.
Взаимоотношение между Ра02 и Sa02 определяется по кривой диссоциации оксигемоглобина. По достижении Ра02 показателя 100 мм рт.ст. гемоглобин почти полностью насыщен кислородом (Sa02 98-99 %). Дальнейший рост Ра02 более 100 мм рт.ст. приводит только к увеличению количества растворенного в крови кислорода, так как весь гемоглобин, способный нести кислород, уже насыщен.
Уровень Ра02, при котором Sa02 равен 50 %, известен как показатель Р50. Это общепринятая мера оценки сродства гемоглобина к кислороду; в норме она составляет 26-28 мм рт.ст. Снижение Р50 отражает увеличение сродства НЬ к О, и наоборот.
Сродство гемоглобина к кислороду меняется в зависимости от метаболических условий, влияющих на процесс связывания кислорода гемоглобином.

Целью мониторинга в анестезиологии и интенсивной терапии является обеспечение безопасности больного. При проведении анестезии и лечении больных, находящихся в критическом состоянии это особенно важно, поскольку проблемы контроля и управления жизненоважными функциями, частично или полностью, решаются врачом. Поэтому мониторинг должен обеспечивать непрерывную регистрацию установленных показателей, представление их в числовых или графических формах в реальном времени и динамике, первичную интерпретацию полученных данных и, наконец, включение тревожной сигнализации. Естественно, что квалифицированная работа врача с мониторной аппаратурой требует не только определенных технических и “пользовательских” навыков, но и знание принципов их действия, возможных источников ошибок, ограничений и т.д.

Достоинства и необходимость использования мониторной техники при проведении анестезии и в интенсивной терапии подтверждены в многочисленных клинических исследованиях. В настоящее время в большинстве стран приняты и законодательно утверждены стандарты медицинского мониторинга, обязывающие врача использовать эту технику в ежедневной работе. С другой стороны не надо забывать, что ни один мониторный комплекс не может дать того целостного впечатления о состоянии больного, которое врач получает при осмотре.

В настоящей главе описываются наиболее важные и распространенные методики мониторинга, используемые в анестезиологии и интенсивной терапии.

^ 6.1. Мониторинг дыхания.

Пульоксиметрия - это оптический метод определения процентного насыщения гемоглобина кислородом (SaO 2). Метод входит в стандарт обязательного интраоперационного мониторинга и показан при всех методах оксигенотерапии. В основе его лежит различная степень поглощения красного и инфракрасного света оксигемоглобином (HbO 2) и редуцированным гемоглобином (RHb). Свет от источника проходит через ткани и воспринимается фотодетектором. Полученный сигнал обсчитывается микропроцессором и на экран прибора выводится величина SaO 2 . Чтобы дифференцировать насыщение гемоглобина в венозной и артериальной крови прибор регистрирует световой поток, проходящий только через пульсирующие сосуды. Поэтому толщина и цвет кожных покровов не влияют на результаты измерений. Кроме SaO 2 пульсоксиметры позволяют оценивать перфузию тканей (по динамике амплитуды пульсовой волны) и ЧСС. Пульсоксиметры не требуют предварительной калибровки, работают стабильно, а погрешность в измерениях не превышает 2-3%.


Рис. 6.1. Кривая диссоциации оксигемоглобина и факторы, влияющие на ее смещение .

Взаимосвязь показателей PaO 2 и SaO 2 определяется кривой диссоциации оксигемоглобина (Рис. 6.1), форма и дрейф которой зависят от таких факторов, как рН, t o , pCO 2 , 2,3-ДФГ и соотношения фетального и взрослого гемоглобина. Это должно учитываться при интерпретации полученных данных. В тоже время очевидно, что снижение SaO 2  90% отражает развитие гипоксемии, а подъем SaO 2  98% указывает на опасный уровень гипероксемии.

Причинами нестабильной работы пульсоксиметра может быть избыточная внешняя освещенность, повышенная двигательная активность больного, падение сердечного выброса и резко выраженный спазм периферических сосудов.

Пульсоксиметр не может «отличать» оксигемоглобин от карбогемоглобина и метгемоглобина. Это должно учитываться при интерпретации результатов, полученных у больных с повышенным содержанием в крови указанных патологических форм гемоглобина.

Чрезкожное измерение рО 2 и рСО 2 . Полярографические электроды (электроды Кларка) позволяют неинвазивно определять напряжение кислорода и углекислого газа (P tc O 2 и P tc CO 2) в капиллярной сосудистой сети дермы. Перед измерением необходимо провести калибровку прибора. Датчики, имеющие в своем составе нагревательный элемент, герметично наклеиваются на кожу. Прогревание проводится для улучшения микроциркуляции и улучшения диффузии газов. Для стабилизации показателей прибора (выход на плато) обычно требуется не менее 15-20 минут. Во избежание ожогов кожи датчик необходимо переклеивать на новое место каждые 2-3 часа.

Корреляция показателей транскутанных и артериальных газов крови в очень большой степени зависит от состояния перфузии тканей, но даже при удовлетворительной микроциркуляции P tc O 2 примерно на 25% ниже РаО 2 , а P tc CO 2 – на 30% выше РаСО 2 .Все эти технические и эксплуатационные недостатки ограничивают широкое использование транскутанного мониторинга в интенсивной терапии. В тоже время, сопоставление данных транскутанного мониторинга с другими показателями оксигенации (например, с SaO 2) с определенной степенью уверенности судить о состоянии тканевой перфузии.

Оксиметрия. Мониторинг концентрации кислорода в дыхательных газах необходим во-первых для контроля работы смесителей и дозирующих устройств, а во-вторых для использование значения FiO 2 при расчете различных вентиляционных показателей (альвеолярно-артериального градиента О 2 , индекса оксигенации и др.). Применение метода показано при проведении анестезии и лечении всех больных, которым назначается оксигенотерапия.

Для контроля концентрации кислорода используют два типа датчиков: медленный – фиксирующий только среднюю величину показателя и быстрый – регистрирующий мгновенную концентрацию кислорода.

Действие медленного датчика основано на электрохимическом принципе, сенсорный элемент генерирует ток пропорциональный концентрации кислорода в газовой смеси. Медленный датчик располагают обычно либо у источника свежей газовой смеси (для контроля работы дозирующего устройства), либо в контуре вдоха наркозного или дыхательного аппарата (для контроля концентрации О 2 во вдыхаемом газе). Основной недостаток этого датчика связан с его высокой инертностью – задержка по времени составляет несколько десятков секунд. Кроме того, сенсорный элемент прибора сохраняет работоспособность в течение относительно короткого периода времени (около 1 года), после чего он должен быть заменен на новый.

Работа быстрого кислородного датчика основана на парамагнитном принципе. Эта методика позволяет регистрировать оксиграмму – графическое отображение изменения концентрации (или парциального давления) кислорода во всех фазах дыхательного цикла. Анализ оксиграммы дает возможность контролировать эффективность легочной вентиляции и перфузии, а также герметичность дыхательного контура. В частности, концентрация кислорода в конечной порции выдыхаемого газа тесно коррелирует с альвеолярной концентрацией, а разница концентраций кислорода во вдыхаемом и выдыхаемом газе позволяет рассчитывать потребление кислорода – один из наиболее важных показателей метаболизма.

Капнография - регистрация концентрации СО 2 в дыхательных газах является одним из наиболее информативных и универсальных методов мониторинга. Капнограмма позволяет не только оценивать состояние легочной вентиляции, но и контролировать состояние дыхательного контура, верифицировать положение интубационной трубки, распознавать острые нарушения метаболизма, системного и легочного кровотока. Капнография показана при проведении анестезии, ИВЛ и других методах респираторной терапии.

Принцип работы капнографа основан на адсорбции инфракрасного света углекислым газом. Капнографические датчики делятся на датчики прямого потока, когда анализатор устанавливается непосредственно в дыхательном контуре, и бокового потока, когда газ из дыхательного контура по катетеру засасывается в прибор и там анализируется.

Результаты анализа демонстрируются на экране в виде кривой, отражающей изменение концентрации СО 2 в реальном времени, график динамики этого показателя (тренд) и цифровое значение парциального давления СО 2 в конечной порции выдыхаемого газа (P ET CO 2). Последний показатель наиболее важен, так как фактически отражает парциальное давление СО 2 в альвеолярном газе (Р А СО 2), что, в свою очередь, позволяет судить о парциальном давлении СО 2 в артериальной крови - Р а СО 2 (в норме разница между Р А СО 2 и Р а СО 2 около 3 мм рт. ст.). Поэтому для контроля за эффективностью вентиляции в большинстве случаев достаточно контролировать P ET CO 2 не прибегая к инвазивным методикам. Диагностические возможности, основанные на анализе капнограмм, представлены на рис. 6.2.

Мониторинг концентрации анестетиков позволяет контролировать работу дозирующих устройств и повышает безопасность проведения ингаляционной анестезии. Этот вид мониторинга является обязательным при использовании реверсивного дыхательного контура, а также при проведении анестезии по методикам со сниженным притоком свежего газа (low-flow и minimal flow), когда концентрация анестетика установленная на испарителе не совпадает с его концентрацией во вдыхаемом газе. Поэтому современные наркозные аппараты стандартно комплектуются анализаторами концентрации анестетиков, работающими по принципу адсорбции инфракрасных лучей. Постоянное измерение концентрации позволяет предотвратить передозировку или случайное использование ингаляционного анестетика, не предназначенного для конкретного испарителя. Противопоказаний к этому виду мониторинга нет.

Графический мониторинг механических свойств легких в процессе искусственной вентиляции легких является относительно новым и перспективным методом диагностики состояния внешнего дыхания. До недавнего времени регистрацию дыхательных петель «объем-давление», «объем-поток» можно было проводить только на специальной диагностической аппаратуре. Сейчас современные аппараты ИВЛ комплектуются графическими дисплеями, позволяющими в реальном времени регистрировать не только ставшие уже традиционными кривые давления и потока, но и дыхательные петли. Графический мониторинг предоставляет очень важную информацию, которая не может быть получена с помощью других методов исследования. В частности, анализ графической информации позволяет оптимизировать такие параметры ИВЛ как дыхательный объем, продолжительность вдоха, величину положительного давления в конце выдоха и многое другое. Иллюстрация возможностей графического мониторинга представлена на рис. 6.3.

^ 6.2. Мониторинг кровообращения.

Артериальное давление (АД). В педиатрической анестезиологии и ИТ наиболее распространенным является осциллометрический метод измерения АД. Прибор для регистрации осцилляций давления называется сфигмоманометром. Автоматический насос, через установленные промежутки времени, накачивает резиновую манжетку, наложенную на одну из конечностей. Пульсация артерий вызывает в манжетке осцилляции, динамика которых общитывается микропроцессором и результаты (АД сис., АД диаст., АД ср. и ЧСС) демонстрируются на дисплее прибора.

Достоинством метода является то, что он неинвазивный, не требует участия персонала, не нуждается в калибровке, имеет небольшие погрешности измерений. Однако следует помнить, что точность измерений зависит от размеров манжетки. Считается, что ширина манжетки должна быть на 20-50% больше диаметра конечности. Более узкая манжетка завышает систолическое АД, а широкая - занижает. Следует учитывать и другой феномен: при нормальном или повышенном тонусе артериальных сосудов пульсовая волна многократно отражается от стенок сосудов и в результате систолическое и пульсовое АД становится выше, чем в аорте. Напротив, после применения вазодилататоров АД в периферических сосудах может быть существенно ниже аортального. Искажение результатов также происходит при аритмиях или крайне низкой величине пульсового давления.

Электрокардиография представляет собой регистрацию электрической активности сердца. Электрические потенциалы снимаются обычно с накожных электродов, расположенных на конечностях или грудной клетке. Прибор измеряет и усиливает получаемые сигналы, частично отфильтровывает помехи и артефакты и выводит электрокардиографическую кривую на экран монитора. Кроме того, автоматически рассчитывается и представляется в числовой форме частота сердечных сокращений. Таким образом, любой кардиоскоп позволяет, как минимум, контролировать частоту и ритмичность сердечных сокращений, амплитуду и форму зубцов ЭКГ.

Диагностическая ценность ЭКГ зависит от выбора отведения. Так, например, во II-м отведении проще определить нарушения ритма и проводимости, легче распознать ишемию нижней стенки левого желудочка по депрессии сегмента ST ниже изолинии в сочетании с отрицательным зубцом Т.

Кроме оценки состояния сердечной деятельности, ЭКГ в ряде случаев помогает заподозрить наличие некоторых электролитных нарушений. Например, для гипокальциемии характерно удлинение сегмента ST и «отдаление» зубца Т от комплекса QRS, а при гиперкалиемии наблюдается расширение комплекса QRS, укорочение сегмента ST, увеличение и приближение зубца Т к комплексу QRS. Элетрокардиографическая картина меняется при возникновении и других критических ситуаций. Развитие пневмоторакса приводит к резкому уменьшению амплитуды всех зубцов ЭКГ.

Помехи при регистрации ЭКГ возникают при движении больного, работе электрохирургического оборудования, нарушениях контакта электродов с кожей или в соединительных элементах кабелей. При автоматическом расчете ЧСС ошибки прибора могут быть связаны с тем, что амплитуда зубца Т оказывается сопоставимой с амплитудой зубца R и процессор считывает ее как еще одно сердечное сокращение. Кроме того, надо учитывать, что числовое значение ЧСС всегда является усредненной величиной, так как обновление показателей на дисплее производится через установленные интервалы времени.

Мониторинг сердечного выброса. Сердечный выброс (СВ) является одним из наиболее ценных и информативных показателей гемодинамики. Величина СВ необходима для расчета сердечных индексов, общего периферического сопротивления, транспорта кислорода и др. Поэтому мониторинг СВ показан всех критических состояний, особенно сопровождающихся острой сердечной и сосудистой недостаточностью, гиповолемией, шоком, дыхательной и почечной недостаточностью.

При лечении взрослых пациентов для мониторинга СВ чаще всего применяется метод термодилюции, основанный на использовании балонного многопросветного катетера (Свана-Ганца), проведенного в легочную артерию. Регистрация изменения температуры крови в легочной артерии, после введения охлажденного раствора в правое предсердие, позволяет рассчитать величину сердечного выброса. В педиатрической практике эта методика почти не используется в связи с техническими трудностями и высоким риском осложнений, связанных с катетеризацией легочной артерии.

У детей СВ чаще определяют методом разведения красителя индоцианина, который вводят по катетеру в центральную вену, а кривую концентрации препарата считывают с помощью денситометрического датчика, закрепленного на мочке уха. Величина сердечного выброса рассчитывается компьютером на основании анализа формы кривой разведения красителя.

Другая весьма распространенная в педиатрической практике методика определения СВ основана на измерении биоимпеданса грудной клетки при синхронной регистрации ЭКГ и последующей компьютерной обработкой полученных данных. К сожалению, точность этого метода недостаточно высока, сильно зависит от правильности наложения электродов, изменений волемического статуса и влияния применяемых в терапии вазоактивных препаратов.

В последнее время в клиническую практику внедряются неинвазивные методы определения СВ, основанные на эффекте Допплера (чрезпищеводная, супрастернальная, чрезтрахеальная допплер-эхокардиография). При использовании этих методов СВ рассчитывают на основании диаметра и линейной скорости кровотока в аорте. Широкое применение этих методик ограничивается высокой стоимостью аппаратуры.

^ 6.3. Мониторинг нервной системы

Электроэнцефалография (ЭЭГ) - регистрация электрических потенциалов, генерируемых клетками головного мозга. Чашечковые серебряные электроды, в соответствии со стандартной монтажной схемой, накладываются на кожу головы. Электрические сигналы фильтруются, усиливаются и передаются на экран прибора или записываются на бумаге. ЭЭГ позволяет выявить наличие патологической активности, связанной с резидуальной органической патологией очагового или эпилептоидного характера. Нарушения биоэлектрической активности может быть связано с нарушениями мозгового кровообращения, гипоксией, действием анестетиков и т.п. Ограничения к применению этого вида мониторинга связаны с невозможностью быстрой обработки и интерпретации получаемых результатов. Определенные перспективы связывают с усовершенствованием и внедрением новых компьютерных программ для автоматического анализа данных. В настоящее время ЭЭГ мониторинг применяют в основном при вмешательствах на сосудах головного мозга и операциях с использованием искусственного кровообращения.

Мониторинг вызванных потенциалов является неинвазивным методом оценки функции ЦНС с помощью измерения электрофизиологического ответа на сенсорную стимуляцию. Метод позволяет выявлять и локализовывать повреждения различных отделов ЦНС.

Сенсорная стимуляция заключается в многократной подаче световых или акустических сигналов, либо в электрической стимуляции чувствительных и смешанных периферических нервов. Вызванные потенциалы коры регистрируются с помощью электродов, размещенных на коже головы.

Методика вызванных потенциалов показана при проведении нейрохирургических операций, а также для оценки неврологического статуса в послеоперационном периоде.

Мониторинг нервно-мышечной передачи показан у всех больных, получающих миорелаксанты, а также при проведении регионарной анестезии для индентификации нерва и определения степени сенсорного блока. Сущность метода заключается в электрической стимуляции периферического нерва и регистрации сокращений иннервируемой мышцы. В анестезиологической практике чаще всего стимулируют локтевой нерв и отмечают сокращение приводящей мышцы большого пальца кисти.

Стандартная методика стимуляции заключается в подаче четырех последовательных импульсов с частотой 2 Гц. Отсутствие ответа на все четыре импульса соответствует 100% нервно-мышечной блокаде, на 3 импульса - 90%, на 2 импульса - 80% и на 1 импульс - 75% блокаде. Клинические признаки миорелаксации возникают при нервно-мышечной блокаде выше 75%.

При оценке результатов исследования необходимо учитывать, что возникновение блока и последующее восстановление проводимости в разных группах мышц протекает не одновременно. Так, например, после применения миорелаксанов нервно-мышечная проводимость в диафрагме прекращается позже, а восстанавливается раньше, чем в приводящей мышце большого пальца кисти.

Церебральная спектроскопия. Относительно новым методом нейромониторинга является церебральная оксиметрия или спектроскопия в близком к инфракрасному спектре. Этот неинвазивный метод позволяет непрерывно в режиме реального времени измерять содержание гемоглобина и его фракций (окси- и дезоксигемоглобина) в ткани головного мозга. Кроме того, с помощью церебральной спектроскопии можно оценить динамику окислительно-восстановительного статуса цитохромоксидазы в клетках головного мозга. Цитохромоксидаза, будучи конечным ферментом дыхательной цепи, катализирует более 95% утилизации клеточного кислорода, и её окислительный статус непосредственно отражает состояние тканевого дыхания клеток головного мозга.

Суть метода заключается в измерении степени абсорбции света в диапазоне волн от 700 до 1000 нм. Датчик церебрального оксиметра накладывается на лишенную волосяного покрова поверхность головы пациента, предпочтительно на лобную область. Конструкция датчика включает в себя эмиттер, излучающий монохроматичный лазерный свет с заданными длинами волн, и два световоспринимающих детектора, расположенных на различном удалении от эмиттера. Первый детектор, находящийся ближе к эмиттеру, воспринимает свет, отраженный от поверхностно расположенных тканей. На более удалённый детектор поступает свет, отраженный от всей толщи тканей. Компьютерная обработка полученных сигналов позволяет рассчитать величины, относящиеся непосредственно к головному мозгу.

Общее содержание гемоглобина отражает степень кровенаполнения в перикортикальных зонах головного мозга. При изменении концентрации гемоглобина в результате кровопотери или после гемотрансфузии эта величина может указывать на степень этих изменений. Соотношение оксигемоглобина и дезоксигемоглобина выражается как локальное тканевое насыщение гемоглобина кислородом (rS02), и характеризует процессы доставки и потребления кислорода тканями. Эта величина зависит от перфузии тканей, кислородной ёмкости крови и уровня метаболизма в клетках головного мозга. У детей старше 6 лет нормальными значениями локального церебрального насыщения являются 65-75%. Повышение содержания оксигемоглобина может указывать на увеличение насыщения крови кислородом или артериальную гиперемию в наблюдаемой зоне. Соответственно, снижение этого показателя говорит о противоположных процессах. Нарастание количества дезоксигемоглобина говорит либо о гипоксемии, что проявляется снижением артериального насыщения кислородом, либо об увеличении потребления кислорода тканями. В случае нарушения венозного оттока по той или иной причине этот показатель также может возрастать. Окислительный статус цитохромоксидазы целиком зависит от процессов доставки электронов на цепочку дыхательных ферментов и их акцепции кислородом, окисления. Доставка является относительно стабильным процессом и определяется наличием субстрата (глюкозы), окисление же более лабильно и зависит от присутствия в среде кислорода. Быстрое снижение окисленной фракции Cytaa3 говорит о дефиците кислорода либо об уменьшении клеточного метаболизма. По совокупности получаемых данных можно достаточно определённо судить об оксигенации и метаболическом статусе головного мозга.

Церебральная оксиметрия как метод мониторинга вероятного гипоксического или ишемического поражения головного мозга может применяться у больных находящихся в критических состояниях при проведении различных режимов искусственной вентиляции, обеспечении инотропной и волемической поддержки, при отёке головного мозга, при спазме церебральных сосудов. Очевидна целесообразность его использования в анестезиологии с целью интраоперационного мониторинга кислородного статуса головного мозга в сердечно-сосудистой хирургии, в эндоваскулярной хирургии сосудов головы и шеи, в нейрохирургии и во всех других случаях, когда риск гипоксического поражения головного мозга или нарушения церебральной перфузии чрезвычайно высок. К преимуществам церебральной спектроскопии нужно отнести неинвазивность и безопасность этого метода, возможность непрерывного наблюдения с документацией получаемых данных.

^ 6.4. Инвазивные методы мониторинга.

Контроль газового состава артериальной крови - это “золотой стандарт” интенсивной терапии, позволяющий точно оценивать состояние легочного газообмена, адекватность вентиляции и оксигенотерапии.

Артериальная кровь может быть получена различными способами, наиболее удобным является катетеризация периферических артерий. Для динамической оценки газообмена допустимо использование периодических пункций артерий или проведение анализа артериализированной капиллярной крови. Достоинства и недостатки различных способов контроля газов крови представлены в таблице 6.4.


Таблица 6.4. Способы инвазивного мониторинга газов крови

Методика

Преимущества

Недостатки

Катетеризация периферических артерий

Периодические пункции артерий

Артериализированная капиллярная кровь


  • Взятие крови не вызывает беспокойства больного

  • Возможность постоянного мониторинга АД

  • Возможность получения проб при отсутствии катетера

  • Легкость выполнения

  • Малая вероятность осложнений

  • Приемлемые результаты при оценке рН и рСО 2

  • Катетеризация не удается у 25% маленьких детей

  • Катетер нельзя использовать для инфузионной терапии

  • Высокий риск осложнений

  • Болезненность процедуры

  • Высокий риск осложнений

  • Болезненность процедуры

  • Недостоверность при оценке рО 2 , особенно при плохой перфузии

Учитывая, что катетеризация периферических артерий, особенно у детей младшего возраста, является непростой и потенциально опасной манипуляцией, в повседневной работе врачи отделений интенсивной терапии обычно довольствуются данными анализа артериализированной капиллярной крови.

Показаниями к катетеризации артерий у детей возникают при необходимости использования гипероксических дыхательных смесей (FiO 2  0,8) свыше 6 - 12 часов, несмотря на проводимую интенсивную дыхательную терапию.

У детей чаще всего катетеризируют лучевую артерию. Перед катетеризацией необходимо удостовериться в адекватности коллатерального кровотока по локтевой артерии. Оптимальное положение для пункции достигают разгибанием и супинацией кисти. После пальпаторного уточнения места расположения лучевой артерии (латеральнее сухожилия поверхностного сгибателя кисти) кожу обрабатывают антисептическим раствором и производят пункцию под углом 30 о против направления кровотока. При появлении крови в павильоне иглы канюлю вводят в артерию, а иглу извлекают. После фиксации канюлю подключают к системе постоянного промывания гепаринизированным физиологическим раствором со скоростью 1,0-1,5 мл/час.

Контроль центрального венозного давления (ЦВД) проводят с помощью катетера введенного в подключичную или внутреннюю яремную вену, конец которого должен быть расположен у места впадения верхней полой вены в правое предсердие. Расположение катетера в сосудистом русле в обязательном порядке контролируется при рентгенографическом исследовании. ЦВД обычно измеряют с помощью градуированной трубки, подключенной к катетеру (аппарат Вальдмана). Величина ЦВД примерно соответствует давлению в правом предсердии и поэтому позволяет судить о конечно-диастолическом объеме (преднагрузке) правого желудочка. В наибольшей степени ЦВД зависит от объема циркулирующей крови и сократительной способности правых отделов сердца. Поэтому динамический мониторинг величины ЦВД, особенно в сопоставлении с другими показателями гемодинамики, позволяет оценивать как степень волемии, так и сократительную способность миокарда.

^ 6.5. Другие методы мониторинга.

Мониторинг температуры показан при проведении анестезии, лечении лихорадочных состояний и выхаживании новорожденных. Для контроля температуры в анестезиологии и интенсивной терапии используют электронные термометры с цифровыми дисплеями. Датчиками у этих приборов являются термисторы различной формы, приспособленные для наклеивания на кожу или введения в полый орган. Наиболее полную информацию можно получить при одновременном мониторировании периферической температуры (накожные датчики) и центральной температуры (ректальные, пищеводные, внутрисосудистые датчики). В этом случае не только контролируется отклонения от нормальной температуры (гипер- или гипотермия), но и косвенно оценивается состояние гемодинамики, поскольку градиент центральной и периферической температур коррелирует с величиной сердечного индекса. Так, например, при гиповолемии и шоке, на фоне снижения сердечного выброса и перфузии тканей, происходит значительное увеличение температурного градиента.

^ Глава 7. ИНТЕНСИВНАЯ ТЕРАПИЯ ДЫХАТЕЛЬНОЙ НЕДОСТАТОЧНОСТИ

Острая дыхательная недостаточность – это неспособность системы внешнего дыхания обеспечить нормальный газовый состав артериальной крови или он поддерживается за счет включения компенсаторных механизмов.

Классификация. Существует большое количество классификаций ДН, построенных по этиологическому, патогенетическому и другим принципам. Как правило, они чрезмерно громоздки и трудны для использования в повседневной практике. Нам представляется, что с позиций анестезиолога-реаниматолога целесообразно выделить всего два типа ДН:


  1. Вентиляционную , которая связана преимущественно с повреждением механического аппарата вентиляции и проявляется гиповентиляцией, гиперкапнией (PaCO 2  45 мм рт.ст., pH  7,3) и увеличенной работой дыхания.

  2. Гипоксемическую , связанную с паренхиматозным повреждением легких и нарушением газообмена, главным образом, в зоне альвеолярно-артериального перехода. Этот тип ДН проявляется гипоксемией (PaO 2  80 мм рт.ст, при FiO 2 0,21).
Несмотря на максимальное упрощение, предложенная классификация не только учитывает главные патогенетические механизмы обоих типов ДН, но и ориентирует врача в выборе методов интенсивной дыхательной терапии. Так, если при лечении вентиляционной ДН на первый план выходят такие методы, как восстановление и поддержание свободной проходимости дыхательных путей, бронхолитическая терапия, ИВЛ, то при гипоксемической ДН патогенетически обоснованными будут методы заместительной оксигенотерапии, применение повышенного давления в конце выдоха, назначение экзогенных сурфактантов или методы нормализации кровотока в малом круге кровообращения.

^ Этиология и патогенез. Наиболее частыми причинами развития вентиляционной дыхательной недостаточности являются (а) обструктивные, (б) рестриктивные и (в) нейрорегуляторные нарушения.

Обструкция дыхательных путей происходит в результате аспирации околоплодных вод, мекония, содержимого желудка и кишечника. Чаще всего это наблюдается у новорожденных, перенесших тяжелую перинатальную гипоксию и у детей с пороками развития желудочно-кишечного тракта. Обструкция может быть связана с муковисцидозом, бронхоэктатической болезнью, отеком подсвязочного пространства инфекционного или травматического происхождения. У старших детей причиной тяжелой бронхообстукции является бронхиальная астма.

Снижение растяжимости легких (рестриктивные нарушения) наблюдается при пневмонии, респираторном дистресс-синдроме, пневмофиброзе, интерстициальной эмфиземе и отеке. Ухудшение податливости грудной клетки может происходить при пневмо- или гемотораксе, диафрагмальной грыже, высоком стоянии купола диафрагмы при кишечной непроходимости, перитоните или язвенно-некротическом энтероколите.

Нейрорегуляторные нарушения дыхания могут быть связаны с поражением как центральных отделов нервной системы, так и периферических нервов. Центральные нарушения регуляции дыхания возникают при травме или опухолях мозга, кровоизлияниях в мозг, при интоксикациях или действии анестетиков. Поражение периферических нервов и мышц развивается при полиневритах, полиомиелите, миастении.

Основными причинами возникновения гипоксемической ДН являются: (а) нарушение вентиляционно-перфузионных отношений в легких, (б) внутрилегочное шунтирование крови и (в) снижение диффузионной способности легких.

Неравномерность вентиляции наиболее выражена при заболеваниях легких, сопровождающихся уменьшением просвета дыхательных путей, например при бронхиальной астме, бронхитах и бронхиолитах, бронхоэктатической болезни, пневмонии, опухолях легкого. Перфузия легких нарушается при системной гипотензии и шоке, пороках сердца, острой сердечной недостаточности, легочной гипертензии. Длительное неподвижное положение больного, особенно во время операции и анестезии, неизбежно приводит к вентиляционно-перфузионным нарушениям, так как в результате действия гравитационного фактора перфузия смещается в нижележащие отделы легких, а вентиляция - в вышележащие.

Внутрилегочное шунтирование крови справа-налево является крайней степенью нарушения вентиляционно-перфузионных отношений. Это происходит при продолжающейся перфузии невентилируемых участков легкого (например, при ателектазах), что приводит к сбросу неоксигенированной крови в артериальное русло.

Снижение диффузионной способности легких может быть связано как с уменьшением газообменной поверхности легких, так и с “утолщением” альвеолярно-капиллярной мембраны. Газообменная поверхность бывает существенно снижена при гипоплазии легких, ателектазах, у больных, перенесших резекцию легкого. Затруднение диффузии газа через альвелярно-капиллярную мембрану у детей чаще всего наблюдается при интерстициальном отеке или фиброзе легкого.

Понятно, что в клинической практике чаще всего встречается сочетание различных типов нарушений газообмена, но чтобы правильно выбрать тактику интенсивной терапии, врач должен определить ведущие механизмы патогенеза ДН.

Диагностика. Все клинические методы диагностики в полном объеме используются и при обследовании больных в отделениях интенсивной терапии. Однако, в связи с тяжестью состояния пациентов и необходимостью применения более агрессивных методов терапии, врачу-реаниматологу требуется дополнительная информация, позволяющая уточнить характер и выраженность патологических процессов. Без этого невозможно оптимизировать терапию и минимизировать вероятность развития осложнений.

Эту дополнительную информацию получают в результате использования инвазивных методов исследования и анализа данных мониторного наблюдения (См. главу «Мониторинг» ). В данном разделе приведены лишь некоторые формулы для расчета наиболее важных функциональных показателей, характеризующих вентиляционно-перфузионные отношения в легких.

^ Функциональное мертвое пространство. В клинической практике обычно определяют не объем мертвого пространства – величину, зависимую от возраста и массы тела, а отношение функционального мертвого пространства (V D) к дыхательному объему (V T), которое в норме равняется 0,3. Расчет производится по формуле Бора:

V D /V T = (P a CO 2 - P E CO 2)/ P a CO 2 ;

Для определения величины P E CO 2 выдыхаемый газ собирают в мешок и анализируют с помощью капнографа. Увеличение фракции мертвого пространства происходит как нарушениях вентиляции (перерастяжение альвеол, эмфизема легких), так и перфузии легких (эмболия легочной артерии, острая сердечная недостаточность).

^ Альвеолярно-артериальный артериальный градиент кислорода (D A - a O 2) является одним из важнейших показателей характеризующих вентиляционно-перфузионные отношения в легких. Так, если в норме D A - a O 2 не превышает 25 мм рт. ст., его повышение до 250 мм рт. ст. говорит о неадекватности проводимой респираторной терапии, а значения выше 600 мм рт. ст. служат критерием для применения методов экстракорпоральной мембранной оксигенации. Расчет производится по формуле:

D A - a O 2 = P A O 2 – P a O 2 ;

P a O 2 определяется прямым измерением, а парциальное давление кислорода в альвеолярном газе может быть рассчитано по следующей упрощенной формуле:

P A O 2 = FiO 2 (P B – P H2O) – P a CO 2 , где

FiO 2 – фракционная концентрация кислорода во вдыхаемом газе, P B – барометрическое давление, P H 2 O – парциальное давление водяных паров, которое при нормальной температуре тела составляет 47 мм рт. ст.

Некоторые исследователи для оценки вентиляционно-перфузионных отношений предпочитают пользоваться артериально-альвеолярным коэффициентом (P a O 2 /P A O 2), который отражает примерно такую же информацию, но меньше зависит от значения FiO 2 .

^ Величина вено-артериального шунта (Q S /Q t) показывает какой процент неоксигенированной венозной крови сбрасывается в артериальное русло. В норме величина вено-артериального шунта не превышает 5%, а при тяжелых заболеваниях легких может возрастать до 50-60%. Шунт рассчитывают по следующей формуле:

Q S /Q t = (С c O 2 – C a O 2 / С c O 2 – C v O 2)  100, где

С c O 2 – содержание кислорода в конечных легочных капиллярах;

C a O 2 – содержание кислорода в артериальной крови;

C v O 2 – содержание кислорода в смешанной венозной крови.

Поскольку величину С c O 2 непосредственно измерить невозможно, то перед исследованием больного переводят на дыхание чистым кислородом, считая, что при этом гемоглобин в легочных капиллярах насыщается на 100%.

Эффективность легочной вентиляции в процессе ИВЛ легко оценивать по индексу оксигенации (IO). Расчет IO производится по следующей формуле:

IO = (MAP  FiO 2  100)/ P a O 2 , где

MAP – величина среднего давления в дыхательных путях, которую считывают с монитора респиратора или рассчитывают по формулам.

Величина IO > 15 свидетельствует о тяжелой дыхательной недостаточности, значения более 30 указывают на неэффективность респираторной терапии. У новорожденных детей, имеющих IO > 40, смертность составляет около 80%.

Альвеолярное напряжение кислорода - это давление, которое обеспечивает переход кислорода из альвеол в кровь легочных капилляров. В норме существует выраженная разница между альвеолярным и артериальным напряжением кислорода. Она обусловлена тремя компонентами (рис. 12, 14).

Рис. 14. Эффект неравномерности отношения вентиляция/перфузия.

1 -альвеолярное мертвое пространство; 2 - норма; 3 - венозное примешивание.

1. Градиент давления между альвеолами и кровью легочных капилляров. У больных со здоровыми легкими этот градиент, вероятно, меньше 1 мм рт. ст. и не лимитирует переноса кислорода даже у больных с утолщением альвеолярной мембраны, если альвеолярное напряжение кислорода не ниже 60 мм рт. ст.

2. Разница давления, являющаяся результатом отклонений вентиляционно-перфузионных отношений в различных отделах легкого. Обычно это основной компонент существующей альвеолярно-артериальной разницы напряжения кислорода в здоровом легком. В дальнейшем этот вопрос будет рассмотрен более детально. Наиболее частой причиной гипоксемии при различной патологии является увеличение неравномерности вентиляции и кровотока.

3. Разница давления, возникающая вследствие шунтирования венозной крови по обычным или патологическим путям в левое сердце, минуя легкие. В норме венозная кровь попадает в левое сердце по бронхиальным и тебезиевым венам, но общая величина кровотока, шунтируемого по этим сосудам, редко превышает 2% сердечного выброса. У здоровых лиц это никак не может служить серьезной причиной недонасыщения крови кислородом. Подобное заключение справедливо и для больных, если только не наступает чрезмерного развития бронхиальных сосудов (Aviado, 1965). Оба указанных пути шунтирования часто обозначают как анатомические шунты. Другие пути сброса справа налево могут приобрести значение при таких состояниях, как врожденные пороки сердца, полицитемия, болезни печени и легочные артерио-венозные свищи. Шунтирование справа налево может наступить также в участках легких с полностью не вентилируемыми альвеолами, что представляет крайний вариант нарушения вентиляционно-перфузионного отношения. Шунтирование в таких случаях связано с ателектазированием, отеком легкого или склерозированием.

Сдвиги вентиляции и изменения кровотока в легких могут обусловить выраженное падение напряжения кислорода. Кровь, оттекающая от гиповентилируемых альвеол, имеет низкое содержание и напряжение кислорода. Кровь, оттекающая от гипервентилируемых альвеол, обладает высоким напряжением кислорода. Однако содержание кислорода в крови не может значительно превысить нормальный уровень, что видно по характерному наклону кривой диссоциации! Поэтому содержание и напряжение кислорода в смешанной крови, оттекающей от гипо- и гипервентилируемых альвеол, будет ниже нормы. Так как кривая диссоциации кислорода нелинейна, падение напряжения кислорода, вызываемое примешиванием каждой единицы количества венозной крови, будет больше при более высоком уровне артериального напряжения кислорода (выше 60 мм рт. ст.), чем при более низком (ниже 60 мм рт. ст.). Эта зависимость приведена на рис. 15. Поэтому альвеолярно-артериальная разница напряжения кислорода при дыхании воздухом находится но в прямой зависимости от количества примешиваемой венозной крови. Тем не менее она является наиболее чувствительным показателем венозного примешивания и может быть использована для приблизительной оценки тяжести нарушений переноса кислорода.


Рис. 15. Зависимость артериального pO 2 и А-аpO 2 разницы от процента венозного примешивания при дыхании воздухом. Нb=15 г%. pCO 2 = 40 мм рт. ст. Изображенные кривые рассчитаны для предполагаемой А - v разницы содержания 3, 5 и 7 об.%.

Таким образом, эффективность переноса кислорода от альвеол к артериальной крови зависит от точного соответствия вентиляции и кровотока в легких, от поддержания минимального внутри- и внелегочного шунтирования крови и, наконец, от наличия нормальной альвеолярно-капиллярной мембраны (в большинстве случаев этот фактор имеет наименьшее значение). Полная оценка важности каждого из этих факторов затруднительна. В общем, как уже было указано, перенос газа через альвеолярно-капиллярную мембрану не встречает ограничений, если альвеолярное напряжение кислорода не падает ниже 60 мм рт. ст. Относительное значение влияния нарушений вентиляционно-перфузионных отношений и шунтов справа налево можно оценить путем исследования показателей переноса кислорода при дыхании воздухом, а затем чистым кислородом. При применении кислорода в течение длительного времени (не менее 15 минут) он попадает в достаточном количестве даже в плохо вентилируемые альвеолы, повышает в них напряжение кислорода выше нормы и полностью насыщает кровь в отходящих от альвеол капиллярах. Это исключает эффект неравномерности вентиляции и кровотока как основной причины А - арO 2 разницы. Тогда любое нарушение переноса кислорода, продолжающееся после 15 минут вдыхания чистого кислорода, будет обязано шунтированию крови справа налево (рис. 16). В этой книге термин (общий) «венозное примешивание» использован для описания результатов исследований, проводимых на фоне вдыхания воздуха, а шунт справа налево - для объяснения таких же исследований, проводимых при вдыхании чистого кислорода.