Цитогенетический метод

Основан на изучении хромосом человека в норме и при патологии. В норме кариотип человека включает 46 хромосом - 22 пары аутосом и две половые хромосомы. Использование данного метода позволило выявить группу болезней, связанных либо с изменением числа хромосом, либо с изменениями их структуры. Такие болезни получили название хромосомных.

Материалом для кариотипического анализа чаще всего являются лимфоциты крови. Кровь берется у взрослых из вены, у новорожденных - из пальца, мочки уха или пятки. Лимфоциты культивируются в особой питательной среде, в состав которой, в частности, добавлены вещества, «заставляющие» лимфоциты интенсивно делиться митозом. Через некоторое время в культуру клеток добавляют колхицин. Колхицин останавливает митоз на уровне метафазы. Именно во время метафазы хромосомы являются наиболее конденсированными. Далее клетки переносятся на предметные стекла, сушатся и окрашиваются различными красителями. Окраска может быть а) рутинной (хромосомы окрашиваются равномерно), б) дифференциальной (хромосомы приобретают поперечную исчерченность, причем каждая хромосома имеет индивидуальный рисунок). Рутинная окраска позволяет выявить геномные мутации, определить групповую принадлежность хромосомы, узнать, в какой группе изменилось число хромосом. Дифференциальная окраска позволяет выявить хромосомные мутации, определить хромосому до номера, выяснить вид хромосомной мутации.

В тех случаях, когда необходимо провести кариотипический анализ плода, для культивирования берутся клетки амниотической (околоплодной) жидкости - смесь фибробластоподобных и эпителиальных клеток.

К числу хромосомных заболеваний относятся: синдром Клайнфельтера, синдром Тернера-Шерешевского, синдром Дауна, синдром Патау, синдром Эдвардса и другие.

Больные с синдромом Клайнфельтера (47, ХХY) всегда мужчины. Они характеризуются недоразвитием половых желез, дегенерацией семенных канальцев, часто умственной отсталостью, высоким ростом (за счет непропорционально длинных ног).



Синдром Тернера-Шерешевского (45, Х0) наблюдается у женщин. Он проявляется в замедлении полового созревания, недоразвитии половых желез, аменорее (отсутствии менструаций), бесплодии. Женщины с синдромом Тернера-Шерешевского имеют малый рост, тело диспропорционально - более развита верхняя часть тела, плечи широкие, таз узкий - нижние конечности укорочены, шея короткая со складками, «монголоидный» разрез глаз и ряд других признаков.

Синдром Дауна - одна из самых часто встречающихся хромосомных болезней. Она развивается в результате трисомии по 21 хромосоме (47; 21, 21, 21). Болезнь легко диагностируется, так как имеет ряд характерных признаков: укороченные конечности, маленький череп, плоское, широкое переносье, узкие глазные щели с косым разрезом, наличие складки верхнего века, психическая отсталость. Часто наблюдаются и нарушения строения внутренних органов.

Хромосомные болезни возникают и в результате изменения самих хромосом. Так, делеция р-плеча аутосомы №5 приводит к развитию синдрома «крик кошки». У детей с этим синдромом нарушается строение гортани, и они в раннем детстве имеют своеобразный «мяукающий» тембр голоса. Кроме того, наблюдается отсталость психомоторного развития и слабоумие.

Чаще всего хромосомные болезни являются результатом мутаций, произошедших в половых клетках одного из родителей.

Биохимический метод

Позволяет обнаружить нарушения в обмене веществ, вызванные изменением генов и, как следствие, изменением активности различных ферментов. Наследственные болезни обмена веществ подразделяются на болезни углеводного обмена (сахарный диабет), обмена аминокислот, липидов, минералов и др.

Фенилкетонурия относится к болезням аминокислотного обмена. Блокируется превращение незаменимой аминокислоты фенилаланин в тирозин, при этом фенилаланин превращается в фенилпировиноградную кислоту, которая выводится с мочой. Заболевание приводит к быстрому развитию слабоумия у детей. Ранняя диагностика и диета позволяют приостановить развитие заболевания.

42. Пренатальная диагностика врожденных и наследственных болезней - это комплексная отрасль медицины, которая быстро развивается. Она использует и ультразвуковую диагностику (УЗИ), и оперативную технику (хорионбиопсию, амнио-и кордоцентез, биопсию мышц и кожи плода), и лабораторные методы (цитогенетические, биохимические, молекулярно-генетические).

Пренатальная диагностика имеет исключительно важное значение при медико-генетическом консультировании, поскольку она позволяет перейти от вероятного к однозначному прогнозированию здоровья ребенка в семьях с генетическими осложнениями. В настоящее время пренатальная диагностика осуществляется в I и II триместрах беременности, то есть в периоды, когда в случае выявления патологии еще можно прервать беременность. На сегодня возможна диагностика практически всех хромосомных синдромов и около 100 наследственных болезней, биохимический дефект при которых установлен достоверно.

Пренатальная диагностика - комплексная дородовая диагностика с целью обнаружения патологии на стадии внутриутробного развития. Позволяет обнаружить более 98 % плодов с синдромом Дауна (трисомия 21); трисомии 18 (известной как синдром Эдвардса) около 99,9 %; трисомии 13 (синдром Патау) около 99.9%, более 40 % нарушений развития сердца и др. В случае наличия у плода болезни родители при помощи врача-консультанта тщательно взвешивают возможности современной медицины и свои собственные в плане реабилитации ребёнка. В результате семья принимает решение о судьбе данного ребёнка и решает вопрос о продолжении вынашивания или о прерывании беременности.

К пренатальной диагностике относится и определение отцовства на ранних сроках беременности, а также определение пола плода.

Показания для пренатальной диагностики : наличие в семье наследственного заболевания; возраст матери старше 37 лет; носительство матерью гена Х-сцепленного рецессивного заболевания; наличие в прошлом спонтанных абортов в ранние сроки беременности, мертворождений, детей с пороками развития, хромосомной патологией; наличие структурных перестроек хромосом у одного из родителей; гетерозиготность обоих родителей по одной паре аллелей при патологии с аутосомно-рецессивным типом наследования; зона повышенного радиационного фона.

В настоящее время применяются непрямые и прямые методы пренатальной диагностики. При непрямых методах обследуют беременную (акушерско-гинекологические методы, сыворотка крови на альфа-фетопротеин), при прямых - плод.

К прямым методам, которые проходят без нарушения тканей, без хирургического вмешательства относится ультрасонография. К прямым методом, которые проходят с с нарушением целостности тканей – хорионбиопсия, амниоцентез, кордоцентез и фетоскопия.

Ультрасонография, эхография – это использование ультразвука для получения изображения плода и его оболочек, состояния плаценты.

На 5-й неделе беременности уже можно получить изображение оболочек эмбриона, к концу 6-й недели можно зарегистрировать его сердечную деятельность, а на 7-й неделе можно получить изображение и самого будущего ребенка.

В первые два месяца беременности УЗИ еще не позволяет выявить аномалии развития плода, но может определить его жизнеспособность. На 12 - 20-й неделе беременности уже возможна диагностика близнецовой беременности, локализации плаценты, отсутствия головного или спинного мозга, дефектов костной системы, закрытия невральной трубки, заращение естественных каналов желудочно-кишечного тракта.

Метод безопасен, поэтому продолжительность исследования не ограничена, и его можно применять повторно. При нормальном течении беременности проводят двукратное УЗИ, а при беременности с риском осложнений оно проводится с интервалами в 2 недели.

УЗИ плода обязательно при: наличии у родителей и ближайших родственников врожденных пороков развития; экстрагенитальных заболеваниях у беременной, например, гипертонической болезни, сахарного диабета, тиреотоксикоза, порока сердца, ожирения и др.; наличии мертворожденных детей, перинатальной смерти двух и более детей; угрозе прерывания беременности, кровотечении; недостаточной прибавке массы тела беременной; несоответствии размеров матки сроку беременности; многоплодии; фибромиоме матки.

В целом УЗИ позволяет получить данные о размерах плода (длина туловища, бедра, плеча, диаметр головы), о наличии у него дисморфии, о работе сердца, об объеме жидкости в зародышевой оболочке и размерах плаценты.

УЗИ позволяет обнаружить у плода и некоторые пороки развития. Например, отсутствие головного и спинного мозга, чрезмерное количество спинномозговой жидкости в полости черепа, аномалии структуры почек, неправильное развитие конечностей, легких, множественные врожденные пороки, пороки сердца, отек плода и плаценты.

Эхографияплаценты позволяет установить ее расположение, наличие отслойки ее отдельных участков, кисты, признаки старения, истончение или утолщение плаценты.

Допплеровское ультразвуковое сканирование, цветная допплерометрия отражают кровообращение плода.

ЯМР-томография плода позволяет выявить структурные аномалии, не обнаруживаемые при УЗИ, например, малые аномалии мозга, туберозный склероз, аномалии структуры почек и др.

Часто используют три метода исследования: уровня альфа-фетопротеина (особый эмбриональный белок), содержания хорионического гонадотропина (гормон, вырабатываемый плацентой в период беременности) и свободного эстриола (женский половой гормон) в крови женщины во 2-м триместре беременности. Отклонения этих показателей от нормы служат индикаторами высокого риска для плода.

Содержание альфа-фетопротеина в биологических жидкостях повышено при множественных пороках развития плода, спинномозговой грыже, чрезмерном количестве спинномозговой жидкости в области черепа, отсутствии головного или спинного мозга, пороках развития желудочно-кишечного тракта, дефектах передней брюшной стенки, аномалиях почек, фетоплацентарной недостаточности (недостаточной работе плаценты), задержке развития плода, многоплодной беременности, преэклампсии, резус-конфликте, вирусном гепатите В.

Концентрация альфа-фетопротеина в крови беременной снижена в случаях хромосомных болезней у плода, например, болезни Дауна, или наличия у беременной сахарного диабета I типа.

В настоящее время исследование альфа-фетопротеина проводится в 1-м триместре беременности одновременно с определением специфического для беременных белка А, что позволяет диагностировать болезнь Дауна и некоторые другие хромосомные аномалии у плода уже на 11 - 13-й неделях.

Хорионический гонадотропин (ХГ) определяется уже на 8 - 9-й дни после зачатия. При исследовании крови женщины во 2-м триместре беременности повышение уровня ХГ свидетельствует о задержке внутриутробного развития плода, высоком риске его гибели, отслойке плаценты, и о других видах фетоплацентарной недостаточности (нарушение работы плаценты).

Исследование уровня белка беременности I (Schwangerschaft protein I) в плазме крови женщин уже в 1-м триместре беременности служит индикатором хромосомных болезней плода.

Хорионбиопсия – это взятие ткани хориона (зародышевая оболочка). Проводится между 8-й и 10-й неделями. Ткань используется для цитогенетических и биохимических исследований, анализа ДНК. С помощью этого метода можно выявлять все виды мутаций (генные, хромосомные и геномные).

Значительным преимуществом хорионбиопсии является то, что она может быть использована на ранних этапах развития плода. Т. е. если выявятся отклонения в развитии плода и родители решат прервать беременность, то аборт на 10 – 12 неделе менее опасен, чем на 18 - 20-й неделе, когда становятся известны результаты амниоцентеза.

Амниоцентез – получение амниотической жидкости (жидкость вокруг зародыша) и клеток плода для анализа. Получение материала возможно на 16-й неделе беременности.

Основные показания для амниоцентеза общие: возраст беременной более 35 лет;нарушения нормы уровней альфа-фетопротеина, хорионичеокого гонадотропина и свободного эстриола в крови беременной;наличие нескольких серьезных факторов риска осложнений беременности.

Отдельные: мертворождения, перинатальная смертность;рождение предыдущего ребенка с хромосомными болезнями или с дисморфическими признаками;хромосомный сбалансированный мозаицизм у родителей;синдром ломкой Х-хромосомы у ближайших родственников;определение пола плода при риске наследственных Х-сцепленных заболеваний (гемофилия, иммунодефицит и др.);наследственные болезни обмена веществ;воздействие тератогенных агентов на организм беременной в критические периоды развития плода;задержка внутриутробного развития и дисморфия плода по данным УЗИ;риск внутриутробных инфекций (краснуха, цитомегалия, токсоплазмоз).

Осложнения при этом методе исследования не превышают 1 %.

Амниотическая жидкость используется для биохимических исследований, которые выявляют генные мутации. А клетки используются для анализа ДНК (выявляет генные мутации), цитогенетического анализа и выявления Х- и Y-хроматина (диагностирует геномные и хромосомные мутации).

Биохимические исследования амниотической жидкости могут дать ценную информацию. Например, диагностика адреногенитального синдрома (нарушения синтеза гормонов корой надпочечников и работы системы гипаталамус - гипофиз – яичники) у эмбриона возможна уже на 8-й неделе.

Исследование спектра аминокислот амниотической жидкости позволяет выявить некоторые наследственные болезни обмена веществ у плода, например, аргинин-янтарную ацидурию, цитруллинурию и др.

Исследование амниотической жидкости применяется для выявления хромосомных отклонений от нормы, определения активности ферментов.

Кордоцентез – взятие крови из пуповины. Материал используется для цитогенетических, молекулярно-генетических и биохимических исследований. Проводится с 18-й по 22-ю неделю.

Преимущество кордоцентеза по сравнению с амниоцентезом заключается в том, что берется кровь плода, что имеет решающее значение для диагностики внутриутробных инфекций, например, ВИЧ, краснухи, цитомегалии, парвовируса В19.

Однако показания для проведения кордоцентеза ограничены в связи с высоким риском осложнений, таких как внутриутробная гибель плода (до 6 %), недонашивание беременности (9 %).

Фетоскопия - осмотр плода фиброоптическим эндоскопом, введенным в зародышевую оболочку через переднюю стенку матки. Метод позволяет осмотреть плод, пуповину, плаценту и произвести биопсию.

Фетоскопия имеет очень ограниченное применение, т. к. сопровождается высоким риском прерывания беременности и технически сложна.

Современные технологии позволяют осуществлять биопсию кожи, мышц, печени плода. Материал используется для диагностики тяжелых наследственных заболеваний, например, генодерматозов, мышечных дистрофий, гликогенозов и др.

Риск прерывания беременности при применении методов пренатальной диагностики, нарушающих целостность тканей, составляет 1 - 2%.

Везикоцентез – прокол стенки мочевого пузыря плода для получения его мочи. Материал используется для исследования в случаях серьезных заболеваний и пороков развития органов мочевой системы.

Доимплантационная диагностика наследственных болезней стала возможной благодаря появлению экстракорпорального оплодотворения и использованию множественных копий эмбриональной ДНК.

Существует технология для выявления таких болезней, как Тея-Сакса, гемофилия, миодистрофия Дюшенна, фрагильная Х-хромосома и др. Однако она доступна немногим очень крупным центрам и дорого стоит.

Разрабатываются методы выделения клеток плода, циркулирующих в крови беременной, для проведения цитогенетических, молекулярно-генетических и иммунологических анализов.

Развитие и распространение методов пренатальной диагностики наследственных заболеваний позволят значительно снизить частоту наследственной патологии новорожденных.

БИОХИМИЧЕСКИЕ МЕТОДЫ АНАЛИЗА, методы количественного определения неорганических и органических веществ, основанные на использовании процессов с участием биологических компонентов (ферментов, антител и др.). Аналитический сигнал - конечную концентрацию одного из продуктов реакции либо начальную скорость процесса, положенного в основу методики определения, регистрируют главным образом спектрофотометрическими, люминесцентными, электрохимическими методами. Наиболее распространены ферментативные и иммунохимические биохимические методы анализа.

В ферментативных методах используют зависимость скорости химической реакции, катализируемой ферментом, от концентраций реагирующих веществ и фермента. Достоинства ферментативных биохимических методов анализа: высокая чувствительность, селективность, экспрессность и мягкие условия (25-37 °С, pH 5-10) проведения анализа. Предел обнаружения, нижняя и верхняя границы определяемых содержаний компонентов зависят от кинетических характеристик используемой индикаторной ферментативной реакции и, главным образом, каталитической активности фермента, от способа детектирования аналитического сигнала. Высокая селективность ферментативных биохимических методов анализа обусловлена образованием фермент-субстратного комплекса, требующим структурного соответствия субстрата активному центру фермента. С помощью ферментативных биохимических методов анализа определяют ферменты, субстраты, кофакторы и коферменты, активаторы и ингибиторы ферментов. Известны многочисленные высокочувствительные (нижние границы определяемых содержаний 10 -9 -10 -6 моль/дм 3) и селективные ферментативные биохимические методы анализа определения ионов металлов, неорганических анионов, пестицидов, фенолов, аминокислот, метаболитов, мутагенов, канцерогенов и других биологически активных соединений. Для создания биосенсоров, ферментных реакторов, разработки простых и экспрессных тест-методов определения токсикантов используют иммобилизованные ферменты. Высокая стабильность, возможность многократного использования иммобилизованных ферментов повышают экономичность, экспрессность анализа, позволяют его автоматизировать. Ферментативные биохимические методы анализа применяют в анализе объектов медицины (биологических жидкостей, тканей живых организмов), окружающей среды (природных и сточных вод, почв, воздуха, тканей растений), пищевых продуктов, фармацевтических препаратов, для непрерывного контроля микробиологических и биохимических процессов.

Иммунохимические методы основаны на специфическом связывании определяемого соединения - антигена - соответствующими антителами. Малые концентрации комплекса антиген - антитело определяют, вводя в один из компонентов системы метку, детектируемую соответствующим инструментальным методом. Детектируемый сигнал пропорционален концентрации антигена. Используют изотопные, флуоресцентные, парамагнитные, ферментные метки. Анализ с использованием ферментной метки - иммуноферментный анализ - сочетает высокую чувствительность определения метки (предел обнаружения менее 10 -12 моль/дм 3) с уникальной специфичностью иммунохимического анализа. Иммунохимические биохимические методы анализа применяют для определения белков, пестицидов, гормонов, стероидов, наркотических и лекарственных средств, вирусов и клеток. Достоинства иммунохимического биохимического метода анализа: высокая чувствительность и специфичность определения, возможность использования малых объёмов анализируемой пробы (5-50 мкл). Время анализа - несколько минут. Разработаны диагностические иммуноферментные тест-системы для экспресс-определения биологически активных соединений в медицине, ветеринарии, микробиологической, фармакологической, пищевой промышленности, сельском хозяйстве, в объектах окружающей среды.

Лит.: Долманова И. Ф., Угарова Н. Н. Ферментативные методы анализа // Журнал аналитической химии. 1980. Т. 35. Вып. 8; Кулис Ю. Ю. Аналитические системы на основе иммобилизованных ферментов. Вильнюс, 1981: Теория и практика иммуноферментного анализа. М., 1991.

Биохимический анализ крови -- это лабораторный метод исследования, использующийся в медицине, который отражает функциональное состояние органов и систем организма человека. Он позволяет определить функцию печени, почек, активный воспалительный процесс.

Определение биохимических показателей крови

Определение биологических показателей крови позволяет оценить работу гепатобилиарной и сердечно - сосудистой систем. Отравление химическими веществами сказывается, прежде всего, на таких органах, как печень, почки и сердце.

· Определение аланинаминотрансферазы (АЛТ)

Клеточный фермент, участвующий в обмене аминокислот. АЛТ содержится в тканях сердца, печени, почек, нервной ткани, скелетной мускулатуры и других органов. Благодаря высокому содержанию в тканях этих органов, анализ крови Повышенное содержание: при застойной желтухе, остром гепатите, циррозе, сердечном приступе, раке печени, гемолитической желтухе, травме.

Принцип метода: Определение проводится на биохимическом анализаторе фирмы Stat-fax 1300. Используется кинетический метод согласно рекомендациям IFCC (Международная Федерация по Клинической Химии). В качестве субстрата применяется 2-оксоглутарат в присутствии ТРИС буфера (рН 7,5).

· Определение аспартатаминотрансферазы (ACT)

АСТ-фермент, используемый для оценки функции печени. Норма АСТ в крови: для женщин - до 31 Ед/л; для мужчин норма АСТ - до 37 Ед/л. Повышается уровень АлАт при инфаркте миокарда, поражениях сердечной и соматической мускулатуры.

Принцип метода: Определение проводится на биохимическом анализаторе фирмы Human Autohumalyzer - 900 plus. Используется кинетический метод согласно рекомендациям IFCC (Международная Федерация по Клинической Химии). В качестве субстрата применяется 2-оксоглутарат в присутствии ТРИС буфера (рН 7,8).

· Определение глутамилтранспептидазы(ГГТ)

Активность ГГТ изменяется раньше всех остальных ферментов при развитии патологии печени. Наиболее высокие значения фермент принимает при развитии синдрома холестаза, когда нарушается нормальный пассаж желчи по желчным протокам в результате препятствий, вызванных конкрементом, воспалением, стриктурой, опухолью. Острый вирусный гепатит, токсическое, радиационное поражение печени (ГГТ дает возможность ранней диагностики).

Принцип метода: Определение проводится на биохимическом анализаторе фирмы Human Autohumalyzer - 900 plus. Используется кинетический колориметрический метод по Persijn & van der Slik. В качестве субстрата применяется L-гамма-глутамил-З-карбокси-4-нитроанилид в присутствии ТРИС буфера (рН 8,25).

· Определение щелочной фосфатазы (ЩФ)

ЩФ катализирует отщепление фосфорной кислоты от ее органических соединений; название получила в связи с тем, что оптимум рН щелочной фосфатазы лежит в щелочной среде (рН 8,6-10,1). Быстро растет активность фермента при остеогенной саркоме, метастазах рака в кости, миеломной болезни, лимфогранулематозе с поражением костей. У детей щелочная фосфатаза повышена до периода полового созревания. Значительное увеличение активности щелочной фосфатазы наблюдается при холестазе. Щелочная фосфатаза в противоположность аминотрансферазам остается нормальной или незначительно увеличивается при вирусном гепатите. Резко возрастает ее активность при отравлениях алкоголем на фоне хронического алкоголизма. Она может повышаться при лекарственных назначениях, проявляющих гепатотоксический эффект.

Принцип метода: Щелочная фосфатаза (щелочная фосфогидролипаза моноэстеров ортофосфорной кислоты) расщепляет в N-метил-D-глюкаминовом буфере 4-нитрофенилфосфат с образованием 4-нитрофенола и фосфата. Щелочная фосфатаза (ЩФ) активирована хлоридом натрия. Мерой каталитической концентрации фермента является количество освобожденного 4-нитрофенола, который определяют фотометрически, либо кинетическим методом, либо методом постоянного времени после остановки ферментативной реакции ингибитором ЩФ, который блокирует активный центр фермента.

Определение билирубина.

Билирубин - желто-красный пигмент, продукт распада гемоглобина, происходящего в макрофагах селезёнки, печени и костном мозге. Анализ билирубина показывает, как работает печень человека, определение билирубина входит в комплекс диагностических процедур при многих заболеваниях желудочно-кишечного тракта. В сыворотке крови встречается билирубин в следующих формах: прямой билирубин и непрямой билирубин. Вместе эти формы образуют общий билирубин крови. Метод определения билирубина в сыворотке крови: билирубин реагирует с диазотированной сульфаниловой кислотой (ДСК). В ходе реакции образуется продукт, окрашенный в красный цвет. Оптическая плотность продукта при 546 нм прямо пропорциональна концентрации билирубина в пробе. Растворимые в воде глюкоурониды билирубина (прямой билирубин) сразу же реагируют с ДСК, в то время как связанный с альбумином непрямой билирубин реагирует с ДСК только в присутствии акселератора. Общий билирубин = Прямой + Непрямой.

2. Метод определения билирубина по Йендрашику

Принцип: При взаимодействии сульфаниловой кислоты с азотистокислым натрием образуется диазофенилсульфоновая кислота, которая. Реагируя со сзязанным билирубином сыворотки дает розово-фиолетовое окрашивание. По интенсивности его судят о концентрации билирубина, вступающего в прямую реакцию. При добавлении к сыворотки крови кофеинового реактива несвязанный билирубин переходит в растворимое диссоциированное состояние, благодаря чему он также вызывает розово-фиолетовое окрашивание раствора со смесью диазореактивов. По интенсивности последнего фотоколориметрически определяют концентрацию общего билирубина. По разнице между общим и связанным билирубином находят содержание несвязанного билирубина, дающего непрямую реакцию.

· Определение холестерина

Определение холестерина крови -- обязательный этап диагностики заболеваний сердечно - сосудистой системы (ишемическая болезнь сердца, инфаркт миокарда), атеросклероза и заболеваний печени.

Снижение холестерина может быть симптомом следующих заболеваний: Гипертиреоз, хроническая сердечная недостаточность, мегалобластическая анемия, острые инфекционные заболевания, терминальная стадия цирроза печени, рак печени, хронические заболевания легких, туберкулез легких.

Принцип метода: Определение проводится на биохимическом анализаторе фирмы Human Autohumalyzer - 900 plus. Холестерин определяется после ферментативного гидролиза и окисления. Образующаяся в результате этих реакций перекись водорода взаимодействует под действием пероксидазы с 4-аминофеназолом и фенолом с образованием окрашенного продукта - хинонимина. Норма холестерина до 5,2 ммоль/л.

· Холестерин ЛПВП

Холестерин липопротеидов высокой плотности или б-холестерин - единственная фракция липидов, препятствующая образованию атеросклеротических бляшек в сосудах (поэтому липопротеиды высокой плотности еще называют хорошим холестериноми и вычисляется по специальной формуле.

Антиатерогенное действие ЛПВП обусловлено их способностью транспортировать холестерин от клеток.. Определение холестерина липопротеидов высокой плотности (б-холестерин)

Принцип: Определение проводится на биохимическом анализаторе фирмы Human Autohumalyzer - 900 plus. Используется осаждающий реагент преципитант, под воздействием которого липопротеиды низкой и очень низкой плотности осаждаются фосфовольфрамовой кислотой и хлоридом магния.

ЛПВП - В составе липопротеинов Высокой Плотности (ЛПВП), холестерин удаляется из стенок сосудов и ЛПНП. В последствии ЛПВП, утилизируются в печени. ЛПВП выполняют защитную функцию и препятствуют развитию атеросклероза.

· Определение Холестерина Липопротеинов Низкой Плотности

ЛПНП (холестерин) - В составе липопротеинов Низкой Плотности (ЛПНП), холестерин долго циркулирует в кровотоке, если он, в результате нарушений, своевременно не потребляется органами и тканями, то ЛПНП, богатые холестерином, начинают откладываться в стенки сосудов, приводя к появлению атеросклеротических бляшек. Чем больше ЛПНП в крови, тем быстрее развивается атеросклеротический процесс.

Принцип: При добавлении к образцу реагента 1, защитный реагент соединяется с ЛПНП и защищает их от реакций ферментов. CHE (холестеролэстераза) и CO (холестеролоксидаза) реагируют с остальными фракциями липопротеинов. Перекись водорода, образованная в ходе реакции энзима с холестерином промежуточной плотности разлагается под действием реагента 1. При добавлении реагента 2, защитный реагент высвобождение ЛПНП из комплекса и при помощи азида натрия активизируется каталаза. В процессе второй реакции CHE и CO реагируют только с ЛПНП. Под действием окислителя с HDAOS и 4-AA в присутствии пероксидазы (POD) перекись водорода образует цветной комплекс. Интенсивность окраски голубого комплекса прямо пропорциональна содержанию ЛПНП в образце. Анализ состоит из двух этапов: удаление хиломикронов и ЛПНП и удаление ХС-ЛПВП при помощи холестеролэстеразы и ферментов оксидазы.

Для достоверной диагностики нарушений обмена холестерина, достаточно определения Общего холестерина (ОХС) и ЛПВП (Липопротеинов Высокой Плотности). На основе этих данных рассчитывается Индекс Атерогенности - Основной показатель по которому можно достоверно судить о нарушении и определить прогноз.

· Определение содержания триглицеридов (ТГ).

Триглицериды - показатель обмена липидов (жиров) в организме. Основные показания к применению: диагностика гипертриглицеридемии, оценка риска атеросклеротического поражения коронарных сосудов и ишемической болезни сердца (ИБС), нарушения жирового обмена. ТГ - являются главной формой накопления жирных кислот в организме и одним из основных источников энергии у человека. Триглицериды представляют собой основные жиры, которые присутствуют в жировой ткани. Триглицериды являются альтернативным по отношению к глюкозе источником энергии, например при голодании, когда запасы глюкозы истощены.

Принцип: Определение проводится на биохимическом анализаторе фирмы Human Autohumalyzer - 900 plus. Концентрация триглицеридов определяется после ферментативного гидролиза под действием липазы. В результате реакции образуется индикатор хинонимин из перекиси водорода, 4-аминоантипирина и 4- хлорфенола при каталитическом воздействии пероксидазы.

· Определение индекса атерогенности.

Индекс атерогенности - является одним из показателей нарушения обмена холестерина, критерием развития атеросклероза. Он показывает соотношение «вредных» фракций жиров и тех, которые, наоборот, препятствуют образованию бляшек на стенках сосудов, так называемых антиатерогенных фракций липидов.

Рассчитывается по формуле:

где Хс общий - общий холестерин, бXC - холестерин Липопротеинов Высокой Плотности.

· Определение креатинина.

Содержание креатинина в крови зависит от объема мышечной массы, поэтому, для мужчин норма креатинина, как правило, выше, чем у женщин. Так как объем мышечной ткани быстро не меняется, уровень креатинина в крови -- величина достаточно постоянная. Повышение креатинина -- симптом острой и хронической почечной недостаточности, лучевой болезни, гипертиреоза. Уровень креатинина возрастает при обезвоживании организма, после механических, операционных поражений мышц.

Концентрацию креатинина в сыворотке крови определяли по цветной реакции Яффе, основанной на принципе - в щелочной среде пикриновая кислота взаимодействует с креатинином с образованием оранжево-красной окраски, которую измеряют фотометрически на фотоэлектроколориметре ФЭК-2, определение проводят после депротеинизирования.

Расчет концентрации (С) креатина:

С = Е пробы / Е калибр * 177 (мкмоль/л),

где С - концентрация креатинина, Е пробы - оптическая плотность пробы, Е калибр - оптическая плотность калибровочной пробы.

Определение мочевины

Повышение нормы говорит о плохой выделительной работе почек и нарушении фильтрации. Нарастание содержания мочевины в крови до 16--20 ммоль/л (в расчете на азот мочевины) классифицируется как нарушение функции почек средней тяжести, до 35 ммоль/л -- как тяжелое; свыше 50 ммоль/л -- очень тяжелое, с неблагоприятным прогнозом. При острой почечной недостаточности концентрация мочевины в крови может достигать 50--83 ммоль/л.

Мочевина под действием уразы разлагается на углекислый газ, аммиак, последний в реакции с натрия салицилатом и натрия гипохлоритом в присутствие натрия нитропруссида образует окрашенный продукт, интенсивность окраски которого пропорциональна концентрации мочевины в пробе. 1.

Биохимические методы направлены на выявление биохимического фенотипа организма. Эти методы позволяют диагностировать наследственные болезни, обусловленные генными мутациями. Биохимические показатели (первичный белковый продукт гена, накопление патологических метаболитов внутри клетки) отражают сущность болезни более адекватно, чем клинические симптомы. С помощью биохимических методов описано более 1000 врожденных болезней обмена веществ. Наиболее распространенными среди таких заболеваний являются болезни, связанные с дефектами ферментов, структурных и транспортных белков. Дефекты ферментов устанавливают путем определения содержания в биологических средах (например, моче и крови) продуктов метаболизма, являющихся продуктом функционирования данного белка.

Дефицит конечного продукта, сопровождающийся накоплением промежуточных и продуктов нарушенного метаболизма, свидетельствует о дефекте фермента или его дефиците в организме. Биохимические методы многоступенчаты. Для их проведения требуется аппаратура разных классов. Объектами биохимической могут быть моча, пот, плазма и форменные элементы крови, культуры клеток (фибробласты, лимфоциты). В связи с многообразием биохимических методов, применяемых в лабораторной диагностике наследственных болезней, для эффективного их использования применяется определенная система. Биохимическую диагностику проводят в два этапа. На первом этапе отбирают предположительные случаи заболеваний, на втором — более точными и сложными методами уточняют диагноз заболевания. Первый этап включает качественные и количественные тесты с мочой и кровью на белок, кетокислоты, цистин и гомоцистин, креатинин и другие показатели. Фактически такие исследования можно проводить в каждой больнице. Показания их применения достаточно широкие, стоимость каждого анализа невысокая. Второй этап основан на более точных методах, позволяющих обнаружить большие группы биохимических аномалий. Например, с помощью тонкослойной хроматографии мочи и крови можно диагностировать нарушения обмена аминокислот, олигосахаридов и гликозаминогликанов (мукополисахаридов). Газовая хроматография применяется для выявления наследственных болезней обмена органических кислот.

С помощью электрофореза гемоглобинов диагностируется вся группа гемоглобинопатий. Несмотря на сложность и дороговизну, биохимическим методам принадлежит ведущая роль в диагностике моногенных наследственных болезней. Современные высокоточные технологии (жидкостная хроматография, масс-спектрометрия, магнитная резонансная спектроскопия, бомбардировка быстрыми нейтронами) позволяют идентифицировать любые метаболиты, специфические для конкретной наследственной болезни. Показаниями для применения биохимических методов диагностики у новорожденных являются такие симптомы, как судороги, кома, рвота, гипотония, желтуха, специфический запах мочи и пота, нарушения кислотно-основного состояния, остановка роста. Например, в случае фенилкетонурии применение биохимических исследований позволяет своевременно выявить патологию и начать специфические медицинские мероприятия. У детей биохимические методы используются во всех случаях подозрения на наследственные болезни обмена веществ (задержка физического и умственного развития, потеря приобретенных функций, специфическая для какой-либо болезни клиническая картина). Биохимические методы применяются для диагностики наследственных болезней и гетерозиготных состояний у взрослых (гепатолентикулярная дегенерация, недостаточность глюкозо-6-фосфатдегидрогеназы).

Биохимический метод – позволяет выявить наследственно обусловленные нарушения обмена веществ.
Введение данного метода в практику связано с открытием английского врача А. Гаррода в начале XX века биохимической природы наследственных болезней обмена веществ которые сам Гэррод назвал врожденными ошибками метаболизма. Изучая алкаптонурию он установил, что данное заболевание наследуется как рецессивный признак и определяется отсутствием специфического фермента.
Развитием идеи о механизме действия генов через контроль отдельных этапов метаболизма различных соединений в клетке следует считать работы Д.Бидла и Э.Татума, которые высказали гипотезу “один ген-один фермент”. Позже она модифицирована в гипотезу “один ген-одна полипептидная цепь”.
Наследственные заболевания, которые обусловлены генными мутациями, изменяющими структуру или скорость синтеза белков, обычно сопровождаются нарушением углеводного, белкового, липидного и других типов обмена веществ. Наследственные дефекты обмена можно диагностировать посредством определения структуры измененного белка или его количества, выявления дефектных ферментов или обнаружения промежуточных продуктов обмена веществ во внеклеточных жидкостях организма(крови, моче, поте и т.д.). Например, анализ аминокислотных последовательностей мутацонно измененных белковых цепей гемоглобина позволил выявить несколько наследственных дефектов, лежащих в основе ряда заболеваний – гемоглобинозов. Так, при серповидно-клеточной анемии у человека аномальный гемоглобин вследствие мутации отличается от нормального заменой только одной аминокислоты (глутаминовой кислоты на валин).
В настоящее время описано более 600 болезней обмена веществ. Например, фенилкетонурия относится к болезням аминокислотного обмена.
При этом блокируется превращение незаменимой аминокислоты фенилаланин в тирозин, и фенилаланин превращается в фенилпировиноградную кислоту, которая выводится с мочой. Заболевание приводит к быстрому развитию слабоумия у детей. Ранняя диагностика и диета позволяют приостановить развитие заболевания.
В практике здравоохранения кроме выявления гомозиготных носителей мутантных генов существуют методы выявления гетерозиготных носителей некоторых рецессивных генов, что особенно важно при медикогенетическом консультировании. Так, у фенотипически нормальных гетерозигот по фенилкетонурии (аутосомно-рецессивное заболевание; у гомозигот по мутантному гену нарушается обмен аминокислоты фенилаланина, что приводит к умственной отсталости) после приема фенилаланина обнаруживается повышенное его содержание в крови. При гемофилии гетерозиготное носительство мутантного гена может быть установлено с помощью определения активности фермента, измененного в результате мутации.