Подбор доноров проводят по единым медицинским критериям, что обеспечивает безвредность, высокую активность и эффективность крови и её компонентов.

Каждый донор перед сдачей крови проходит обследование: у него собирают анамнез, проводят тщательный медицинский осмотр и специальное обследование для выявления противопоказаний к сдаче крови и исключения возможности передачи с кровью возбудителей инфекционных заболеваний. Проводят серологическое, вирусологическое и бактериологическое обследования донорской крови.

Успехи клинической трансфузиологии снижают опасность передачи с кровью и её компонентами возбудителей инфекционных заболеваний (ВИЧ-инфекции, гепатитов В и С, сифилиса, цитомегаловирусной инфекции и др.).

Основные антигенные системы крови

Установлено, что антигенная структура крови человека сложна, все форменные элементы крови и белки плазмы разных людей отличаются по антигенам. Уже известно около 500 антигенов крови, образующих более 40 различных антигенных систем.

Под антигенной системой понимают совокупность антигенов крови, наследуемых (контролируемых) аллельными генами.

Все антигены крови делят на клеточные и плазменные. Основное значение в трансфузиологии имеют клеточные антигены.

Клеточные антигены

Клеточные антигены - сложные углеводно-белковые комплексы (гликопептиды), структурные компоненты мембраны клеток крови. От других компонентов клеточной мембраны они отличаются иммуногенностью и серологической активностью.

Иммуногенность - способность антигенов индуцировать синтез антител, если они попадают в организм, у которого эти антигены отсутствуют.

Серологическая активность - способность антигенов соединяться с одноимёнными антителами.

Молекула клеточных антигенов состоит из двух компонентов:

Шлеппер (белковая часть антигена, расположенная во внутренних слоях мембраны), определяющий иммуногенность;

Гаптен (полисахаридная часть антигена, расположенная в поверхностных слоях клеточной мембраны), определяющий серологическую активность.

На поверхности гаптена расположены антигенные детерминанты (эпитопы) - молекулы углеводов, к которым присоединяются антитела. Известные антигены крови отличаются друг от друга эпитопами.

Например, гаптены антигенов системы АВ0 имеют следующий набор углеводов: эпитоп антигена 0 - фукоза, антигена А - N-ацетилгалактозамин, антигена В - галактоза. С ними и соединяются групповые антитела.

Различают три вида клеточных антигенов:

Эритроцитарные;

Лейкоцитарные;

Тромбоцитарные.

Эритроцитарные антигены

Известно более 250 антигенов эритроцитов, образующих свыше 20 антигенных систем. Клиническое значение имеет 11 систем: АВ0, Резус (Rh-Hr), MNSs, Келл (Kell), Лютеран (Lutheran), Кидд (Kidd), Диего (Diego), Даффи (Duffy), Домброк (Dombrock), ферментные группы эритроцитов.

У человека в эритроцитах присутствуют одновременно антигены нескольких антигенных систем.

Основными в трансфузиологии признаны антигенные системы АВ0 и Резус. Другие антигенные системы эритроцитов в настоящее время существенного значения в клинической трансфузиологии не имеют.

Антигенная система АВ0

Система АВ0 - основная серологическая система, определяющая совместимость или несовместимость переливаемой крови. Её составляют два генетически детерминированных агглютиногена (антигены А и В) и два агглютинина (антитела α и β).

Агглютиногены А и В содержатся в строме эритроцитов, а агглютинины α и β - в сыворотке крови. Агглютинин α - антитело по отношению к агглютиногену А, а агглютинин β - по отношению к агглютиногену В. В эритроцитах и сыворотке крови одного человека не может быть одноимённых агглютиногенов и агглютининов. При встрече одноимённых антигенов и антител возникает реакция изогемагглютинации. Именно эта реакция - причина несовместимости крови при гемотрансфузии.

В зависимости от сочетания в эритроцитах антигенов А и В (и соответственно в сыворотке антител α и β) всех людей разделяют на четыре группы.

Антигенная система Резус

Резус-фактор (Rh-фактор), названный так вследствие того, что впервые был обнаружен у макак резус, присутствует у 85% людей, а у 15% отсутствует.

В настоящее время известно, что система Резус достаточна сложна и представлена пятью антигенами. Роль резус-фактора при гемотрансфузии, а также при беременности крайне велика. Ошибки, приводящие к развитию резус-конфликта, вызывают тяжёлые осложнения, а иногда и смерть больного.

Второстепенные антигенные системы

Второстепенные эритроцитарные групповые системы представлены большим количеством антигенов. Знание этого множества систем имеет значение для решения некоторых вопросов в антропологии, судебно-медицинских исследований, а также для предотвращения развития посттрансфузионных осложнений и некоторых заболеваний у новорождённых.

Система MNSs включает факторы М, N, S, s. Доказано наличие двух тесно сцепленных между собой генных локусов MN и Ss. В дальнейшем были выявлены другие многообразные варианты антигенов системы MNSs. По химической структуре MNSs - гликопротеиды.

Система Р. Система антигена Р имеет определённое клиническое значение. Отмечены случаи ранних и поздних выкидышей, причиной которых стали изоантителаанти-Р. Описано несколько случаев посттрансфузионных осложнений, связанных с несовместимостью донора и реципиента по системе антигенов Р.

Система Келл представлена тремя парами антигенов. Наибольшей иммуногенной активностью обладают антигены Келл (К) и Челлано (к). Антигены системы Келл могут вызывать сенсибилизацию организма во время беременности и при переливании крови, становиться причиной гемотрансфузионных осложнений и развития гемолитической болезни новорождённых.

Система Лютеран. Один из доноров по фамилии Лютеран имел в эритроцитах крови какой-то ранее неизвестный антиген, приведший к иммунизации реципиента. Антиген был обозначен буквами Lu а. Через несколько лет был открыт второй антиген этой системы Lu b. Их частота: Lu а - 0,1%, Lu b - 99,9%. Антитела анти-Lu b изоиммунные, что подтверждено и сообщениями о значении этих антител в происхождении гемолитической болезни новорождённых. Клиническое значение антигенов системы Лютеран невелико.

Система Кидд. Антигены и антитела системы Кидд имеют определённое практическое значение. Они могут быть причиной развития гемолитической болезни новорождённых и посттрансфузионных осложнений при многократном переливании крови, не совместимой по антигенам этой системы. Частота антигенов составляет около 75%.

Система Диего. В 1953 г. в Венесуэле в семье Диего родился ребёнок с признаками гемолитической болезни. При выяснении причины этого заболевания у ребёнка был обнаружен ранее неизвестный антиген, обозначенный фактором Диего (Di). В 1955 г. проведённые исследования выявили, что антиген Диего - расовый признак, характерный для народов монголоидной расы.

Система Даффи состоит из двух основных антигенов - Fy а и Fy b. Антитела анти-Fy а - неполные антитела, они проявляют своё действие только в непрямом антиглобулиновом тесте Кумбса. Позднее были обнаружены антигены Fy x, Fy 3 , Fy 4 , Fy 5 . Частота зависит от расовой принадлежности человека, что имеет большое значение для антропологов. В негроидных популяциях частота фактора Fy a - 25%, среди китайского населения, эскимосов и аборигенов Австралии - почти 100%, у людей европеоидной расы - 60-82%.

Система Домброк. В 1973 г. были выявлены антигены Do а и Do b. Фактор Do а встречают в 55-60% случаев, а фактор Do b - в 85-90%. Такая частота выдвигает эту серологическую систему крови на пятое место по информативности в аспекте судебно-медицинского определения отцовства (система Резус, MNSs, AB0 и Даффи).

Ферментные группы эритроцитов. Начиная с 1963 г. стало известно значительное количество генетически полиморфных ферментных систем эритроцитов крови человека. Эти открытия сыграли значительную роль в развитии общей серологии групп крови человека, а также в аспекте судебно-медицинской экспертизы спорного отцовства. К ферментным системам эритроцитов относят фосфатглюкомутазу, аденозиндезаминазу, глутамат-пируват-трансаминазу, эстеразу-Д и др.

Антигены эритроцитов (ABO, Rh, Kell), принципы определения, клиническая значимость. Лабораторные методы контроля в трансфузиологии

Группы крови определяются различным сочетанием антигенов эритроцитов (агглютиногенов) и антигенов плазмы (агглютининов). Но понятие «группа крови» подразумевает все генетически наследуемые факторы, выявляемые в крови человека: сывороточные и клеточные факторы (эритроцитарные, лейкоцитарные, тромбоцитарные). Известно около 250 групповых антигенов, которые объединяются в системы. Для эритроцитов известно более 15 систем. Наиболее распространенная система – система АВО. Другие антигенные системы эритроцитов: *система Lewis, *система Kell, *система Duffy, групповая система MNS, система крови Резус, система Кидд.

Система групп крови АВО

Открыта в 1901г. Карлом Ландштейнером.

Аллели группы крови наследуются кодоминантно. Полиморфизм групп крови в системе определяется распространенностью и числом аллелей генов в популяции. Наиболее часто встречаются I и II группы.

Выделяют 4 группы крови в зависимости от сочетания агглютиногенов эритроцитов (А, В) и агглютининов плазмы (α, β). Уникальность системы АВО состоит в том, что в плазме у неиммунных людей имеются естественные антитела к отсутствующему на эритроцитах антигену: у лиц группы О (1) - антитела к А и В; у лиц группы А (П) - анти-В-антитела: у лиц группы В (ПI) – анти-А-антитела; у лиц группы АВ (IV) нет антител к антигенам системы АВО. Особенность анти-А-антител и анти-В-антител - способность к резкой активации комп­лемента, что обусловливает их клиническую значимость. При переливании АВО-несовместимой крови специфические антитела активируют комплемент, что ведет к внутрисосудистому лизису эритроцитов, развитию диссеминиро­ванного внутрисосудистого свертывания (ДВС) крови и острой почечной не­достаточности у реципиента.

Определение группы крови необходимо для совместимого переливания крови. Эритроциты донора не должны содеожать антигена, соответствующего антителам реципиента, т.е. А и α , В и β , так как иначе произойдёт массивный гемолиз введённых эритроцитов антителами реципиента.

Существуют разновидности (слабые варианты) антигена А (в большей степени) и реже антигена В. Что касается антигена А, имеются варианты: "сильный" А1 (более 80%), слабый А2 (менее 20%), и еще более слабые (А3, А4, Ах - редко). Это теоретическое понятие имеет значение для переливания крови и может вызвать несчастные случаи при отнесении донора А2 (II) к группе 0 (I) или донора А2В (IV) - к группе В (III), поскольку слабая форма антигена А иногда обуславливает ошибки при определении группы крови системы АВO. Правильное определение слабых вариантов антигена А может требовать повторных исследований со специфическими реагентами. Снижение или полное отсутствие естественных агглютининов альфа и бета иногда отмечается при иммунодефицитных состояниях: 1) новообразования и болезни крови - болезнь Ходжкина, множественная миелома, хроническая лимфатическая лейкемия; 2) врожденные гипо- и агаммаглобулинемия; 3) у детей раннего возраста и у пожилых; 4) иммуносупрессивная терапия; 5) тяжелые инфекции. Трудности при определении группы крови вследствие подавления реакции гемагглютинации возникают также после введения плазмозаменителей, переливания крови, трансплатации, септицемии и пр.

Определение групп крови по с-ме АВО:

1. При помощи стандартных изогемагглютинирующих сывороток. Устанавливают наличие или отсутствие агглютиногенов, делают заключение о групповой принадлежности крови.

2. Определение группы крови перекрёстным способом, т.е одновременно при помощи стандартных гемагглютинирующих сывороток и стандартных эритроцитов. Определяют наличие или отсутствие агглютиногенов и групповых агглютининов.

3. Определение группы крови с помощью моноклональных антител (ЦОЛОКЛОНов).

Система групп крови Lewis

Антигены этой системы не синтезируются эритроидными клетками-предшественниками, а адсорбируются эритроцитами из плазмы. Антигены экспрессируются во многих тканях организма, в частности, на эпителии дыхательных, мочевыводящих путей, ЖКТ.

Антигены системы кодируются генами на 19 хромасоме.

Существует 3 главных фенотипа системы Lewis: 1. Le a + b - 2. Le a - b + 3. Le a - b -

Антигены системы Le участвуют в воспалительном ответе. Они связывают нейтрофилы и моноциты с эндотелием сосудов и помогают им мигрировать через эндотелий во внесосудистые очаги воспаления. Лица с Le a - b - имеют дефект противоинфекционной резистентности.

Система групп крови Duffy

Гликопротеин Duffy – рецептор ростовых факторов, связывает цитокины, по структуре принадлежит к суперсемейству рецепторов, ассоциированных с G-белками. Функция до конца не изучена.

Групповая система Келл (Kell) состоит из 2 антигенов, образующих 3 группы крови (К-К, К-k, k-k). Антигены системы Келл по активности стоят на втором месте после системы резус. Они могут вызвать сенсибилизацию при беременности, переливании крови; служат причиной гемолитической болезни новорожденных и гемотрансфузионных осложнений. Наиболее иммуногенен KEL7.

Групповая система Кидд (Kidd) включает 2 антигена, образующих 3 группы крови: lk (a+b-), lk (A+b+) и lk (a-b+). Антигены системы Кидд также обладают изоиммунными свойствами и могут привести к гемолитической болезни новорожденных и гемотрансфузионным осложнениям.

Групповая система MNS является сложной системой; она состоит из 9 групп крови. Антигены этой системы активны, могут вызвать образование изоиммунных антител, т. е. привести к несовместимости при переливании крови; известны случаи гемолитической болезни новорожденных, вызванные антителами, образованными к антигенам этой системы.

Система крови Резус

Открыта в результате иммунизации кроликов кровью макак Резус.

Полиморфная система, подразделяется на 5 основных групп: D, C, c, E, e. Основная подгруппа – D, встречается у 80% европейцев и у 100% лиц монголоидной расы.

Антиген Rh экспрессируется на мембране эритроцита в присутствие вспомогательного гликопротеина Rh50. Аминокислотная последовательность этого белка имеет 40%-гомологию с белком Rh. Все белки Rh образуют структуру, 12 раз пронизывающую мембрану.

Обнаружена связь между Rh матери и гемолитической болезнью новорожденных (у Rh - -матери образуются антитела к эритроцитам Rh + -плода).

Rh + -людей – 85%, Rh - -людей –15%.

Определение с помощью двух серий стандартных сывороток антирезус.

Антигенная система лейкоцитов и тромбоцитов

Лейкоциты имеют более 90 антигенов. Основные антигены лейкоцитов – антигены МНС первого типа (подгруппы А, В, С) и второго типа (подгруппы DR, DQ, DP).

Основные антигены тромбоцитов – 5 антигенов типа HPA (1, 2, 3, 4, 5). При участии антител к HPA развивается тромбоцитопеническая пурпура новорожденных, посттрансфузионная пурпура и развивается рефрактерность к траксфузиям тромбоцитов.

Изучение антигенов эритроцитов и анализ иммуногенных свойств показали их различную способность к сенсибилизации в процессе трансфузий или при беременности. Расположив частоту встречаемости антител к антигенам эритроцитов в убывающем порядке, получили шкалу иммуногенности антигенов эритроцитов, которую также можно назвать шкалой приоритета трансфузионно опасных эритроцитарных антигенов. В настоящее время шкала с учетом только основных клинически значимых антигенов систем AB 0, Резус и Келл выглядит следующим образом: А, В > D > K > c > C > E > e .

СИСТЕМА AB0

Система АВ0 состоит из двух основных компонентов - антигенов А и В, пред ставленных на эритроцитах как по одному, так и вместе - группы А (II), B (III ), AB (IV ); отсутствие антигенов на мембране эритроцитов обозначают символом «0» - группа 0 (I ). Уникальное свойство системы AB 0 - наличие в норме антител к отсутствующим антигенам. Эти антитела называют изогемагглютининами анти-А, анти-В (или устаревшее обозначение α иβ ). Сочетание антигенов А и В на эритроцитах и антител к ним в сыворотке крови человека определяет его принадлежность к четырем основным группам крови (табл. 18-1).

Таблица 18-1. Основные группы крови человека системы AB0

Группа крови

по системе AB 0

Антигены системы AB0

Антитела системы AB0

A (II)

B (III)

AB (IV)

Антигены А и В представляют собой неоднородные структуры, определяющие наличие большого количества вариантов антигенов системы AB 0. Так, структуру антигена А описывают более чем 30 вариантами: А 1 , А 2 , А 3 , А 4??.. А 27 , А х, А end и др. На эритроцитах могут быть представлены только некоторые из перечисленных вариантов антигена; при этом возможна выработка антител к отсутствующим частям антигенной мозаики. Наиболее иммуногенна часть А 1 ; при ее обнаружении на эритроцитах человека говорят о второй А(II) или четвертой АВ(IV) группе крови. Диагностика подгруппы А 2 возможна только при использовании специаль ного реагента - анти-А 1 . В случаях наличия антигена А без выявления варианта А 1 - обобщенный вариант А 2 , обозначается подгруппой А 2 (II) или А 2 В(IV) соот ветственно. Выявляемые антитела к отсутствующим частям антигена А(А 1) называют экстрагглютининами и обозначают как анти-А 1 или α 1 .

Основные понятия

В эритроцитах человека имеются 5 основных антигенов системы резус (D, C, c, E, e), из которых наиболее иммуногенным является антиген D – Rh(D). Наличие или отсутствие этого антигена определяет резус-принадлежность крови: лица, имеющие D-антиген, принадлежат к группе резус-положительных (среди лиц белой расы их приблизительно 85%); лица, не имеющие его, относятся к резус-отрицательным (их, соответственно, около 15%).

Иммуногенность других (минорных) антигенов системы Rh значительно ниже и убывает в ряду: с>Е>С>е. Определение минорных антигенов системы резус, как правило, производится при необходимости многократных трансфузий, в тех случаях, когда в сыворотке реципиента обнаружены иммунные антитела к антигенам системы резус, в том числе при индивидуальном подборе крови.

Антиген D имеет слабые варианты, объединяемые в группу Dweek (Du), частота которой в популяции составляет около 1% . Эти эритроциты слабо или вообще не агглютинируются полными анти-Rh-антителами в реакции прямой агглютинации.

Доноры, содержащие Du, должны быть отнесены к резус-положительным, так как, во-первых, переливание их крови сенсибилизированным к D-антигену резус-отрицательным реципиентам может вызвать тяжелые трансфузионные реакции и, во-вторых, может вызвать иммунный ответ у резус-отрицательных реципиентов. Поэтому кровь доноров должна обязательно тестироваться на присутствие Du и, в случае его обнаружения считаться резус-положительной.

Реципиенты, содержащие антиген Du, должны быть отнесены к резус-отрицательным и им должна быть перелита только резус-отрицательная кровь, так как нормальный антиген D может вызвать у таких лиц иммунный ответ. Поэтому кровь реципиентов не обязательно тестировать на присутствие Du.

Резус-принадлежность определяется в реакции агглютинации с помощью моноклональных реагентов или изоиммунных антирезусных сывороток, предназначенных для выявления Rh(D)-aнтигена в реакции прямой агглютинации (на плоскости и в пробирочном тесте; в солевой среде; в присутствии высокомолекулярных усилителей; с эритроцитами, обработанными протеолитическими ферментами) или в непрямом антиглобулиновом тесте (непрямая проба Кумбса). Метод определения зависит от класса антител в реагенте: если в нем присутствуют полные антитела (класса IgM), то реагент используется для определения резус-фактора методом прямой агглютинации в солевой среде; если в нем содержатся неполные антитела (класса Ig G), то он используется в реакции агглютинации в присутствии высокомолекулярных усилителей (альбумина, желатины и др.), с эритроцитами, обработанными протеолитическими ферментами, в непрямом антиглобулиновом тесте.

Техника определения резус-принадлежности крови

Реакция агглютинации на плоскости с помощью анти-D моноклональных реагентов (полных антител)

Определение проводят в помещении с хорошим освещением. Наилучшие результаты тест дает при использовании высокой концентрации эритроцитов и температуре около +37° С, поэтому желательно использовать подогретую пластинку. Для исследования используют цельную кровь, отмытые эритроциты, эритроциты в плазме, сыворотке, консерванте или физиологическом растворе.

Процедура проводится в следующей последовательности:

1. Наносится большая капля (около 0,1 мл) реагента на пластинку или планшет.

2. Рядом наносится маленькая капля (около 0,03 мл) исследуемой крови (эритроцитов).

3. Тщательно смешивается реагент с кровью чистой стеклянной палочкой.

4. Через 10–20 с пластинка мягко покачивается. Несмотря на то, что четкая агглютинация наступает в первые 30 с, результаты реакции следует учитывать через 3 мин после смешивания.

5. Результаты реакции записываются немедленно после окончания.

При наличии агглютинации исследуемая кровь маркируется как резус-положительная, если агглютинация отсутствует – как резус-отрицательная. Если агглютинация намного слабее наблюдаемой с Rh (D)-положительными эритроцитами, исследуемая кровь принадлежит к подгруппе слабых антигенов Rh – Du. Для уточнения принадлежности такого образца крови к группе Du исследование проводят со вторым реагентом, содержащим IgG (неполные) анти-D антитела (см. гл. 6.2.2.3).

Реакция агглютинации с помощью неполных анти-D-антител (IgG) в присутствии высокомолекулярных добавок

Реакция проводится либо со специально приготовленным реагентом, уже содержащим усилитель (универсальный реагент с полиглюкином или альбумином для плоскости), либо усилитель добавляют в процессе проведения реакции (реакция конглютинации с желатином в пробирке).

Техника постановки реакции агглютинации на плоскости не отличается от описанной в гл.6.2.2.1. Однако универсальные реагенты могут давать ложноположительную реакцию с резус-отрицательными эритроцитами за счет содержащихся в них высокомолекулярных веществ, а также могут вызывать агглютинацию эритроцитов, покрытых антителами другой (не антирезус) специфичности. Поэтому необходимо проведение параллельных тестов с контрольным раствором используемого усилителя, но без анти-0-антител. Если контрольный раствор вызывает агглютинацию эритроцитов, то результаты тестирования не достоверны и следует повторить определение с другим реагентом, содержащим полные антитела IgM (лучше с моноклональными).

Реакции конглютинации с применением желатина. Для проведения этого теста могут быть использованы моноклональные реагенты и стандартные изоиммунные антирезус сыворотки с неполными антителами.

1. Вносят в пробирку 1 каплю (около 0,05 мл) исследуемой крови или взвеси эритроцитов (примерно 50%) в сыворотке.

2. Добавляют 2 капли (0,1 мл) 10% раствора желатина, предварительно подогретого до разжижения при +46...+48°С.

3. Добавляют 2 капли (0,1 мл) реагента анти-D и смешивают.

4. Помещают пробирку в водяную баню с температурой +46...+48°С на 5–10 мин или в суховоздушный термостат при той же температуре на 30 мин.

5. Доливают в пробирку 5–8 мл физиологического раствора и осторожно 1–2 раза переворачивают закрытую пробкой пробирку для перемешивания.

6. Определяют наличие агглютинатов, просматривая пробирку на свет невооруженным глазом или через лупу.

7. Немедленно записывают результаты определения.

Желатиновая проба требует обязательного проведения следующих контролей:

Со стандартными резус-положительными эритроцитами;

Со стандартными резус-отрицательными эритроцитами;

С исследуемыми эритроцитами и раствором желатина, но без анти-0-антител.

При положительном результате агглютинаты различимы в виде агрегатов разной величины на прозрачном фоне – кровь является резус-положительной. При отрицательном результате в пробирке агрегатов нет, а видна равномерно окрашенная непрозрачная взвесь эритроцитов – кровь является резус-отрицательной. Если наблюдается мелкозернистая, вызывающая сомнение агглютинация, то кровь необходимо тестировать в непрямом антиглобулиновом тесте (см. гл.6.2.2.3). Результаты желатиновой пробы являются достоверными только в случае, когда желатин сам не вызывает агглютинацию исследуемых эритроцитов, а результаты контролей со стандартными эритроцитами соответствуют ожидаемым. В случае неадекватных результатов контролей определение резус-принадлежности следует повторить с использованием другого реагента или образца желатина. Если желатин вызывает сам по себе агглютинацию исследуемых эритроцитов, то можно предполагать наличие на них антиэритроцитарных антител антирезус или иной специфичности (это наблюдается при гемолитической болезни новорожденных, аутоиммунной гемолитической анемии и некоторых инфекционных заболеваниях). В этом случае кровь должна быть направлена на исследование в специальную серологическую лабораторию.

Непрямой антиглобулиновый тест с помощью неполных анти-0-антител (IgG)

1. Приготовить 2–5% взвесь трижды отмытых в физиологическом растворе исследуемых эритроцитов. Для этого поместить в пробирку 5 капель (около 0,25 мл) исследуемой крови, трижды отмыть в 5–10 мл физиологического раствора; суспендировать осадок эритроцитов в 2–3 мл физиологического раствора или, предпочтительнее, в 2–3 мл раствора LISS, в котором фиксация антител на эритроцитах прочнее и происходит быстрее, чем в физиологическом растворе.

2. Внести 1 каплю анти-0-реагента в чистую маркированную пробирку.

3. Добавить 1 каплю 2–5% взвеси эритроцитов.

4. Инкубировать смесь при +37°С 30–45 мин (если эритроциты взвешены в физиологическом растворе) или 10–15 мин (если эритроциты взвешены в LISS).

5. Отмыть эритроциты 1 раз (в случае использования мо-ноклонального реагента) или 3 раза (в случае использования изоиммунной анти-0-сыворотки) большим объемом (5–10 мл) физиологического раствора. Однократная отмывка допустима только при использовании моноклональных реагентов. Полностью удалить физиологический раствор.

6. Добавить к осадку 1 каплю антиглобулинового реагента и тщательно смешать.

7. Центрифугировать 15–20 с при 2 000–3 000 об./мин.

8. Мягко ресуспендировать осадок и визуально определить наличие агглютинации.

9. Немедленно записать результаты определения.

При отсутствии агглютинации кровь является резус-отрицательной. При положительной реакции – резус-положительной; подгруппы Du могут вызывать слабую агглютинацию даже в этом высокочувствительном тесте. Прежде чем отнести донора Du к резус-положительным следует подтвердить заключение контрольным исследованием антиглобулиновой сыворотки со стандартными эритроцитами. Если контрольный тест положительный, интерпретация не является достоверной. В этом случае реципиент должен получать только резус-отрицательную кровь (эритроциты), а кровь такого донора не должна использоваться для трансфузий до окончательного выяснения его резус-принадлежности.

Агглютинация эритроцитов, обработанных протеолитическими ферментами, с помощью неполных анти-0-антител (IgG)

Неполные антитела способны вызывать прямую агглютинацию в солевой среде эритроцитов, обработанных бромелином, папаином, трипсином и другими протеазами. Этот метод высокочувствителен и надежен при выявлении слабых форм D-антигена. Он используется, главным образом, при автоматическом определении групп крови в системах "Gruppomatic”, в которых обеспечивается стандартность обработки эритроцитов ферментами и специально подбирается нужное разведение реагента, так как для этого теста характерен феномен прозоны (ингибирование агглютинации избытком антител).

При неавтоматизированном определении групп крови метод может быть использован в специализированных серологических лабораториях.

На поверхности эритроцитов находится большое количество антигенов. В зависимости от вида этих антигенов выделяют группы крови, самые изученные группы - АВО, Rh, Kell, Duffy и др...

Средняя цена в вашем регионе: 986.94 от 650 … до 1330

Описание исследования

Подготовка к исследованию: Кровь берут из вены, а затем получают сыворотку (плазма крови без фибриногена) путем естественного свертывания или путем осаждения фибриногена. Исследуемый материал: Взятие крови

На поверхности эритроцитов находится большое количество антигенов. В зависимости от вида этих антигенов выделяют группы крови, самые изученные группы - АВО, Rh, Kell, Duffy и др. В норме в крови существуют антитела (иммуноглобулины) к антигенам другой группы, но при переливании крови, беременности, аутоиммунных заболеваниях и др. обнаруживаются антитела к своим антигенам.

Все иммуноглобулины можно разделить на полные и неполные антитела. Полные антитела образовывают в реакции агглютинации осадок, вследствие того, что у одной молекулы антитела имеются несколько мест связывания антигена. К полным антителам относят иммуноглобулины M и др. Неполные антитела (иммуноглобулины G и др.) не образуют осадка сами по себе, так как у них только одно место связывания антигена или остальные места по каким-либо причинам не связываются с антигеном, их называют блокирующими антителами. Такие антитела выявляют прямой и непрямой реакцией Кумбса, при которой добавляют антитела к неполным антителам (антиглобулиновую сыворотку) и образуется осадок.Полные и неполные антитела к эритроцитам.

Метод

Полные антитела выявляют реакцией солевой агглютинации. Реакция агглютинации заключается в связывании антителами исследуемой сыворотки стандартных эритроцитов набором антигенов на них, которая проявляется образованием хлопьевидного осадка. Реакция проходит при наличии раствора натрия хлорида, проводится при разных температурах для выявления всех полных антител.

Неполные антитела определяются реакцией Кумбса - выявление агглютинации (слипания) эритроцитов с неполными антителами при добавлении антиглобулиновой сыворотки.

Референсные значения - норма
(Антигены эритроцитов, определение полных и неполных антител, кровь)

Информация, касающаяся референсных значений показателей, а также сам состав входящих в анализ показателей может несколько отличаться в зависимости от лаборатории!

Норма:

В норме антител к собственным эритроцитам не должно быть, при постановке реакции агглютинации и реакции Кумбса агрегации эритроцитов не происходит.

Показания

1. Исследование гуморального специфического иммунитета при подозрении на аутоиммунные реакции в организме

2. Резус-конфликт между матерью и плодом

3. Определение совместимости крови донора и реципиента

Повышение значений (положительный результат)

Антитела к эритроцитам обнаруживают при:
1. Аутоиммунных гемолитических анемиях
2. Гемолитической болезни новорожденных
3. Системных заболеваниях соединительной ткани
4. Хроническом активном гепатите

5. Резус-иммунизация

6. Гемотрансфузии

Где сдать анализ

34 лабораторий делают данный анализ в вашем регионе . Чтобы найти ближайшую лабораторию и сравнить цены на анализ - Антитела к антигенам эритроцитов (полные и неполные) - нажмите кнопку.