ГОМО- ГЕТЕРОЗИГОТЫ , термины, введенные в генетику Бетсоном (Bateson) для обозначения строения организмов в отношении какого-либо наследственного задатка (гена). Если какой-нибудь ген получен от обоих родителей, то организм будет гомозиготен по этому гену. Напр. если ребе-. нок" получил от отца и от матери ген карей окраски глаз, он гомозиготен по карегла-зости. Если обозначить этот ген буквой А, то формула организма будет АА. Если же ген получен только от одного родителя, то особь гетерозиготна. Например если у одного родителя глаза карие, а у другого голубые, то потомки будут гетерозиготны; по окраске глаз. Обозначая доминантный ген карей окраски через А, голубой-через а, для потомка имеем формулу Аа. Особь моядат быть гомозиготной как по доминантному гену (АА), так и по рецессивному(аа).Организм может быть гомозиготным по одним генам и гетерозиготным по другим. Напр. у обоих родителей могут быть голубые глаза, но у одного из них курчавые волосы, а у другого гладкие. Ф-ла потомка будет АаЪЪ. Гетерозигот по двум генам называется дигетерозигот. По внешнему виду гомо- и гетерозиготы или ясно различимы-случай неполного доминирования (курчавые - гомозиготы по доминантному гену, волнистоволосые-гетерозиготы, гладковолосые-гомозиготы по рецессивному гену, или черные, голубые и андалузские куры) или отличимы микроскопическим и др. исследованиями (горох, гетерозиготный по признаку морщинистых семян, отличим по не совсем круглым зернам) или вовсе не отличимы в случае полного доминирования. Аналогичные явления отмечены и у человека: так напр. есть основания полагать, что легкая степень рецессивной близорукости может проявиться и у гете-розигота; то же относится и к атаксии Фрид-рейха и др. Явление полного доминирова- ния делает возможным распространение в скрытом виде летальных или вредных рецессивных генов, т. к. если две особи, внешне здоровые, но содержащие в гетерозиготном состоянии такой ген, вступят в брак, то в потомстве появится 25% нежизнеспособных или больных детей (напр. iehthyosis conge-nita). От брака двух лиц, гомозиготных по какому-либо признаку, все потомство также обладает атим признаком: так например от брака двух генотинически глухонемых (признак рецессивный, следовательно б-ной имеет структуру аа) все дети будут глухонемыми; от брака же рецессивного гомозигота и гетерозигота доминантный признак наследует половина потомства. Врачу наиболее часто приходится иметь дело с браками гетерозигот-гетерозигот (при рецессивном болезненном факторе) и гомозигот- гетерозигот (при доминантном болезненном факторе).Гомозиготным называют пол, имеющий две одинаковые половые хромосомы (женский-у млекопитающих, мужской-у птиц и т. д.). Пол, имеющий разные половые хромосомы (ж и у) или только одну х, называют гетерозиготным. Термин гемизиготный [введенный в генетику Липпинкотом (Lippin-cott)] удобнее, так как гетерозигот должен иметь структуру Аа, а особи с одной ж-хро-мосомой не могут быть Аа, но имеют структуру А или а. Примерами гемизиготных больных являются мужчины, больные гемофилией, дальтонизмом и некоторыми другими болезнями, гены которых локализованы в а;-хромосоме. Лит.: Bateson W., Mendel"s principles of heredity, Cambridge, 1913; см. также литературу к ст. Генетика. А. Серебровсвий.

Смотрите также:

  • ГОМОЙОТЕРМНЫЕ ЖИВОТНЫЕ (от. греч. homoios-равный, одинаковый и therme- теплота), или теплокровные (син. гомеотерм-ные и гомотермные животные), те животные, к-рые обладают регуляционным аппаратом, позволяющим им поддерживать t° тела приблизительно постоянной и почти независимой...
  • ГОМОЛОГИЧЕСКИЕ РЯДЫ , группы органических соединений с одинаковой хим. функцией, но отличающихся друг от друга одной или несколькими метиленовыми (СН2) группировками. Если в простейшем соединении ряда насыщенных углеводородов- метане, СН4, один из...
  • ГОМОЛОГИЧНЫЕ ОРГАНЫ (от греч. ho-mologos-согласный, соответственный), название морфологически сходных органов,т.е. органов одинакового происхождения, развивающихся из одинаковых зачатков и обнаруживающих сходное морфол. соотношение. Термин «гомология» введен английским анатомом Р. Оуеном (R. Owen) для...
  • ГОМОПЛАСТИКА , или гомойопласти-ка (от греч. homoios-подобный), изопла-стика, свободная пересадка тканей или органов от одного индивидуума на другого того же вида, в том числе и от одного человека на другого. Начало...
  • ГОМОСЕКСУАЛИЗМ , противоестественное половое влечение к лицам собственного пола. Г. считали раньше чисто психопатологическим явлением (Krafft-Ebing), и вопросами Г. занимались преимущественно психиатры и судебные медики. Только в последнее время, благодаря работам...

Изменчивость - способность живых организмов приобретать новые признаки и качества. Различают ненаследственную и наследственную изменчивость (схема 1).

К ненаследственной изменчивости относятся изменения изменение внешних признаков (фенотипа), которые не сохраняющиеся в поколении. К ним относятся модификации , которые возникают под действием окружающей среды.

у насекомых и других животных → смена окраски шерсти у некоторых млекопитающих при изменении погодных условий (например, у зайца) рис. 2,

у человека → увеличение уровня эритроцитов при подъёме в горы, увеличение пигментации кожи при интенсивном воздействии ультрафиолетовых лучей, развитие костно-мышечной системы в результате тренировок (рис. 3).

Рис. 3 Развитие костно-мышечной системы в результате тренировок

Наследственная изменчивость представляет собой изменения генотипа, которые сохраняются в ряду поколений. К ним относятся комбинации и мутации. Комбинационная изменчивость возникает при перекомбинации (перемешивании) генов отца и матери.

Пример: проявление дрозофил с темным телом и длинными крыльями при скрещивании серых дрозофил с длинными крыльями с темными дрозофилами с короткими крыльями (рис.4).

Рис. 4 Дрозофила с темным телом и длинными крыльями

у цветка ночная красавица есть лепестки розового цвета возникают при сочетании (комбинации) красного и белого гена (рис. 5).

Рис. 5 Образование лепестков розового цвета у ночной красавицы

Мутационная изменчивость - это изменения ДНК клетки (изменение строения и количества хромосом). Возникают под действием ультрафиолета, радиации (рентгеновских лучей) и т.п.

у человека → трисомия по 21-й паре (синдром Дауна),

у животных → двуглавие (рис. 6).

Рис. 6 Двуглавая черепаха из Китая


ГЕНОМ

Геном - совокупность наследственного материала, находящийся в клетке организма. Большинство геномов, в том числе геном человека и геномы всех остальных клеточных форм жизни, построены из ДНК.

Дезоксирибонуклеиновая кислота (ДНК) - макромолекула обеспечивающая хранение, передачу и реализацию из поколения в поколение генетической программы развития и функционирования живых организмов.

Генотип - совокупность генов данного организма.

Итак, геном является характеристикой вида в целом, а генотип - отдельной особи.

Ген - элементарная единица наследственностиживых организмов. Ген представляет собой участок ДНК ответственный за проявление какого-либо признака.

Гены есть в ядре каждой клетки живого организма рис. 7.

Рис. 7 Расположение гена в клетке

В результате взаимодействия генотипа с факторами окружающей среды формируется фенотип , то есть совокупность всех признаков и свойств организма. Примеры: рост, масса тела, цвет глаз рис. 8 , форма волос, группа крови, левша, правша.

Рис. 8 Карый и голубой цвет глаз Рис. 9 Генотип и фенотип у гороха

К ф е н о т и п у относятся не только внешние признаки, но и внутренние: анатомические, физиологические, биохимические. Каждая особь имеет свои особенности внешнего вида, внутреннего строения, характера обмена веществ, функционирования органов, т.е. свой фенотип, который сформировался в определённых условиях среды.


СТРОЕНИЕ ХРОМОСОМЫ

ХРОМОСОМЫ являются структурным элементом ядра в котором заключена вся наследственная информации (рис. 10, 11, 12).

Рис. 10 Схематическое изображение хромосомы

ЦЕНТРОМЕРА - участок хромосомы, делящий хромосому на два плеча.

Рис. 11 Изображение хромосомы в электроном микроскопе

Рис. 12 Расположение хромосомы в клетке

Существуют X-хромосома и Y-хромосома рис. 13.

X-хромосома - половая хромосома большинства млекопитающих, в том числе человека, определяющий женский пол организма.

Y-хромосома - половая хромосома большинства млекопитающих, в том числе человека, определяющий мужской пол организма.

У самок две X-хромосомы (XX), а у самцов - одна X-хромосома и одна Y-хромосома (XY).

Рис. 13 X-хромосома и Y-хромосома

КАРИОТИП - совокупность хромосом, характерная для данного вида организмов (хромосомный набор) Рис. 14.

Рис. 14 Кариотип здорового человека

Аутосомы - это хромосомы одинаковые у обоих полов. Генотип женского организма имеет 44 хромосомы (22 пары), одинаковые с мужскими. Их и называют аутосомами рис. 14.

Рис. 15 Кариотипы растений и животных

Рис. 16 Изображение растений и животных соответственного кариотипа:

скерда, бабочка, плодовая мушка, кузнечик и петух

Кариотип – совокупность внешних признаков хромосомного набора (число, форма, размер хромосом), характерных для данного вида.


АЗОТИСТЫЕ ОСНОВАНИЯ

АЗОТИСТЫЕ ОСНОВАНИЯ - органические соединения входящие в состав нуклеиновых кислот (ДНК и РНК) рис. 17.

Латинские и русские коды для нуклеиновых оснований (азотистое основание):

A - А: Аденин;

G - Г: Гуанин;

C - Ц: Цитозин;

T - Т: Тимин, встречается у бактериофагов (вирусы бактерий) в ДНК, занимает место урацила в РНК;

U - У: Урацил, встречается в РНК, занимает место тимина в ДНК.

Рис. 17 Азотистые основания в ДНК и РНК

Рис. 18 Расположение азотистых оснований в клетке

Нуклеотид построен из сахара-пентозы, азотистого основания и остатка фосфорной кислоты (ФК).

Водородная связь - это взаимодействие между двумя электроотрицательными атомами одной или разных молекул посредством атома водорода: G−Н ... C (чертой обозначена ковалентная связь, тремя точками - водородная связь) Рис. 19.

Рис. 19 Водородная связь

Принцип комплементарности используется в синтезе ДНК. Это строгое соответствие соединения азотистых оснований, соединёнными водородными связями, в котором: А-Т (Аденин соединяется с Тимином) Г-Ц (Гуанин соединяется с Цитозином).

Принцип комплементарности используется и в синтезе РНК, в котором А-У (Аденин соединяется с Урацилом) Г-Ц (Гуанин соединяется с Цитозином).


СКРЕЩИВАНИЕ

Скрещивание - естественное или искусственное соединение двух наследственно различающихся генотипов посредством оплодотворения.

Оплодотворение – процесс слияние женской и мужской половых клеток рис. 20.

Рис. 20 Слияние яйцеклетки и сперматороида

Гаметы - половые клетки животных и растений. Обеспечивает передачу признаков от родителей потомкам. Обладает уменьшенным вдвое (гаплоидным) набором хромосом по сравнению с соматической клеткой. Половые клетки несущие наследственную информацию.

Зигота - диплоидная (содержащая полный двойной набор хромосом) клетка, образующаяся в результате оплодотворения рис. 20

Рис. 21 Зигота

Возникновение нового организма в результате оплодотворения, слияние мужской и женской гамет с гаплоидным (одинарным) набором хромосом. Биологическое значение: восстановление диплоидного (двойного) набора хромосом в зиготе (рис. 21).

Рис. 22 Зигота - результат оплодотворения

Существуют гомозиготы и гетерозиготы.

Гомозигота - организм (зигота), имеющий одинаковые аллели одного гена в гомологичных хромосомах (ААВВ; АА).

Гетерозигота - особь, дающая разные типы гамет. Гетерозигота – содержание в клетках тела разных генов данной аллельной пары, например Аа, возникающее вследствие соединения гамет с разными аллелями, например AaBb, даже по одному признаку AABb.

Доминантность - преобладание эффекта действия определённого аллеля (гена) в процессе реализации генотипа в фенотипе, выражается в том, что доминантный аллель более или менее подавляет действия другого аллеля (рецессивного), и рассматриваемый признак "подчиняется" ему.

Доминантный ген проявляется как в гомозиготном, так и в гетерозиготном организмах.

Явление преобладания у гибрида признака родителей называется доминированием .

Рис. 23 Доминирование рижого цвета волос и веснушек

Рис. 24 Доминирование дальнозоркости

Рецессивность - отсутствие фенотипического проявления одного аллеля у гетерозиготной особи (у особи, несущей два различных аллеля одного гена). Подавляемый (внешне исчезающий) признак.

Парные гены, расположенные в гомологичных хромосомах и контролирующие развитие одного и того же признака, называютсямаллельными Рис. 25.

Рис. 25 Аллельные гены

Аллельные гены – парные гены – различные формы одного и того же гена, отвечающие за альтернативность (различное) проявления одного и того же признака. Например, за цвет глаз отвечают два аллельных гена, расположенных в одинаковых локусах (местах). Только один из них может отвечать за развитие карих глаз, а другой – за развитие голубых глаз. В том случае, когда оба гена отвечают за одинаковое развитие признака, говорят о гомозиготном организме по данному признаку. Если аллельные гены определяют различное развитие признака, говорят о гетерозиготном организме. У видов с большой численностью особей не менее 30-40% генов имеют два, три аллеля и больше. Такой запас аллелей обеспечивает высокую приспособляемость видов к меняющимся условиям среды обитания – это материал для естественного отбора и одновременно залог выживания вида. Генетическое разнообразие внутри вида определяется количеством и распределением аллелей различных генов.

Скрещивание гомозиготного организма с рецессивной гомозиготой называется анализирующим.

Анализирующее скрещивание – скрещивание, проводящееся для определения генотипа организма. Для этого подопытный организм скрещивают с организмом, являющимся рецессивной гомозиготой по изучаемому признаку. Допустим, надо выяснить генотип растения гороха, имеющего жёлтые семена. Возможны два варианта генотипа подопытного растения: он может являться либо гетерозиготой (Аа), либо доминантной гомозиготой (Аа). Для установления его генотипа проведём анализирующее скрещивание с рецессивной гомозиготой (аа) – растением с зелёными семенами.

Таким образом, если в результате анализирующего скрещивания в F1 наблюдается расщепление в соотношении 1:1, то подопытный организм был гетерозиготен; если расщепления не наблюдается и все организмы в F1 проявляют доминантные признаки, то подопытный организм был гомозиготен рис. 26.

Рис. 26 Анализирующие скрещивание

Чистая линия - это группа генетически однородных (гомозиготных) организмов. Чистые линии образованы только гомозиготными растениями, поэтому при самоопылении они всегда воспроизводят один вариант проявления признака рис. 27. Самоопыление – опыление на одном цветке.

Рис. 27 Самоопыление

НЕПОЛНОЕ ДОМИНИРОВАНИЕ – один из видов взаимодействия аллельных генов, при котором один из аллелей (доминантный) в гетерозиготе не полностью подавляется проявление другого аллеля (рецессивного), и в первом поколении выражение признака носит промежуточный характер рис. 28.

Рис. 28 Неполное доминирование

Промежуточный характер наследования признака проявляется при неполном доминировании.

Подавление одним доминантным геном активности другого неаллельного доминантного гена называетсяЭПИСТАЗОМ.

Рис. 28 Эпистаз

Неаллельные гены - это гены, расположенные в различных участках хромосом.


ЗАКОНЫ МЕНДЕЛЯ

6.1 Первый закон Менделя - Закон единообразия гибридов первого поколения.

Закон единообразия гибридов первого поколения (первый закон Менделя) - при скрещивании двух гомозиготных организмов, относящихся к разным чистым линиям и отличающихся друг от друга по одной паре альтернативных проявлений признака, всё первое поколение гибридов (F1) окажется единообразным и будет нести проявление признака одного из родителей.

Этот закон также известен как «закон доминирования признаков». Его формулировка основывается на понятии чистой линии относительно исследуемого признака - на современном языке это означает гомозиготность особей по этому признаку. При скрещивании чистых линий гороха с пурпурными цветками и гороха с белыми цветками Мендель заметил, что взошедшие потомки растений были все с пурпурными цветками, среди них не было ни одного белого.

Мендель не раз повторял опыт, использовал другие признаки. Если он скрещивал горох с жёлтыми и зелёными семенами, у всех потомков семена были жёлтыми рис. 29.

Рис. 29 Скрещивание гороха

Если он скрещивал горох с гладкими и морщинистыми семенами, у потомства были гладкие семена. Потомство от высоких и низких растений было высоким.

Итак, гибриды первого поколения всегда единообразны по данному признаку и приобретают признак одного из родителей. Этот признак - более сильный, доминантный (термин введён Менделем от латинского dominus ), всегда подавлял другой, рецессивный рис. 30.

Рис. 30 Первый закон - Закон единообразия гибридов первого поколения

6.2 Второй закон Менделя - Закон расщепления.

Закон расщепления, или второй закон Менделя. При скрещивании двух потомков первого поколения между собой (двух гетерозиготных особей) во втором поколении F2 наблюдается расщепление в определенном числовом соотношении: по фенотипу 3:1, по генотипу 1:2:1. 25% организмов, полученных во втором поколении F2, являются гомозиготными доминантными (АА), 50% - доминантны (Аа) по фенотипу и 25% - гомозиготны по рецессивному признаку (аа).

При неполном доминировании в потомстве гибридов F2 расщепление по фенотипу и генотипу составляет 1:2:1. Закон расщепления (второй закон Менделя) - при скрещивании двух гетерозиготных потомков первого поколения между собой, во втором поколении наблюдается расщепление в определенном числовом отношении: по фенотипу 3:1, по генотипу 1:2:1.

Скрещиванием организмов двух чистых линий, различающихся по проявлениям одного изучаемого признака, за которые отвечают аллели одного гена, называется моногибридное скрещивание.

Явление, при котором скрещивание гетерозиготных особей приводит к образованию потомства, часть которого несёт доминантный признак, а часть - рецессивный, называется расщеплением. Следовательно, расщепление - это распределение доминантных и рецессивных признаков среди потомства в определённом числовом соотношении. Рецессивный признак у гибридов первого поколения не исчезает, а только подавляется и проявляется во втором гибридном поколении Рис. 31, 32.

Рис. 31 Закон расщепления

Рис. 32 Второй закон

  • Существуют несколько типов и видов ячеек, отличающихся по технологии и функционированию. Рассмотрим основные.
  • Существуют различные точки зрения на проектную деятельность

  • ГЕТЕРОЗИГОТА ГЕТЕРОЗИГОТА

    (от гетеро... и зигота), организм (клетка), у к-рого гомологичные хромосомы несут разл. аллели (альтернативные формы) того или иного гена. Гетерозиготность, как правило, обусловливает высокую жизнеспособность организмов, хорошую приспособляемость их к изменяющимся условиям среды и поэтому широко распространена в природных популяциях. В экспериментах Г. получают скрещиванием между собой гомозигот по разл. аллелям. Потомки такого скрещивания оказываются гетерозиготными по данному гену. Анализ признаков у Г. в сравнении с исходными гомозиготами позволяет сделать заключение о характере взаимодействия разл. аллелей одного гена (полное или неполное доминирование, кодом инирование, межаллельная комплементация). Нек-рые аллели определ. генов могут находиться только в гетерозиготном состоянии (рецессивные летальные мутации, доминантные мутации с рецессивным летальным эффектом). Гетерозиготность по разным летальным факторам в разл. гомологичных хромосомах приводит к тому, что потомство Г. представлено такими же Г. Это явление т. н. сбалансированной летальности может служить, в частности, основой для «закрепления» эффекта гетерозиса, к-рый имеет большое значение в с.-х. практике, но «теряется» в ряду поколений из-за появления гомозигот. У человека в среднем ок. 20% генов находятся в гетерозиготном состоянии. Определение гетерози-готности по рецессивным аллелям, вызывающим наследственные заболевания (т. е. выявление носителей данного заболевания),- важная проблема мед. генетики. Термин «Г.» используют и для хромосомных перестроек (говорят о Г. по инверсии, транслокации и т. п.). В случае множественного аллелизма для Г. иногда используют термин «компаунд» (от англ. compound - сложный, составной). Напр., при наличии «нормального» аллеля А и мутантных а1 и а2 гетерозиготу а1/а2 наз. компаундом в отличие от гетерозигот А/а1 или А/а2. (см. ГОМОЗИГОТА).

    .(Источник: «Биологический энциклопедический словарь.» Гл. ред. М. С. Гиляров; Редкол.: А. А. Бабаев, Г. Г. Винберг, Г. А. Заварзин и др. - 2-е изд., исправл. - М.: Сов. Энциклопедия, 1986.)

    гетерозиго́та

    Клетка или особь, у которой два гена, определяющие какой-либо признак, различны. То есть аллельные гены (аллели ) – отцовский и материнский – не одинаковы. Напр., в опытах Г. Менделя по скрещиванию сортов гороха с разной окраской семян в качестве родителей были использованы гомозиготные особи по доминантному гену жёлтой окраски (А ) и гомозиготные особи по рецессивному гену зелёной окраски (а ). Все полученные гибриды первого поколения имели наследственную структуру Аа , т.е. были гетерозиготами. Семена у них были жёлтого цвета, как и у гомозигот по доминантному гену.
    Сравнение признаков гетерозиготных особей с признаками гомозиготных родителей позволяет изучать различные формы взаимодействия между аллелями одного гена (характер доминирования и др.). В целом гетерозиготность обеспечивает организмам бо́льшие жизнеспособность и приспособляемость, чем гомозиготность. Сравни Гомозигота .

    .(Источник: «Биология. Современная иллюстрированная энциклопедия.» Гл. ред. А. П. Горкин; М.: Росмэн, 2006.)


    Синонимы :

    Смотреть что такое "ГЕТЕРОЗИГОТА" в других словарях:

      Гетерозигота … Орфографический словарь-справочник

      - (от гетеро... и зигота), клетка или организм, у которого гомологичные (парные) хромосомы несут разные формы (аллели) того или иного гена. Как правило, является следствием полового процесса (один из аллелей привносится яйцеклеткой, а другой… … Современная энциклопедия

      - (от гетеро... и зигота) клетка или организм, у которого гомологичные хромосомы несут разные формы (аллели) того или иного гена. Ср. Гомозигота … Большой Энциклопедический словарь

      ГЕТЕРОЗИГОТА, организм, обладающий двумя контрастирующими формами (АЛЛЕЛИ) ГЕНА в паре ХРОМОСОМ. В случаях, когда одна из форм ДОМИНИРУЮЩАЯ, а другая только рецессивная, доминирующая форма выражена в ФЕНОТИПЕ. см. также ГОМОЗИГОТА … Научно-технический энциклопедический словарь

    ГЕТЕРОЗИГОТА - (от гетеро… ГЕТЕРОЗИГОТА - ГЕТЕРОЗИГОТА, организм, обладающий двумя контрастирующими формами (АЛЛЕЛИ) ГЕНА в паре ХРОМОСОМ. Гетерозигота - организм, имеющий аллельные гены разной молекулярной формы; в этом случае один из генов является доминантным, другой - рецессивным. Рецессивный ген - аллель, определяющий развитие признака только в гомозиготном состоянии; такой признак будет называться рецессивным.


    Гетерозиготность, как правило, обусловливает высокую жизнеспособность организмов, хорошую приспособляемость их к изменяющимся условиям среды и поэтому широко распространена в природных популяциях.

    У человека в среднем ок. 20% генов находятся в гетерозиготном состоянии. То есть аллельные гены (аллели) – отцовский и материнский – не одинаковы. Если обозначить этот ген буквой А, то формула организма будет АА. Если же ген получен только от одного родителя, то особь гетерозиготна. Развитие признака зависит как от присутствия других генов, так и от условий среды, формирование признаков происходит в ходе индивидуального развития особей.

    Проявляющийся у гибридов первого поколения признак Мендель назвал доминантным, а подавляемый - рецессивным. На основе этого Мендель сделал еще один вывод: при скрещивании гибридов первого поколения в потомстве происходит расщепление признаков в определенном числовом соотношении. В 1909 году В. Иогансен назовет эти наследственные факторы генами, а в 1912 году Т. Морган покажет, что они находятся в хромосомах.

    ГЕТЕРОЗИГОТА это:

    При оплодотворении мужская и женская гаметы сливаются, и их хромосомы объединяются в одной зиготе. От самоопыления 15-ти гибридов первого поколения было получено 556 семян, из них 315 желтых гладких, 101 желтое морщинистое, 108 зеленых гладких и 32 зеленых морщинистых (расщепление 9:3:3:1). Третий закон Менделя справедлив только для тех случаев, когда гены анализируемых признаков находятся в разных парах гомологичных хромосом.

    Как правило, является следствием полового процесса (один из аллелей привносится яйцеклеткой, а другой — сперматозоидом). Гетерозиготность поддерживает в популяции определенный уровень генотипичной изменчивости. Ср. Гомозигота. В экспериментах Г. получают скрещиванием между собой гомозигот по разл. аллелям.

    Источник: «Биологический энциклопедический словарь.» Гл. ред. М. С. Гиляров; Редкол.: А. А. Бабаев, Г. Г. Винберг, Г. А. Заварзин и др. - 2-е изд., исправл. Напр. у обоих родителей могут быть голубые глаза, но у одного из них курчавые волосы, а у другого гладкие. Лит.: Bateson W., Mendel’s principles of heredity, Cambridge, 1913; см. также литературу к ст. Генетика.А.

    Генетика - наука о закономерностях наследственности и изменчивости. Наследственность - свойство организмов передавать свои признаки от одного поколения к другому. Изменчивость - свойство организмов приобретать новые по сравнению с родителями признаки.

    Основным является гибридологический метод - система скрещиваний, позволяющая проследить закономерности наследования признаков в ряду поколений. Впервые разработан и использован Г. Менделем. Скрещивание, при котором анализируется наследование одной пары альтернативных признаков, называется моногибридным, двух пар - дигибридным, нескольких пар - полигибридным. Мендель пришел к выводу, что у гибридов первого поколения из каждой пары альтернативных признаков проявляется только один, а второй как бы исчезает.

    При моногибридном скрещивании гомозиготных особей, имеющих разные значения альтернативных признаков, гибриды являются единообразными по генотипу и фенотипу. Результаты опытов приведены в таблице. Явление, при котором часть гибридов второго поколения несет доминантный признак, а часть - рецессивный, называют расщеплением.

    С 1854 года в течение восьми лет Мендель проводил опыты по скрещиванию растений гороха. Для объяснения этого явления Мендель сделал ряд предположений, которые получили название «гипотезы чистоты гамет», или «закона чистоты гамет». Во времена Менделя строение и развитие половых клеток не было изучено, поэтому его гипотеза чистоты гамет является примером гениального предвидения, которое позже нашло научное подтверждение.

    Организмы отличаются друг от друга по многим признакам. Поэтому, установив закономерности наследования одной пары признаков, Г. Мендель перешел к изучению наследования двух (и более) пар альтернативных признаков. В результате оплодотворения возможно появление девяти генотипических классов, которые дадут четыре фенотипических класса.

    Нек-рые аллели определ. Определение гетерози-готности по рецессивным аллелям, вызывающим наследственные заболевания (т. е. выявление носителей данного заболевания),- важная проблема мед. генетики.

    ГОМОЛОГИЧЕСКИЕ РЯДЫ, группы органических соединений с одинаковой хим. функцией, но отличающихся друг от друга одной или несколькими метиленовыми (СН2) группировками. ГОМОЛОГИЧНЫЕ ОРГАНЫ (от греч. ho-mologos-согласный, соответственный), название морфологически сходных органов,т.е. Под альтернативными признаками понимаются различные значения какого-либо признака, например, признак - цвет горошин, альтернативные признаки - желтый цвет, зеленый цвет горошин.

    Напр., при наличии «нормального» аллеля А и мутантных а1 и а2 гетерозиготу а1/а2 наз. компаундом в отличие от гетерозигот А/а1 или А/а2. (см. ГОМОЗИГОТА). Однако при разведении гетерозигот в потомстве теряются ценные свойства сортов и пород именно потому, что половые клетки их разнородны. Желтая окраска (А) и гладкая форма (В) семян - доминантные признаки, зеленая окраска (а) и морщинистая форма (b) - рецессивные признаки.

    Одним из уровней организации живой материи является ген - фрагмент молекулы нуклеиновой кислоты, в котором определенной последовательностью нуклеотидов заложены качественные и количественные характеристики одного признака. Элементарным явлением, обеспечивающим вклад гена в сохранение нормального уровня жизнедеятельности организма, является самовоспроизведение ДНК и перенос заключенной в ней информации в строго определенную последовательность нуклеотидов транспортной РНК.

    Аллельные гены - гены, определяющие альтернативное развитие одного и того же признака и расположенные в идентичных участках гомологичных хромосом. Итак, гетерозиготные особи имеют в каждой клетке два гена - А и а, отвечающих за развитие одного и того же признака. Такие парные гены называют аллельными генами или аллелями. Любой диплоидный организм, будь то растение, животное или человек, содержит в каждой клетке два аллеля любого гена. Исключение составляют половые клетки - гаметы. В результате мейоза в каждой гамете остается один комплект гомологичных хромосом, поэтому любая гамета имеет лишь по одному аллельному гену. Аллели одного гена располагаются в одном и том же месте гомологичных хромосом. Схематически гетерозиготная особь обозначается так: А/а. Гомозиготные особи при подобном обозначении выглядят так: А/А или а/а, но их можно записать и как АА и аа.

    Гомозигота - диплоидный организм или клетка, несущий идентичные аллели в гомологичных хромосомах.

    Грегором Менделем впервые был установлен факт, свидетельствующий о том, что растения, сходные по внешнему виду, могут резко отличаться по наследственным свойствам. Особи, не дающие расщепления в следующем поколении, получили название гомозиготных.

    Гетерозиготными называют диплоидные или полиплоидные ядра, клетки или многоклеточные организмы, копии генов которых в гомологичных хромосомах представлены разными аллелями. Когда говорят, что данный организм гетерозиготен (или гетерозиготен по гену X), это означает, что копии генов (или данного гена) в каждой из гомологичных хромосом несколько отличаются друг от друга.

    20. Понятие о гене. Свойства гена. Функции гена. Виды генов

    Ген - структурная и функциональная единица наследственности, контролирующая развитие определённого признака или свойства. Совокупность генов родители передают потомкам во время размножения.

    Свойства гена

      Аллельное существование – гены могут существовать как минимум в двух разных формах; соответственно парные гены называются аллельными.

    Аллельные гены занимают одинаковые места в гомологичных хромосомах. Место гена в хромосоме называют локусом. Аллельные гены обозначают одинаковой буквой латинского алфавита.

      Специфичность действия – определенный ген обеспечивает развитие не любого признака, а строго определенного.

      Дозированность действия – ген обеспечивает развитие признака не до бесконечности, а в определенных пределах.

      Дискретность – поскольку гены в хромосоме не перекрываются, то в принципе ген развивает признак независимо от других генов.

      Стабильность – гены могут передаваться без каких-либо изменений в ряду поколений, т.е. ген не меняет свою структуру при передаче последующим поколениям.

      Мобильность – при мутациях ген может менять свою структуру.

    Функция гена , его проявление, заключается в образовании специфического признака организма. Удаление гена или его качественное изменение приводят соответственно к потере или изменению признака, контролируемого этим геном. В то же время любой признак организма является результатом взаимодействия гена с окружающей и внутренней, генотипической, средой. Один и тот же ген может принимать участие в формировании нескольких признаков организма (явление так наз. плейотропии). Основная масса признаков формируется как результат взаимодействия многих генов (явление полигении). В то же время даже в пределах родственной группы особей, находящихся в сходных условиях существования, проявление одного и того же гена может варьировать по степени выраженности (экспрессивности, или экспрессии). Это указывает на то, что при формировании признаков гены выступают как целостная система, строго функционирующая в определенной генотипической и окружающей среде.

    Виды генов.

      Структурные гены – несут информацию о 1-ой структуре белка

      Регуляторные гены – не несут информацию о 1-ой структуре белка, но регулируют процесс биосинтеза белка

      Модификаторы – способны изменить направление синтеза белка