Органы зрения рыб устроены в основном так же, как у других позвоночных. Сходен с остальными позвоночными у них и механизм восприятия зрительных ощущений: свет проходит в глаз через прозрачную роговицу, далее зрачок – отверстие в радужной оболочке – пропускает его на хрусталик, а хрусталик передает фокусирует свет на внутреннюю стенку глаза сетчатку, где и происходит его непосредственное восприятие. Сетчатка состоит из светочувствительных (фоторецепторные), нервных, а также опорных клеток.

Светочувствительные клетки располагаются со стороны пигментной оболочки. В их отростках, имеющих форму палочек и колбочек, имеется светочувствительный пигмент. Количество этих фоторецепторных клеток очень велико – на 1 мм 2 сетчатки у карпа их насчитывается 50 тыс. (у кальмара – 162 тыс., паука – 16 тыс., человека – 400 тыс., совы – 680 тыс.). Посредством сложной системы контактов конечных разветвлений чувствующих клеток и дендритов нервных клеток световые раздражения поступают в зрительный нерв.

Колбочки при ярком свете воспринимают детали предметов и цвет. Палочки воспринимают слабый свет, но детального изображения создать не могут.

Положение и взаимодействие клеток пигментной оболочки, палочек и колбочек меняются в зависимости от освещенности. На свету пигментные клетки расширяются и прикрывают находящиеся около них палочки; колбочки подтягиваются к ядрам клеток и таким образом передвигаются к свету. В темноте к ядрам подтягиваются палочки (и оказываются ближе к поверхности); колбочки приближаются к пигментному слою, а сократившиеся в темноте пигментные клетки прикрывают их.

Количество рецепторов разного рода зависит от образа жизни рыб. У дневных рыб в сетчатке превалируют колбочки, у сумеречных и ночных – палочки: у налима палочек в 14 раз больше, чем у щуки. У глубоководных рыб, живущих в темноте глубин, колбочек нет, а палочки становятся больше и количество их резко увеличивается – до 25 млн/мм 2 сетчатки; вероятность улавливания даже слабого света возрастает. Большая часть рыб различает цвета, что подтверждается возможностью выработки у них условных рефлексов на определённый цвет – синий, зеленый, красный, жёлтый, голубой.

Некоторые отступления от общей схемы строения глаза рыбы связаны с особенностями жизни в воде. Глаз рыбы эллипсовидный. В числе других он имеет серебристую оболочку (между сосудистой и белковой), богатую кристалликами гуанина, которая придает глазу зеленовато-золотистый блеск.

Роговица почти плоская (а не выпуклая), хрусталик шаровидный (а не двояковыпуклый) – это расширяет поле зрения. Отверстие в радужной оболочке – зрачок – может изменять диаметр только в небольших пределах. Век у рыб, как правило, нет. Лишь акулы имеют мигательную перепонку, закрывающую глаз как занавеска, и некоторые сельди и кефали – жировое веко – прозрачную пленку, закрывающую часть глаза.

Расположение глаз по бокам головы (у большинства видов) является причиной того, что рыбы обладают в основном монокулярным зрением, а способность к бинокулярному зрению весьма ограничена. Шаровидность хрусталика и перемещение его вперед к роговице обеспечивает широту поля зрения: свет в глаз попадает со всех сторон. Угол зрения по вертикали составляет 150°, по горизонтали– 168–170°. Но вместе с тем шаровидность хрусталика обусловливает близорукость рыб. Дальность их зрения ограничена и колеблется в связи с мутностью воды от нескольких сантиметров до нескольких десятков метров.

Видение на дальние расстояния становится возможным благодаря тому, что хрусталик может быть оттянут специальной мышцей–серповидным отростком, идущим от сосудистой оболочки дна глазного бокала.

При помощи зрения рыбы ориентируются и относительно предметов, находящихся на земле. Улучшение зрения в темноте достигается наличием отражательного слоя (тапетум) – кристалликов гуанина, подстилаемых пигментом. Этот слой не пропускает свет к лежащим позади сетчатки тканям, а отражает его и возвращает вторично на сетчатку. Так увеличивается возможность рецепторов использовать свет, попавший в глаз.

В связи с условиями обитания глаза рыб могут сильно видоизменяться. У пещерных или абиссальных (глубоководных) форм глаза могут редуцироваться и даже исчезать. Некоторые же глубоководные рыбы, наоборот, имеют огромные глаза, позволяющие улавливать совсем слабые следы света, или телескопические глаза, собирающие линзы которых рыба может поставить параллельно и обрести бинокулярное зрение. Глаза некоторых угрей и личинок ряда тропических рыб вынесены вперед на длинных выростах (стебельчатые глаза).

Необычна модификация глаз у четырехглазки из Центральной и Южной Америки. Ее глаза помещаются на верху головы, каждый из них разделен перегородкой на две самостоятельные части: верхней рыба видит в воздухе, нижней– в воде. В воздушной среде могут функционировать глаза рыб, выползающих на берег или деревья.

Роль зрения как источника информации из внешнего мира для большинства рыб очень велика: при ориентации во время движения, при отыскивании и захвате пищи, при сохранении стаи, в нерестовый период (восприятие оборонительных и агрессивных поз и движений самцами-соперниками, а между особями разных полов – брачного наряда и нерестового “церемониала”), в отношениях жертва –хищник и т. д.

Способность рыб воспринимать свет издавна использовалась в рыболовстве (лов рыбы на свет факела, костра и т. д.).

Известно, что рыбы разных видов неодинаково реагируют на свет разной интенсивности и разной длины волны, т. е. разного цвета. Так, яркий искусственный свет привлекает одних рыб (каспийская килька, сайра, ставрида, скумбрия и др.) и отпугивает других (кефаль, минога, угорь и т. д.). Так же избирательно относятся разные виды к разным цветам и разным источникам света – надводным и подводным. Все это положено в основу организации промышленного лова рыбы на электросвет (так ловят кильку, сайру и других рыб).



  • Читать: Многообразие рыб: форма, размер, цвет

Органы чувств: зрение рыб

  • Читать дополнительно: Органы чувств рыб

Органы зрения. Зрение рыб.

Глаза у большинства рыб расположены по бокам головы. Зрение у рыб монокулярное, т.е. каждый глаз видит самостоятельно (поле зрения по горизонтали 160–170°, по вертикали около 150°). У многих рыб хрусталик выступает из отверстия зрачка, что увеличивает поле зрения. Спереди монокулярное зрение каждого глаза перекрывается, и образуется бинокулярное (всего 15–30°). Основной недостаток монокулярного зрения неточная оценка расстояния.

У многих пресноводных рыб зрачок неподвижен, некоторые виды могут его сужать и расширять (угорь, камбалы, звездочет, хрящевые). Глаза большинства рыб не имеют век, у некоторых акул есть мигательная перепонка, у кефалей и некоторых сельдей развиваются жировые веки.

У рыб глаз включает три оболочки: 1) склера (наружная); 2) сосудистая (средняя); 3) сетчатка, или ретина (внутренняя).

Склера защищает глаз от механических повреждений, в передней части глаза образует прозрачную роговицу уплощенной формы. С помощью сосудистой оболочки осуществляется кровоснабжение глаза. В участке, где в глаз входит зрительный нерв, располагается характерная для рыб сосудистая железа. В передней части глаза сосудистая оболочка переходит в радужную, имеющую отверстие, – зрачок, в который выдается хрусталик.

Сетчатка включает: 1) пигментный слой (пигментные клетки); 2) светочувствительный слой (светочувствительные клетки: палочки и колбочки); 3) два слоя нервных клеток.

У большинства рыб в сетчатке имеются палочки и колбочки. Палочки функционируют в темноте и нечувствительны к цвету, колбочки воспринимают цвета.

Хрусталик в верхней части поддерживается связкой, а в нижней части он при помощи особой мышцы (колоколом Галлера) прикрепляется к серповидному отростку на дне глазного яблока, который имеется у большинства костистых рыб. Хрусталик у рыб шаровидный и своей формы не изменяет. Аккомодация (настройка на резкость) осуществляется не путем изменения кривизны хрусталика, а при помощи мышцы (колокол Галлера), которая подтягивает или удаляет хрусталик от сетчатки. Хрусталик имеет такую же плотность, как и вода, в результате чего свет, проходя через него, не преломляется и на сетчатке получается четкое изображение.

В зависимости от наличия светочувствительных клеток (палочек, колбочек) рыб подразделяют на: 1) сумеречных (в пигментном слое мало меланина, в сетчатке имеются только палочки); 2) дневных (в пигментном слое много меланина, в сетчатке палочки немногочисленны, колбочки крупные).

Рыбы воспринимают световые волны в 400–750 нм. Почти все рыбы (кроме сумеречных и большинства хрящевых) имеют цветное зрение и некоторые из них могут изменять окраску тела. У рыб различная острота зрения. Обычно они видят предметы на расстоянии не более 10–15 м. Хрящевые рыбы являются наиболее дальнозоркими, так как способны сужать и расширять зрачок глаза. Со снижением освещенности у одних видов размер глаз увеличивается, и они способны улавливать слабый свет (глубоководные рыбы – морской окунь, светящиеся анчоусы), у других – размер глаз уменьшается (налим, речной угорь). У ряда глубоководных и пещерных рыб глаза отсутствуют.

В воздушной среде глазами рыбы почти не видят, у некоторых из них для этой цели в глазах имеются специальные приспособления. У рыбы четырехглазки каждый глаз разделен горизонтальной перегородкой на две части. В верхней части глаза хрусталик упрощен, а роговица выпуклая, что позволяет видеть в воздушной среде.

Н. В. ИЛЬМАСТ. ВВЕДЕНИЕ В ИХТИОЛОГИЮ. Петрозаводск, 2005

Мне очень нравятся статьи о растениях и животных. Хотелось бы прочитать о четырехглазых рыбах.

Алеша Юрьев (г. Рязань).

Как и все позвоночные животные, рыбы имеют одну пару глаз, анатомически устроенных по единому принципу (роговица, хрусталик, стекловидное тело, сетчатка и др.). Хрусталик глаза рыбы, однако, отличается от хрусталика глаза человека, зверей и птиц гораздо более выпуклой, шарообразной формой. Это обусловлено тем, что глаз рыбы рассматривает предметы непосредственно в воде, коэффициент преломления световых лучей в которой совсем иной, чем в воздушной среде. Шарообразная форма хрусталика делает рыб гораздо более близорукими существами, чем наземные позвоночные животные. Между тем именно среди рыб встречаются представители с весьма необычным - двойным зрением. У таких рыб хрусталик глаза подобен бифокальным очкам, которыми пользуются некоторые люди. Верхние и нижние линзы таких очков имеют, как известно, разные диоптрии, что позволяет человеку хорошо видеть вдаль и, не меняя очков, читать напечатанный мелким шрифтом текст в газете или книге.

В лагунах Центральной Америки и северной части южно-американского континента обитают два вида рыб из отряда карпозубообразных. Этих сравнительно небольших рыб, длина которых не превышает 20-30 см, называют четырехглазками. Основную часть времени они проводят в верхнем слое воды. Медленно плавая, рыбы выставляют над водой половину глаз и таким образом одновременно наблюдают за тем, что происходит не только в воде, но и в воздухе. Это им удается делать благодаря тому, что каждый глаз поделен горизонтальной перегородкой пополам. На две части разделена не только роговица, но и сетчатка глаза. А фокусирующая линза - хрусталик - имеет не шаровидную, как у всех рыб, форму, а овальную. Верхняя часть его более плоская, а нижняя более выпуклая. Такой хрусталик дает на сетчатку четкое изображение предметов, находящихся как под водой, так и над ее поверхностью.

Четырехглазки - не единственные представители рыб со столь оригинально устроенными органами зрения. У тихоокеанского и атлантического побережий Америки встречаются "четырехглазые" рыбы из отряда окунеобразных, относящиеся к семейству чешуйчатых собачек - мексиканская мниерпа и галапагосская диалома. Имея весьма небольшие размеры (около 10 см), они замечательны тем, что каждый глаз у них также разделен пополам перегородкой. Однако перегородка расположена не горизонтально, как у четырехглазки из отряда карпозубообразных, а вертикально. И мексиканская мниерпа, и галапагосская диалома обитают в прибрежных водах, в узких углублениях скал, находящихся во время прилива под водой. Эти маленькие рыбки необычайно проворны и, когда наступает отлив, начинают прыгать по мокрым скалам в поисках заполненных водой расщелин. Спрятавшись в них и дожидаясь очередного прилива, они располагают свое тело вертикально и, выставив из воды часть головы, одновременно осматривают пространство под водой и над ее поверхностью. Таким образом они непрерывно следят за появлением в воде или в воздухе других живых существ, будь то объекты их питания или, наоборот, враги.

Глаз - совершенный оптический прибор. Он напоминает фотографический аппарат. Хрусталик глаза подобен объективу, а сетчатка - пленке, на которой получается изображение. У наземных животных хрусталик чечевицеобразный и может изменять свою кривизну. Это дает возможность приспосабливать зрение к расстоянию.

Под водой человек видит очень плохо. Способность преломлять световые лучи у воды и хрусталика глаза наземных животных почти одинакова, поэтому лучи собираются в фокусе далеко позади сетчатой оболочки. На самой же сетчатке получается неясное размытое изображение.

Хрусталик глаза у рыб шарообразен, он лучше преломляет лучи, но не может менять форму. И все же в какой-то степени рыбы могут приспосабливать зрение к расстоянию. Они достигают этого приближением или удалением хрусталика от сетчатой оболочки с помощью особых мышц.

Практически рыба в прозрачной воде видит не далее чем на 10-12 метров, а ясно - только в пределах полутора метров.

Угол зрения у рыб очень велик. Не поворачивая тела, они могут видеть предметы каждым глазом по вертикали в зоне около 150° и по горизонтали до 170°. Объясняется это расположением глаз по обеим сторонам головы и положением хрусталика, сдвинутого к самой роговице.

Совершенно необычным должен казаться рыбе надводный мир. Без искажения рыба видит лишь предметы, находящиеся прямо над ее головой - в зените. Например, облако или парящую чайку. Но чем острее угол входа светового луча в воду и чем ниже расположен надводный предмет, тем более искаженным кажется он рыбе. При падении светового луча под углом 5-10°, особенно если водная поверхность неспокойна, рыба вообще перестает видеть предмет.

Лучи, идущие от глаза рыбы вне конуса в 97,6°, полностью отражаются от водной поверхности, и она представляется рыбе зеркальной. В ней отражаются дно, водные растения, плавающие рыбы.

С другой стороны, особенности преломления лучей позволяют рыбе видеть как бы скрытые предметы. Представим себе водоем с крутым обрывистым берегом. Сидящий на берегу человек не увидит рыбу - она скрыта береговым выступом, а рыба увидит человека.

Фантастически выглядят полупогруженные в воду предметы. Вот как, по словам Л. Я. Перельмана, должен представляться рыбам человек, находящийся по грудь в воде: "Для них мы, идя по мелководью, раздваиваемся, превращаемся в два существа: верхнее - безногое, нижнее - безголовое с четырьмя ногами! Когда мы удаляемся от подводного наблюдателя, верхняя половина нашего тела все сильнее сжимается в нижней части; на некотором расстоянии почти все надводное туловище пропадает,- останется лишь одна свободно реющая голова".

Даже опустившись под воду, человеку трудно проверить, как видят рыбы. Невооруженным глазом он вообще ничего четко не увидит, а наблюдая через застекленную маску или из окна подводной лодки, увидит все в искаженном виде. Ведь в этих случаях между глазом человека и водой будет еще и воздух, который обязательно изменит ход световых лучей.

Как видят рыбы предметы, расположенные вне воды, удалось проверить подводной съемкой. С помощью особой фотоаппаратуры были получены снимки, которые полностью подтвердили высказанные выше соображения. Представление о том, каким кажется надводный мир подводным наблюдателям, можно составить, опустив под воду зеркало. При определенном наклоне мы увидим в нем отражение надводных предметов.

Особенности строения глаза рыб, так же как и других органов, зависят прежде всего от условий обитания и образа их жизни.

Зорче других - дневные хищные рыбы: форель, жерех, щука. Это и понятно: они обнаруживают добычу, главным образом, зрением. Хорошо видят рыбы, питающиеся планктоном и донными организмами. У них зрение тоже имеет первостепенное значение для отыскивания добычи.

Наши пресноводные рыбы - лещ, судак, сом, налим - чаще охотятся ночью. Им нужно хорошо видеть в темноте. И природа позаботилась об этом. У леща и судака в сетчатой оболочке глаз находится светочувствительное вещество, а у сома и налима имеются даже специальные пучки нервов, воспринимающие самые слабые световые лучи.

Рыбки аномалопс и фотоблефарон, обитающие в водах Малайского архипелага, пользуются в темноте собственным освещением. Фонарики расположены у них около глаз и светят вперед, совсем как автомобильные фары. Свечение вызывают бактерии, находящиеся в особых колбочках. Фонарики по желанию хозяев могут зажигаться и гаснуть. Аномалопс выключает их, поворачивая светящейся стороной внутрь, а фотоблефарон задергивает фонарики, как шторой, складкой кожи.

От образа жизни зависит и расположение глаз на голове. У многих донных рыб - камбалы, сома, звездочета - глаза расположены в верхней части головы. Это позволяет им лучше видеть врагов и добычу, проплывающих над ними. Интересно, что у камбал в младенческом возрасте глаза расположены так же, как у большинства рыб, - по обеим сторонам головы. В это время камбалы имеют цилиндрическую форму тела, живут в толще воды и кормятся зоопланктоном. Позднее они переходят на питание червями, моллюсками, а иногда и рыбками. И тут с камбалами происходят замечательные превращения: левая сторона начинает у них расти быстрее, чем правая, левый глаз переходит на правую сторону, тело становится плоским, и в конце концов оба глаза оказываются на правой стороне. Закончив превращение, камбалы опускаются на дно и ложатся на левый бок - не зря их метко прозвали лежебоками.

Глаза камбал имеют и другую особенность. Они могут поворачиваться в разные стороны независимо один от другого. Это позволяет рыбам одновременно следить за приближением добычи или врага справа и слева.

Панцирный сомик-каллихт (Callichthys callichthys)

У рыбы-молот глаза расположены по обоим концам молотообразного выроста. Это не случайно. Рыба-молот часто охотится за скатами, а ведь у некоторых из них имеются на хвосте шипы, и будь расположение глаз у рыбы-молот иное, они могли бы легко пострадать.

Вне воды огромное большинство рыб совсем слепы. Но есть и исключения. Илистый прыгун охотится за насекомыми на суше и неплохо видит в воздушной среде, чтобы на воздухе глаза не обсыхали, они убираются у него в углубления.

Неплохо видят вне воды и морские собачки. Они, ведь много времени проводят, охотясь на прибрежном песке!

Совершенно необычно устроены глаза у небольшой живородящей рыбки тетрафтальмус, что в переводе на русский язык означает четырехглаз. Эта рыбка обитает в мелководных лагунах тропического побережья Южной Америки. Глаза у нее устроены так, что могут видеть и в воде, и в воздухе. Они разделены горизонтальной перегородкой на две части. Перегородка делит и хрусталик, и радужную оболочку, и роговицу. Получается действительно четыре глаза. Нижняя часть хрусталика более выпуклая и служит рыбке для подводного зрения; верхняя - более плоская - дает ей возможность хорошо видеть в воздухе. И так как четырехглазка большую часть времени проводит на поверхности, выставив наружу верхнюю часть глаза, то она одновременно может следить за врагами и добычей и в воздухе и под водой.

Количество света, проникающее на различные глубины, не одинаково. У поверхности светло, но чем глубже, тем темнее. На глубине 200-300 метров еще кое-что видно, а ниже 500-600 метров солнечные лучи вообще не проникают. Мрак там нарушается лишь светящимися организмами. Поэтому у рыб, живущих на глубинах, глаза устроены иначе, чем у рыб, обитающих в верхних слоях воды. Какие они - рассказано в главе "Рыбы пучин". Различно освещение и в пещерах. Поэтому среди их обитателей встречаются рыбы с самыми различными глазами, есть с очень маленькими, а есть рыбы и вовсе без глаз.

Особенно интересны рыбки анонтихтис. Их обнаружили в пещерных водоемах Мексики в 1938 году. Эти рыбки появляются из икринки с глазами. Первое время мальки держатся в верхних слоях воды и питаются зоопланктоном. Без глаз им было бы трудно ловить юрких инфузорий и рачков. К концу второго месяца жизни рыбки переходят на питание донными беспозвоночными и опускаются в глубину. Здесь совсем темно, и не всем рыбам нужны глаза, чтобы ловить малоподвижных моллюсков, поэтому они разрушаются, зарастая кожей.

Рыбы различают цвета и даже их оттенки.

Попробуйте опустить в аквариум несколько разноцветных чашечек, но корм положите только в одну из них. Продолжайте ежедневно давать корм в чашечке одного и того же цвета. Вскоре рыбы станут устремляться к чашечке только того цвета, в которой вы обычно давали им пищу; они найдут чашечку даже в том случае, если вы поставите ее в другое место.

Или другой опыт: одну сторону аквариума закрывают картоном, оставляя посредине узкую вертикальную щель. У противоположной стороны аквариума помещают белую палочку, а в щель пропускают лучи, окрашивающие палочку в тот или иной цвет. Корм рыбам дают при определенном цвете. Через некоторое время рыбы начинают собираться к палочке, как только она окрашивается в "пищевой" цвет.

Эти опыты показали, что рыбы воспринимают не только цвета, но и отдельные их оттенки не хуже человека. Караси, например, отличают лимонный, желтый и оранжевый.

То, что рыбы обладают цветовым зрением, подтверждается их защитной и брачной окраской, - ведь иначе она была бы просто бесполезной. Ослепленные рыбы не различают цвета и всегда остаются темноокрашенными.

Рыболовы-спортсмены хорошо знают, что для успешной ловли не безразличен цвет применяемых блесен.

Способность различать цвета развита у различных рыб не одинаково. Лучше всего различают цвета рыбы, обитающие у поверхности, где много света. Хуже те, которые живут в глубине, куда проникает только часть световых лучей. Есть среди рыб и дальтоники, например скаты.

Рыбы не одинаково относятся к искусственному свету. Одних он привлекает, других отпугивает. Например, костер, разведенный на берегу реки, привлекает, по мнению старых рыболовов, плотву, налимов, сомов. В Средиземном море рыбаки издавна ловят сардину, подманивая ее светом факелов.

Исследования последних лет показали, что кильки, сайра, кефаль, сырть, сардина всегда направляются к источникам подводного освещения. Эти особенности рыб использовали рыбаки. Сейчас в СССР электрический свет применяют при промысловом лове кильки на Каспии, сайры у Курильских островов, сардины у берегов Африки.

Иногда используют и надводные источники освещения. В Конго на озере Танганьика рыбаки подвешивают к своим катамаранам газокалильные лампы. На свет устремляются рыбки ндакала. Когда рыбы собирается достаточное количество, ее вылавливают сетью.

А вот минога, угорь, сазан не любят света. Эту особенность рыб тоже используют в промысле. На Волге при добыче миноги, а в Дании и Швеции - угря. Делают это так. Среди освещенной зоны оставляют узкий темный коридор. В конце коридора устанавливают сетную ловушку. Рыбы, избегая света, плывут по темному проходу и попадают в западню. При ловле сетями сазана его ярким светом выгоняют из закоряженных участков.

Почему рыбы идут на свет, окончательно не установлено. Согласно одной теории, в море, в местах, лучше освещенных солнцем, рыбы находят больше пищи. Здесь бурно развивается растительный планктон, скапливается множество мелких ракообразных. И у рыб в течение ряда поколений выработалась положительная реакция на свет. Свет стал для них сигналом "пища". Эта теория не объясняет, почему же на свет устремляются и рыбы, поедающие моллюсков, а не только питающиеся планктоном. Не объясняет она также, почему рыбы, попав в освещенную зону и не найдя пищи, задерживаются в ней.

По другой теории, рыб к свету влечет "любопытство". Согласно учению И. П. Павлова, животным свойствен рефлекс "Что такое?" Электрический свет необычен под водой и, заметив его, рыбы подплывают ближе, чтобы познакомиться с новым явлением. В дальнейшем вблизи источника света у различных рыб, в зависимости от образа их жизни, возникают самые разнообразные рефлексы. Если возникает оборонительный рефлекс, рыбы немедленно уплывают, если же появляется стайный или пищевой, рыбы надолго задерживаются в освещенном участке.

Литература: Сабунаев Виктор Борисович. Занимательная ихтиология, 1967

Органы чувств. Зрение.

Орган зрения - глаз по своему устройству напоминает фотографический аппарат, причем хрусталик глаза подобен объективу, а сетчатка - пленке, на которой получается изображение. У наземных животных хрусталик имеет чечевицеобразную форму и способен изменять свою кривизну, поэтому животные могут приспосабливать зрение к расстоянию. Хрусталик у рыб шарообразный и не может менять форму. Зрение их перестраивается на различные расстояния при приближении или удалении хрусталика от сетчатой оболочки.

Оптические свойства водной среды не позволяют рыбе видеть далеко. Практически пределом видимости у рыб в прозрачной воде считают расстояние 10-12 м, а ясно рыбы видят не далее 1,5 м. Лучше видят дневные хищные рыбы, живущие в прозрачной воде (форель, хариус, жерех, щука). Некоторые рыбы видят в темноте (судак, лещ, сом, угорь, налим). У них в сетчатке глаза есть особые светочувствительные элементы, способные воспринимать слабые световые лучи.

Угол зрения рыб очень велик. Не поворачивая тела, большинство рыб способно видеть каждым глазом предметы в зоне около 150° по вертикали и до 170° по горизонтали (рис. 1) .

Иначе видит рыба предметы, находящиеся над водой. В этом случае вступают в силу законы преломления световых лучей, и рыба может видеть без искажения лишь предметы, которые находятся прямо над головой- в зените. Наклонно падающие световые лучи преломляются и сжимаются в угол 97°,6 (рис. 2) .


Чем острее угол входа светового луча в воду и ниже предмет, тем более искаженным видит его рыба. При падении светового луча под углом 5-10°, особенно если водная поверхность неспокойна, рыба перестает видеть предмет.

Лучи, идущие от глаза рыбы вне конуса, изображенного на рис. 2, полностью отражаются от водной поверхности, поэтому она представляется рыбе зеркальной.

С другой стороны, преломление лучей позволяет рыбе видеть как бы скрытые предметы. Представим себе водоем с крутым обрывистым берегом (рис. 3) .вне преломления лучей водной поверхностью может увидеть человека.


Рыбы различают цвета и даже оттенки.

Цветовое зрение у рыб подтверждается их способностью изменять окраску в зависимости от цвета грунта (мимикрия). Известно, что окунь, плотва, щука, которые держатся на светлом песчаном дне, имеют светлую окраску, а на черном торфяном дне - более темную. Особенно ярко выражена мимикрия у различных камбал, способных с изумительной точностью приспосабливать свою окраску к цвету грунта. Если камбалу пустить в стеклянный аквариум, под дно которого подложить шахматную доску, то на спине у нее появятся клетки, подобные шахматным. В природных условиях камбала, лежащая на галечном дне, настолько сливается с ним, что становится совершенно незаметной для человеческого глаза. В то же время ослепшие рыбы, в том числе и камбала, не меняют своего цвета и остаются темно-окрашенными. Отсюда ясно, что изменение рыбами окраски связано с их зрительным восприятием.

Опыты кормления рыб из разноцветных чашечек подтвердили, что рыбы отчетливо воспринимают все спектральные цвета и могут различать близкие оттенки. Новейшие опыты, основанные на спектрофотометрических методах, показали, что многие виды рыб воспринимают отдельные оттенки не хуже человека.

Методами пищевой дрессировки установлено, что рыбы воспринимают и форму предметов - отличают треугольник от квадрата, куб от пирамиды.

Известный интерес представляет отношение рыб к искусственному свету. Еще в дореволюционной литературе писали о том, что костер, разведенный на берегу реки, привлекает плотву, налимов, сомов и улучшает результаты ловли. Последние исследования показали, что многие рыбы - килька, кефаль, сырть, сайра - направляются к источникам подводного освещения, поэтому в настоящее время электрический свет используют в промысловой ловле. В частности, этим способом успешно ловят кильку на Каспии, а сайру у Курильских островов.

Попытки применить электрический свет в спортивной ловле пока не дали положительных результатов. Проводились такие опыты зимой в местах скопления окуня и плотвы. Во льду прорубали лунку и ко дну водоема опускали электролампу с рефлектором. Затем производили ловлю на мормышку с подсадкой мотыля в соседней лунке и в лунке, вырубленной в стороне от источника света. Оказалось, что количество поклевоквблизи лампы меньше, чём вдали от нее. Аналогичные опыты производились при ловле судака и налима ночью; они также не дали положительного эффекта.

Для спортивной ловли рыбы заманчиво использование приманок, покрытых светящимися составами. Установлено, что рыбы схватывают светящиеся приманки. Однако опыт ленинградских рыболовов не показал их преимуществ; обычные приманки рыбы во всех случаях берут охотнее. Литература по данному вопросу также не убедительна. В ней описываются только случаи поимки рыб на светящиеся приманки, а сравнительных данных о ловле в тех же условиях на обычные приманки не приводится.

Особенности зрения рыб позволяют сделать некоторые выводы, полезные для рыболова. Можно с уверенностью сказать, что находящаяся у поверхности воды рыба не в состоянии видеть стоящего на берегу рыболова далее 8-10 м и сидящего или ловящего взабродку - далее 5-6 м; имеет значение при этом и прозрачность воды. Практически можно считать, что если рыболов не видит рыбу в воде, когда смотрит на хорошо освещенную водную поверхность под углом, близким к 90°, то и рыба не видит рыболова. Поэтому маскировка имеет смысл только при ловле на мелких местах или поверху в прозрачной воде и при забросе на небольшое расстояние. Наоборот, предметы снаряжения рыболова, близкие к рыбе (поводок, грузило, сачок, поплавок, лодка), должны сливаться с окружающим фоном.

Слух.

Наличие слуха у рыб долгое время отрицалось. Такие факты, как подход рыб по звонку к месту кормежки, привлечение сомов ударами по воде особой деревянной колотушкой («клочение» сомов), реакция на свисток парохода, еще мало что доказывали. Возникновение реакции могло объясняться раздражением других органов чувств. Новейшие опыты показали, что рыбы реагируют на звуковые раздражения, причем эти раздражения воспринимаются и слуховыми лабиринтами, имеющимися в голове рыб, и поверхностью кожи, и плавательным пузырем, играющим роль резонатора.

Какова чувствительность звуковых восприятий у рыб, точно не установлено, но доказано, что они улавливают звуки хуже человека, причем высокие тона рыбы слышат лучше, чем низкие. Звуки, возникающие в водной среде, рыбы слышат на значительном расстоянии, а звуки, возникающие в воздушной среде, слышат плохо, так как звуковые волны отражаются от поверхности и плохо проникают в воду. Учитывая эти особенности, рыболов должен остерегаться шуметь в воде, но может не опасаться напугать рыбу, громко разговаривая. Интересно использование звуков в спортивной ловле. Однако вопрос о том, какие звуки привлекают рыб, а какие отпугивают, не изучен. Пока звук используют лишь при ловле сомов, «клочением».

Орган боковой линии.

Орган боковой линии есть только у рыб и земноводных, постоянно живущих в воде. Боковая линия чаще всего представляет собой канал, который тянется вдоль туловища от головы до хвоста. В канале разветвляются нервные окончания, с большой чувствительностью воспринимающие даже самые незначительные водные колебания. При помощи этого органа рыбы определяют направление и силу течения, ощущают токи воды, образующиеся при смывании подводных предметов, чувствуют движение соседа в стае, врагов или добычи, волнение на поверхности воды. Кроме того, рыба воспринимает и колебания, которые передаются воде извне - сотрясение почвы, удары по лодке, взрывную волну, вибрацию корпуса парохода и т. п.

Подробно изучена роль боковой линии в схватывании рыбой добычи. Многократно поставленные опыты показали, что ослепленная щука хорошо ориентируется и безошибочно схватывает движущуюся рыбку, не обращая внимания на неподвижную. Слепая щука с разрушенной боковой линией теряет способность ориентации, натыкается на стенки бассейна и. будучи голодной, не обращает внимания на плавающую рыбку.

Учитывая это, рыболов должен вести себя осторожно и на берегу и в лодке. Сотрясение почвы под ногами, волна от неаккуратного движения в лодке могут насторожить и надолго распугать рыбу. Не безразличен для успеха ловли характер движения в воде искусственных приманок, так как хищники при преследовании и схватывании добычи ощущают создаваемые ею водные колебания. Уловистее, безусловно, окажутся те приманки, которые наиболее полно воспроизводят признаки обычной добычи хищников.

Органы обоняния и вкуса.

Органы обоняния и вкуса у рыб разделены. Органом обоняния у костистых рыб служат парные ноздри, расположенные по обеим сторонам головы и ведущие в носовую полость, выстланную обонятельным эпителием. В одно отверстие вода входит, а из другого выходит. Такое устройство органов обоняния позволяет рыбе ощущать запахи растворенных или взвешенных в воде веществ, причем на течении рыба может чувствовать запахи только по струе, несущей пахучее вещество, а в тиховодье - только при наличии токов воды.

Орган обоняния слабее всего развит у дневных хищных рыб (щука, жерех, окунь), сильнее - у ночных и сумеречных рыб (угорь, сом, карп, линь).

Вкусовые органы расположены в основном во рту и глоточной полости; у одних рыб вкусовые сосочки находятся в области губ и усов (сом, налим), а иногда расположены по всему телу (сазан). Как показывают опыты, рыбы способны различать сладкое, кислое, гор " кое и соленое. Так же, как и обоняние, чувство вкуса сильнее развито у ночных рыб.

В литературе имеются указания о целесообразности добавлять в прикормку и насадку различные пахучие вещества, будто бы привлекающие рыбу: мятное масло, камфару, анисовые, лавро-вишневые и валерьяновые капли, чеснок и даже керосин. Неоднократное использование этих веществ в корме не показало сколько-нибудь заметного улучшения клева, а при большом количестве пахучих веществ, наоборот, рыба почти совсем переставала ловиться. Аналогичный результат дали опыты, поставленные над аквариумными рыбами, которые неохотно ели корм, смоченный анисовым маслом, валерьянкой и т. п. Вместе с тем естественный запах свежей прикормки, особенно конопляного жмыха, конопляного и подсолнечного масла, ржаных сухарей, свежесваренной каши, без сомнения, привлекает рыбу и ускоряет ее подход к кормушке.

Значение тех или иных органов чувств при отыскании пищи различными рыбами показано в табл. 1.

Таблица 1