Антигипоксанты - препараты, способные предотвратить, уменьшить или ликвидировать проявления гипоксии благодаря поддержанию энергетического обмена в режиме, достаточном для сохранения структуры и функциональной активности клетки хотя бы на уровне допустимого минимума.

Одним из универсальных патологических процессов на уровне клетки при всех критических состояниях является гипоксический синдром. В клинических условиях «чистая» гипоксия встречается редко, чаще всего она осложняет течение основного заболевания (шок, массивная кровопотеря, дыхательная недостаточность различной природы, сердечная недостаточность, коматозные состояния, колаптоидные реакции, гипоксия плода при беременности, в родах, анемия, оперативные вмешательства и др.).

Термином «гипоксия» обозначают состояния, при которых поступление в клетке О2 или его использование в ней недостаточны для поддержания оптимальной энергопродукции.

Дефицит энергии, лежащий в основе любой формы гипоксии, приводит к качественно однотипным метаболическим и структурным сдвигам в различных органах и тканях. Необратимые изменения и гибель клетки при гипоксии обусловлены нарушением многих метаболических путей в цитоплазме и митохондриях, возникновением ацидоза, активацией свободнорадикального окисления, повреждением биологических мембран, затрагивающим как липидный бислой, так и мембранные белки, включая ферменты. При этом недостаточная энергопродукция в митохондриях при гипоксии обусловливает развитие многообразных неблагоприятных сдвигов, которые в свою очередь нарушают функции митохондрий и приводят к еще большему энергодефициту, что в конечном счете может вызвать необратимые повреждения и гибель клетки.

Нарушение энергетического гомеостаза клетки как ключевое звено формирования гипоксического синдрома ставит перед фармакологией задачу разработки средств, нормализующих энергетический обмен.

, , ,

Что такое антигипоксанты?

Первые высокоэффективные антигипоксанты были созданы в 60-х годах. Первым препаратом этого типа стал гутимин (гуанилтиомочевина). При модификации молекулы гутимина была показана особенная важность наличия серы в его составе, так как замена ее на О2 или селен полностью снимала защитное действие гутимина при гипоксии. Поэтому дальнейший поиск пошел по пути создания серосодержащих соединений и привел к синтезу еще более активного антигипоксанта амтизола (3,5-диамино-1,2,4-тиадиазол).

Назначение амтизола в первые 15 - 20 мин после массивной кровопотери приводило в эксперименте к снижению величины кислородного долга и достаточно эффективному включению защитных компенсаторных механизмов, что способствовало лучшей переносимости кровопотери на фоне критического снижения объема циркулирующей крови.

Применение амтизола в клинических условиях позволило сделать аналогичный вывод о важности раннего его введения для повышения эффективности трансфузионной терапии при массивной кровопотере и предупреждения тяжелых нарушений в жизненно важных органах. У таких больных после применения амтизола рано увеличивалась двигательная активность, уменьшалась одышка и тахикардия, нормализовался кровоток. Заслуживает внимания, что ни у одного больного не было гнойных осложнений после оперативных вмешательств. Это обусловлено способностью амтизола ограничивать формирование посгравматической иммунодепрессии и снижать риск инфекционных осложнений тяжелых механических травм.

Амтизол и гутимин вызывают выраженные защитные эффекты придыхательной гипоксии. Амтизол уменьшает кислородный запас тканей и благодаря этому улучшает состояние оперированных больных, повышает их двигательную активность в ранние сроки послеоперационного периода.

Гутимин проявляет четкое нефропротекторное действие при ишемии почек в эксперименте и клинике.

Таким образом, экспериментальный и клинический материал даст основание для следующих обобщающих выводов.

  1. Препараты типа гутимина и амтизола оказывают реальное защитное действие в условиях кислородной недостаточности разного генеза, что создает основу и для успешного проведения других видов терапии, эффективность которых на фоне применения антигипоксантов возрастает, что нередко имеет решающее значение для сохранения жизни пациента в критических ситуациях.
  2. Антигипоксанты действуют на клеточном, а не на системном уровне. Это выражается в возможности поддержания функций и структуры различных органов в условиях регионарной гипоксии, затрагивающей лишь отдельные органы.
  3. Клиническое применение антигипоксантов требует тщательного изучения механизмов их защитного действия с целью уточнения и расширения показаний к применению, разработку новых более активных препаратов и возможных комбинаций.

Механизм действия гутимина и амтизола сложен и не полностью изучен. В реализации антигипоксического действия данных препаратов имеет значение ряд моментов:

  1. Снижение кислородного запроса организма (органа), в основе которого, по-видимому, лежит экономное использование кислорода. Это может быть следствием угнетения нефосфорилирующих видов окисления; в частности, установлено, что гутимин и амтизол способны подавлять процессы микросомального окисления в печени. Данные антигипоксанты тормозят также реакции свободнорадикального окисления в различных органах и тканях. Экономизация О2 может возникнуть и в результате тотального снижения дыхательного контроля во всех клетках.
  2. Поддержание гликолиза в условиях его быстрого самоограничения при гипоксии вследствие накопления избытка лактата, развития ацидоза и исчерпания резерва НАД.
  3. Поддержание структуры и функции митохондрий при гипоксии.
  4. Защита биологических мембран.

Все антигипоксанты в той или иной степени влияют на процессы свободнорадикального окисления и эндогенную антиоксидантную систему. Это влияние заключается в прямом или косвенном антиоксидантном действии. Косвенное действие присуще всем антигипоксантам, прямое же может и отсутствовать. Косвенный, вторичный антиоксидантный эффект вытекает из основного действия антигипоксантов - поддержание достаточно высокого энергетического потенциала клеток при дефиците О2, что в свою очередь предотвращает негативные метаболические сдвиги, которые в конечном счете и приводят к активации процессов свободнорадикального окисления и угнетению антиоксидантной системы. Амтизол обладает как косвенным, так и прямым антиоксидантным эффектом, у гутимина прямое действие выражено значительно слабее.

Определенный вклад в антиоксидантный эффект вносит также способность гутимина и амтизола тормозить липолиз и тем самым уменьшать количество свободных жирных кислот, которые могли бы подвергнуться перекисному окислению.

Суммарный антиоксидантный эффект данных антигипоксантов проявляется снижением накопления в тканях гидроперекисей липидов, диеновых конъюгатов, малонового диальдегида; также тормозится уменьшение содержания восстановленного глутатиона и активностей супероксидцисмутазы и каталазы.

Таким образом, результаты экспериментальных и клинических исследований свидетельствуют о перспективности разработки антигипоксантов. В настоящее время создана новая лекарственная форма амтизола в виде лиофилизированного препарата во флаконах. Пока во всем мире известны лишь единичные препараты, используемые в медицинской практике, с антигипоксическим действием. Например, препарат триметазидин (предуктал фирмы «Servier») описывается как единственный антигипоксант, стабильно проявляющий защитные свойства при всех формах ишемической болезни сердца, не уступающее или превосходящее по активности самые эффективные известные антигинальные средства первой очереди (нитраты, ß-блокаторы и антагонисты кальция).

Другой известный антигипоксант - естественный переносчик электронов в дыхательной цепицитохром с. Экзогенный цитохром с способен взаимодействовать с цитохром-с-дефицитными митохондриями и стимулировать их функциональную активность. Способность цитохрома с проникать через поврежденные биологические мембраны и стимулировать процессы энергопродукции в клетке является твердо установленным фактом.

Существенно отметить, что в обычных физиологических условиях биологические мембраны плохо проницаемы для экзогенного цитохрома с.

В медицинской практике начинает использоваться и другой естественный компонент дыхательной митохондриальной цепи убихинон (убинон).

В практику внедряется сейчас также антигипоксант олифен, являющийся синтетическим полихиноном. Олифен эффективен при патологических состояниях с гипоксичсским синдромом, но сравнительное изучение олифена и амтизола показало большую лечебную активность и безопасность амтизола. Создан антигипоксант мексидол, представляющий собой сукцинат антиоксиданта эмоксипина.

Выраженной антигипоксической активностью обладают отдельные представители группы так называемых энергодающих соединений, прежде всего креатинфосфат, обеспечивающий анаэробный ресинтез АТФ при гипоксии. Препараты креатинфосфата (неотон) в высоких дозах (порядка 10-15 г на 1 вливание) оказались полезными при инфаркте миокарда, критических нарушениях сердечного ритма, ишемическом инсульте.

АТФ и другие фосфорилированные соединения (фруктозо-1 ,6-дифосфат, глюкозо-1 -фосфат) проявляют малую антигипоксическую активность из-за практически полного дефосфорилирования в крови и поступления в клетки в энергетически обесцененном виде.

Антигипоксичсская активность, безусловно, вносит вклад в лечебные эффекты пирацетама (ноотропила), используемого в качестве средства метаболической терапии, практически не обладающего токсичностью.

Количество новых антигипоксантов, предлагаемых для изучения, стремительно увеличивается. Н. Ю. Семиголовский (1998) провел сравнительное изучение эффективности 12 антигипоксантов отечественного и иностранного производства в комплексе с интенсивной терапией инфаркта миокарда.

Антигипоксический эффект лекарственных средств

Кислородпотребляющие тканевые процессы рассматриваются как мишень для действия антигипоксантов. Автор указывает, что современные методы лекарственной профилактики и лечения как первичных, так и вторичных гипоксий основываются на использовании антигипоксантов, стимулирующих транспорт кислорода в ткань и компенсирующих отрицательные метаболические сдвиги, возникающие при кислородной недостаточности. Перспективным является подход, основанный на использовании фармакологических препаратов, способных изменить интенсивность окислительного метаболизма, что открывает возможность управления процессами утилизации кислорода тканями. Антигипоксанты - бензопомин и азамопин не оказывают угнетающие действия на митохондриальные системы фосфорилирования. Наличие ингибирующего действия исследуемых веществ на процессы ПОЛ различной природы позволяет предполагать влияние соединений указанной группы на общие звенья в цепи радикалообразования. Не исключена возможность и того, что антиоксидантный эффект связан с непосредственной реакцией исследуемых веществ со свободными радикалами. В концепции фармакологической защиты мембран при гипоксии и ишемии торможение процессов ПОЛ несомненно играет положительную роль. Прежде всего, сохранение антиоксидантного резерва в клетке препятствует дезинтеграции мембранных структур. Следствием этого является сохранение функциональной активности митохондриального аппарата, что служит одним из важнейших условий поддержания жизнеспособности клеток и тканей в условиях жестких, деэнергизирующих воздействий. Сохранение мембранной организации создаст благоприятные условия для диффузионного потока кислорода в направлении межтканевая жидкость - цитоплазма клетки - митохондрия, что необходимо для поддержания оптимальных концентраций О2 в зоне его взаимодействия с цигохромом. Применение антигипоксантов бензомопина и гутимина увеличивало выживаемость животных после клинической смерти на 50% и 30% соответственно. Препараты обеспечивали более стабильную гемодинамику в постреанимационном периоде, способствовали снижению содержания молочной кислоты в крови. Гутимин оказывал положительное влияние на исходный уровень и динамику исследуемых показателей в восстановительном периоде, но менее выражено, чем у бензомопина. Полученные результаты свидетельствуют о том, что бензомопин и гутимин оказывают профилактический защитный эффект при умирании от кровопотери и способствуют повышению выживаемости животных после 8-минутной клинической смерти. При изучении тератогенной и эмбриотоксической активности синтетического антигипоксанта - бензомопина - доза 208,9 мг/кг массы тела с 1-го по 17-й день беременности оказалась частично смертельной для беременных самок. Задержка эмбрионального развития, очевидно, связана с общетоксическим действием на мать высокой дозы антигипоксанта. Таким образом, бензомопин при введении внутрь беременным крысам в дозе 209,0 мг/кг в период с 1-го по 17-й или с 7-го по 15-й день беременности не приводит к тератогенному действию, но обладает слабым потенциальным эмбриотоксическим эффектом.

В работах показано антигипоксическое действие агонистов бензодиазепиновых рецепторов. Последующее клиническое применение бензодиазепинов подтвердило их высокую эффективность как антигипоксантов, хотя механизм этого эффекта не выяснен. В эксперименте показано наличие в мозге и в некоторых периферических органах рецепторов к экзогенным бензодиазепинам. В опытах на мышах диазепам отчетливо отдаляет сроки развития нарушения ритма дыхания, появление гипоксических судорог и увеличивает длительность жизни животных (в дозах 3; 5; 10 мг/кг - продолжительность жизни в основной группе составила соответственно - 32 ± 4,2; 58 ± 7,1 и 65 ± 8,2 мин, в контроле 20 ± 1,2 мин). Полагают, что антигипоксический эффект бензодиазепинов связан с системой бензодиазепиновых рецепторов, не зависимых от ГАМК-ергического контроля, по крайней мере от рецепторов типа ГАМК.

В ряде современных работ убедительно показана высокая эффективность антигипоксантов при лечении гипоксически-ишемических поражений головного мозга при ряде осложнений беременности (тяжелые формы гестоза, фетоплацентарная недостаточность и др.), а также и в неврологической практике.

К регуляторам, обладающим выраженным антигапоксическим действием, относятся такие вещества, как:

  • ингибиторы фосфолипаз (мекаприн, хлорохин, батаметазон, АТФ, индометацин);
  • ингибиторы циклооксигеназ (превращающих арахидоновую кислоту в промежуточные продукты) - кетопрофен;
  • ингибитор синтеза тромбоксанов - имидазол;
  • активатор синтеза простагландина РС12-циннаризин.

Коррекция гипоксических расстройств должна осуществляться комплексно с привлечением антигипоксангов, оказывающих действие на различные звенья патологического процесса, прежде всего на начальные этапы окислительного фосфорилирования, во многом страдающие от дефицита высокоэнергетических субстратов, таких как АТФ.

Именно поддержание концентрации АТФ на уровне нейронов в условиях гипоксии становится особенно значимым.

Процессы, в которых участвует АТФ, можно разделить на три последовательных этапа:

  1. деполяризация мембран, сопровождающаяся инактивацией Nа, К-АТФ-азы и локальным увеличением содержания АТФ;
  2. секреция медиаторов, при которой наблюдаются активация АТФ-азы и повышенный расход АТФ;
  3. трата АТФ, компенсаторно включающая систему ее ресинтеза, необходимого для реполяризации мембран, удаления Са из терминалей нейронов, восстановительных процессов в синапсах.

Таким образом, адекватное содержание АТФ в нейрональных структурах обеспечивает не только адекватное протекание всех стадий окислительного фосфорилирования, обеспечивая энергетический баланс клеток и адекватное функционирование рецепторов, в конечном итоге позволяет сохранять интегративную и нейро-трофическую деятельность головного мозга, что является задачей первостепенной важности при любых критических состояниях.

При любых критических состояниях эффекты гипоксии, ишемии, нарушения микроциркуляции и эндотоксемии затрагивают все сферы жизнеобеспечения организма. Любая физиологическая функция организма или патологический процесс являются результатом интегративных процессов, в ходе которых решающее значение имеет нервная регуляция. Поддержание гомеостаза осуществляется высшими корковыми и вегетативными центрами, ретикулярной формацией ствола, зрительным бугром, специфическими и неспецифическими ядрами гипоталамуса, нейрогипофизом.

Эти нейрональные структуры управляют деятельностью основных «рабочих блоков» организма, таких как дыхательная система, кровообращение, пищеварение и т. д., через рецепторно-синаптический аппарат.

К гомеостатическим процессам со стороны ЦНС, поддержание функционирования которых особенно важно при патологических состояниях, относятся координированные приспособительные реакции.

Адаптационно-трофическая роль нервной системы при этом проявляется изменениями нейрональной активности, нейрохимическими процессами, сдвигами метаболизма. Симпатическая нервная система в патологических условиях меняет функциональную готовность органов и тканей.

В самой нервной ткани в патологических условиях могут иметь место процессы, которые в определенной степени аналогичны адаптационно-трофическим изменениям на периферии. Реализуются они посредством монаминергических систем мозга, берущих начало от клеток мозгового ствола.

Во многом именно функционированием вегетативных центров определяется течение патологических процессов при критических состояниях в постреанимационном периоде. Поддержание адекватного церебрального метаболизма позволяет сохранять адаптационно-трофические влияния нервной системы и предотвращать развитие и прогрессирование синдрома полиорганной недостаточности.

Актовегин и инстенон

В связи с изложенным в ряду антигипоксантов, активно влияющих на содержание циклических нуклеотидов в клетке, следовательно, церебральный метаболизм, интегративную деятельность нервной системы, стоят многокомпонентные препараты «Актовегин» и «Инстенон».

Возможности фармакологической коррекции гипоксии с помощью актовегина изучаются уже давно, но по ряду причин его использование как прямого антигипоксанта в терапии терминальных и критических состояний явно недостаточно.

Актовегин-депротеиноризированный гемодериват из сыворотки крови молодых телят-содержит комплекс низкомолекулярных олигопептидов и производных аминокислот.

Актовегин стимулирует энергетические процессы функционального метаболизма и анаболизма на клеточном уровне независимо от состояния организма, главным образом в условиях гипоксии и ишемии за счет увеличения накопления глюкозы и кислорода. Повышение транспортировки глюкозы и кислорода в клетку и усиление внутриклеточной утилизации ускоряют метаболизм АТФ. В условиях применения актовегина наиболее характерный для условия гипоксии анаэробный путь окисления, ведущий к образованию всего двух молекул АТФ, сменяется аэробным путем, в ходе которого образуется 36 молекул АТФ. Таким образом, использование актовегина позволяет в 18 раз увеличить эффективность окислительного фосфорилирования и повысить выход АТФ, обеспечивая адекватное его содержание.

Все рассмотренные механизмы антигипоксического действия субстратов окислительного фосфорилирования, и прежде всего АТФ, реализуются в условиях применения актовегина, особенно в больших дозах.

Использование больших доз актовегина (до 4 г сухого вещества в сутки внутривенно капельно) позволяет добиваться улучшения состояния больных, уменьшения длительности ИВЛ, снижения частоты развития синдрома полиорганной недостаточности после перенесенных критических состояний, снижения летальности, сокращения сроков пребывания в реанимационных отделениях.

В условиях гипоксии и ишемии, особенно церебральной, чрезвычайно эффективно сочетанное применение актовегина и инстенона (многокомпонентного активатора нейрометаболизма), обладающего свойствами стимулятора лимбико-ретикулярного комплекса за счет активации анаэробного окисления и пентозных циклов. Стимуляция анаэробного окисления даст энергетический субстрат для синтеза и обмена нейромедиаторов и восстановления синаптической передачи, депрессия которой является ведущим патогенетическим механизмом расстройств сознания и неврологического дефицита при гипоксии и ишемии.

При комплексном применении актовегина и инстенона удается добиться и активации сознания больных, перенесших острую тяжелую гипоксию, что свидетельствует о сохранении интегративных и регуляторно-трофических механизмов ЦНС.

Об этом же свидетельствует снижение частоты развития церебральных расстройств и синдрома полиорганной недостаточности при комплексной антигипоксической терапии.

Пробукол

Пробукол в настоящее время является одним из немногих доступных и дешевых отечественных антигипоксантов, которые вызывают умеренное, а в ряде случаев и значительное снижение содержание холестерина (ХС) в сыворотке крови. Снижение уровня липопротеидов высокой плотности (ЛПВП) пробукол вызывает за счет обратного транспорта ХС. Об изменении обратного транспорта при терапии пробуколом судят в основном по активности переноса эфиров ХС (ПЭХС) от ЛПВП к липопротеидам очень низкой и низкой плотности (ЛПОНП и Л ПН П соответственно). Существует также и другой фактор - апопротсин Е. Показано, что при применении пробукола в течение трех месяцев снижается уровень холестерина на 14,3%, а через 6 месяцев - на 19,7%. По мнению М. Г. Твороговой и соавт. (1998) при применении пробукола эффективность гиполипидемического действия зависит в основном от особенностей нарушения обмена липопротеидов у пациента, а не определяется концентрацией пробукола в крови; увеличение дозы пробукола в большинстве случаев не способствует дальнейшему снижению уровня холестерина. Выявлены выраженные антиоксидантные свойства у пробукола, при этом повышалась стабильность эритроцитарных мембран (снижение ПОЛ), выявлен также умеренный липидснижающий эффект, постепенно исчезавший после лечения. При применении пробукола отмечается у некоторых больных снижение аппетита, вздутие кишечника.

Перспективным является применение антиоксиданта коэнзима Q10, который влияет на окисляемость липопротеинов в плазме крови и антиперекисную резистентность плазмы у больных ишемической болезнью сердца. В ряде современных работ выявлено, что прием больших доз витамина Е и С приводит к улучшению клинических показателей, уменьшению риска развития ИБС и уровня смертности от этого заболевания.

Существенно отметить, что изучение динамики показателей ПОЛ и АОС на фоне лечения ИБС различными антиангинальными препаратами показало, что исход лечения находится в прямой зависимости от уровня ПОЛ: чем выше содержание продуктов ПОЛ и ниже активность АОС, тем меньше эффект проводимой терапии. Однако в настоящее время антиоксиданты еще не получили широкого распространения в повседневной терапии и профилактике ряда заболеваний.

Мелатонин

Существенно отметить, что антиоксидантные свойства мелатонина не опосредованы через его рецепторы. В экспериментальных исследованиях с использованием методики определения присутствия в исследованной среде одного из самых активных свободных радикалов ОН было выявлено, что мелатонин обладает значительно более выраженной активностью в плане инактивации ОН, чем такие мощные внутриклеточные АО, как глутатион и маннитол. Также в условиях in vitro было продемонстрировано, что мелатонин обладает более сильной антиоксидантной активностью в отношении пероксильного радикала ROO, чем хорошо известный антиоксидант - витамин Е. Кроме того, приоритетная роль мелатонина в качестве протектора ДНК была показана в работе Starak (1996), и выявлен феномен, свидетельствующий о главенствующей роли мелатонина (эндогенного) в механизмах АО защиты.

Роль мелатонина в защите макромолекул от окислительного стресса не ограничивается только ядерной ДНК. Белково-протективные эффекты мелатонина сравнимы с таковыми у глутатиона (одного из самых мощных эндогенных антиоксидантов).

Следовательно, мелатонин обладает протективными свойствами и в отношении свободнорадикального повреждения протеинов. Безусловно, большой интерес представляют исследования, в которых показана роль мелатонина в прерывании ПОЛ. Одним из наиболее мощных липидных АО до последнего времени считался витамин Е (а-токоферол). В экспериментах in vitro и in vivo при сравнении эффективности витамина Е и мелатонина было показано, что мелатонин в 2 раза активнее в плане инактивации радикала ROO, чем витамин Е. Такая высокая АО эффективность мелатонина не может быть объяснена только способностью мелатонина прерывать процесс липидной пероксидации путем инактивации ROO, а включает в себя еще и инактивацию радикала ОН, являющегося одним из инициаторов процесса ПОЛ. Помимо высокой АО активности самого мелатонина, в экспериментах in vitro было выявлено, что его метаболит 6-гидроксимелатонин, образующегося при метаболизме мелатонина в печени дает значительно более выраженный эффект в отношении ПОЛ. Следовательно, в организме механизмы защиты от свободнорадикального повреждения включают в себя не только эффекты мелатонина, но и по крайней мере одного из его метаболитов.

Для акушерской практики важно также положение о том, что одним из факторов, приводящих к токсическим воздействиям бактерий на организм человека является стимуляция бактериальными липополисахаридами процессов ПОЛ.

В эксперименте на животных продемонстрирована высокая эффективность мелатонина в отношении защиты от оксидативного стресса, вызываемого липополисахаридами бактерий.

Помимо того, что мелатонин сам обладает АО свойствами, он способен стимулировать глутатионпероксидазу, участвующую в превращении редуцированного глутатиона в его оксидированную форму. В процессе этой реакции молекула Н2О2, активная в плане выработки чрезвычайно токсичного радикала ОН, превращается в молекулу воды, а ион кислорода присоединяется к глутатиону, образуя оксидированный глутатион. Показано также, что мелатонин может инактивировать фермент (нитрикоксидсинтетазу), осуществляющий активацию процессов выработки оксида азота.

Перечисленные выше эффекты мелатонина позволяют считать его одним из наиболее мощных эндогенных антиоксидантов.

Антигипоксический эффект нестероидных противовоспалительных средств

В работе Nikolov и соавт. (1983) в опытах на мышах изучали влияние индометацина, ацетилсалициловой кислоты, ибупрофена и др. на время выживания животных при аноксической и гипобарической гипоксии. Индометацин применяли в дозе 1 -10 мг/кг массы тела внутрь, а остальные антигипоксанты в дозах от 25 до 200 мг/кг. Установлено, что индометацин увеличивает время выживания с 9 до 120%, ацетилсалициловая кислота с 3 до 98% и ибупрофен с 3 до 163%. Изученные вещества были наиболее эффективны при гипобарической гипоксии. Авторы считают перспективным поиски антигипоксантов среди ингибиторов циклооксигеназы. При изучении антигипоксического действия индометацина, вольтарена и ибупрофена А. И. Берсзнякова и В. М. Кузнецова (1988) установили, что эти вещества в дозах соответственно 5 мг/кг; 25 мг/кг и 62 мг/кг обладают антигипоксическими свойствами независимо от вида кислородного голодания. Механизм антигипоксического действия индометацина и вольтарена связан с улучшением доставки кислорода тканям в условиях его дефицита, нет реализации продуктов метаболического ацидоза, уменьшением содержания молочной кислоты, усилением синтеза гемоглобина. Вольтарен, кроме того, способен увеличивать количество эритроцитов.

Показано также защитное и восстанавливающее действие антигипоксантов при постгипоксическом торможении освобождения дофамина. В эксперименте показано, что антигипоксанты способствуют улучшению памяти, и применение гутимина в комплексе реанимационной терапии облегчало и ускоряло ход восстановления функций организма после умеренного по тяжести терминального состояния.

, , , , ,

Антигипоксические свойства эндорфинов, энкефалинов и их аналогов

Показано, что специфический антагонист опиатов и опиоидов налоксон укорачивает продолжительность жизни животных, находящихся в условиях гипоксической гипоксии. Было высказано предположение, что эндогенные морфиноподобные вещества (в частности, энкефалины и эндорфины), возможно, играют защитную роль при осгрой гипоксии, реализуя антигипоксическое действие через опиоидные рецепторы. В опытах на мышах-самцах показано, что лейэнксфалин и эндорфин являются эндогенными антигипоксантами. Наиболее вероятный путь защиты организма от острой гипоксии опиоидными пептидами и морфином связан с их способностью снижать кислородный запрос тканей. Кроме того, определенное значение имеет и антистрессорный компонент в спектре фармакологической активности эндогенных и экзогенных опиоидов. Поэтому мобилизация эндогенных опиоидных пептидов на сильный гипоксический стимул является биологически целесообразной и носит защитный характер. Антагонисты наркотических анальгетиков (налоксон, налорфин и др.) блокируют опиоидные рецепторы и тем самым предотвращают протективное действие эндогенных и экзогенных опиоидов в отношении острой гипоксической гипоксии.

Показано, что высокие дозы аскорбиновой кислоты (500 мг/кг) могут снижать действие избыточного накопления меди в гипоталамусе, содержание катехоламинов.

Противогипоксическое действие катехоламинов, аденозина и их аналогов

Общепризнанно, что адекватная регуляция энергетического обмена во многом определяет устойчивость организма к экстремальным условиям, а целенаправленное фармакологическое воздействие на ключевые звенья естественного адаптивного процесса является перспективным для разработки эффективных веществ-протекторов. Наблюдаемая при стресс-реакции стимуляция окислительного метаболизма (калоригенный эффект), интегральным показателем которого служит интенсивность потребления кислорода организмом в основном связана с активацией симпато-адреналовой системы и мобилизацией катехоламинов. Показано важное адаптивное значение аденозина, который выполняет роль нейромодулятора и «ответного метаболита» клеток. Как было показано в работе И. А. Ольховского (1989), различные адреноагонисты - аденозин и его аналоги вызывают дозозависимое снижение потребления организмом кислорода. Антикалоригенный эффект клонидина (клофелина) и аденозина увеличивает устойчивость организма к гипобарической, гемической, гиперкапничсской и цитотоксической формам острой гипоксии; препарат клофелин повышает устойчивость больных к операционному стрессу. Противогйпоксическая эффективность соединений обусловлена относительно самостоятельными механизмами: метаболическим и гипотермическим действием. Эти эффекты опосредуются соответственно (а2-адренергическими и А-аденозиновыми рецепторами. Стимуляторы этих рецепторов отличаются от гутимина более низкими значениями эффективных доз и более высокими протекторными индексами.

Снижение кислородного запроса и развитие гипотермии предполагает возможное увеличение устойчивости животных к острой гипоксии. Противогипоксическое действие клонидида (клофелина) позволило автору предложить использование этого соединения при проведении хирургических вмешательств. У больных, получавших клофелин, более стабильно поддерживаются основные гемодинамические показатели, значительно улучшаются параметры микроциркуляции.

Таким образом, вещества, способные стимулировать (а2-адренорецепторы и А-рецепторы при парентеральном введении, увеличивают устойчивость организма к острой гипоксии различных генезов, а также к другим экстремальным ситуациям, включающим развитие гипоксических состояний. Вероятно, снижение окислительного метаболизма под влиянием аналогов эндогенных риуляторных веществ может отражать воспроизведение естественных гипобиотических приспособительных реакций организма, полезных в условиях чрезмерного действия повреждающих факторов.

Таким образом, в повышении толерантности организма к острой гипоксии под влиянием а2-адренорецепторов и А-рецепторов первичным звеном являются метаболические сдвиги, вызывающие экономизацию расхода кислорода и снижение теплопродукции. Это сопровождается развитием гипотермии, потенцирующей состояние сниженного кислородного запроса. Вероятно, полезные в условиях гипоксии сдвиги метаболизма связаны с рецепторно обусловленными изменениями тканевого пула цАМФ и последующей регуляторной перестройкой окислительных процессов. Рецепторная специфичность защитных эффектов позволяет автору использовать новый рецепторный подход к поискам веществ-протекторов на основе скрининга агонистов а2-адренорецепторов и А-рецепторов.

В соответствии с генезом нарушений биоэнергетики с целью улучшения обмена, а, следовательно, и повышения устойчивости организма к гипоксии, используется:

  • оптимизация защитно-приспособительных реакций организма (она достигается, например, благодаря сердечным и вазоактивным средствам при шоке и умеренных степенях разрежения атмосферы);
  • уменьшение кислородного запроса организма и энергозатрат (большинство применяемых в этих случаях средств - общие анестетики, нейролептики, центральные релаксанты, - повышают лишь пассивную резистентность, снижая работоспособность организма). Активная резистентность к гипоксии может быть лишь в том случае, если препарат антигипоксант обеспечивает экономизацию окислительных процессов в тканях с одновременным повышением сопряженности окислительного фосфорилирования и продукции энергии в ходе гликолиза, ингибирования нефосфорилирующего окисления;
  • улучшение межорганного обмена метаболитами (энергией). Его можно добиться, например, путем активации гликонеогенеза в печени и почках. Таким образом поддерживается обеспечение этих тканей основным и наиболее выгодным при гипоксии энергетическйм субстратом-глюкозой, уменьшается количество лактата, пирувата и других продуктов обмена, вызывающих ацидоз и интоксикацию, уменьшение аутоингибирования гликолиза;
  • стабилизация структуры и свойств мембран клеток и субклеточных органелл (поддерживается способность митохондрий утилизировать кислород и осуществлять окислительное фосфорилирование, снижать явления разобщенности и восстанавливать дыхательный контроль).

Стабилизация мембран поддерживает способность клеток к утилизации энергии макроэргов - наиболее важный фактор сохранения активного транспорта электронов (К/Nа-АТФ-аза) мембран, и сокращений мышечных белков (АТФ-аз миозина, сохранение конформационных переходов актомиозина). Названные механизмы в той или иной мере реализуются в защитном действии антигипоксантов.

По данным исследований под влиянием гутимина уменьшается потребление кислорода на 25 - 30% и снижается температура тела на 1,5 - 2 °С без нарушения высшей нервной деятельности и физической выносливости. Препарат в дозе 100 мг/кг массы тела вдвое уменьшал процент гибели крыс после двусторонней перевязки каротидных артерий, обеспечивал в 60% случаев восстановление дыхания у кроликов, подвергнутых 15-минутной аноксии мозга. В постгипоксическом периоде у животных отмечены меньший кислородный запрос, уменьшение содержания в сыворотке крови свободных жирных кислот, лактацидемии. Механизм действия гутимина и его аналогов сложен как на клеточном, так и на системном уровнях. В реализации противогипоксического действия антигипоксантов имеет значение ряд моментов:

  • снижение кислородного запроса организма (органа), в основе которого, по-видимому, лежит экономизация использования кислорода с перераспределением его потока в интенсивно работающие органы;
  • Антигипоксанты и порядок их использования

    Антигипоксические средства, порядок их использования у больных в остром периоде инфаркта миокарда.

    Антигипоксант

    Форма выпуска

    Введение

    Доза
    мг/кг
    сут.

    Число применений в сут.

    ампулы, 1,5% 5 мл

    внутривенно, капельно

    ампулы, 7% 2 мл

    внутривенно, капельно

    Рибоксин

    ампулы, 2% 10 мл

    внутривенно, капельно, струйно

    Цитохром С

    фл., 4 мл (10 мг)

    внутривенно, капельно, внутримышечно

    Миддронат

    ампулы, 10% 5 мл

    внутривенно,
    струйно

    Пироцетам

    ампулы, 20% 5 мл

    внутривенно, капельно

    10-15 (до 150)

    табл., 200 мг

    перорально

    Оксибутират натрия

    ампулы, 20% 2 мл

    внутримышечно

    ампулы, 1 г

    внутривенно,
    струйно

    Солкосерил

    ампулы, 2мл

    внутримышечно

    Актовегин

    фл., 10% 250 мл

    внутривенно, капельно

    Убихинон
    (коэнзим Q-10)

    перорально

    таб., 250 мг

    перорально

    Триметазидин

    таб., 20 мг

    перорально

    По мнению Н. Ю. Семиголовского (1998) антигипоксанты являются действенными средствами метаболической коррекции у больных острым инфарктом миокарда. Их использование в дополнение к традиционным средствам интенсивной терапии сопровождается улучшением клинического течения, снижением частоты осложнений и летальности, нормализацией лабораторных показателей.

    Наиболее выраженными защитными свойствами у больных в остром периоде инфаркта миокарда обладают амтизол, пирацетам, оксибутират лития и убихинон, несколько менее активны - цитохром С, рибоксин, милдронат и олифен, не активны солкосерил, бемитил, триметазидин и асписол. Защитные возможности гипербарической оксигенации, примененной по стандартной методике, крайне незначительны.

    Эти клинические данные были подтверждены в экспериментальной работе Н. А. Сысолятина, В. В. Артамонова (1998) при изучении действия натрия оксибутирата и эмоксипина на функциональное состояние поврежденного адреналином миокарда в эксперименте. Введение как натрия оксибутирата, так и эмоксипина благоприятно повлияло на характер течения катехоламин-индуцированного патологического процесса в миокарде. Наиболее эффективным оказалось введение антигипоксантов через 30 мин после моделирования повреждения: натрия оксибутирата в дозе 200 мг/кг, а эмоксипина - в дозе 4 мг/кг.

    Натрия оксибутарат и эмоксипин обладают антигипоксантной и антиоксидантной активностью, что сопровождается кардиопротективным действием, регистрируемым методами энзимодиагностики и электрокардиографии.

    К проблеме СРО в человеческом организме привлечено внимание многих исследователей. Это обусловлено тем, что сбой в антиоксидантной системе и усиление СРО рассматривается как важное звено в развитии различных заболеваний. Интенсивность процессов СРО определяется деятельностью систем, генерирующих свободные радикалы, с одной стороны, и неферментной защитой, с другой. Адекватность защиты обеспечивается согласованностью действия всех звеньев этой сложной цепи. Среди факторов, защищающих органы и ткани от избыточного переокисления, способностью непосредственно реагировать с перекисными радикалами обладают только антиоксиданты, причем их влияние на общую скорость СРО значительно превышает эффективность воздействия других факторов, что определяет особую роль антиоксидантов в регуляции процессов СРО.

    Одним из важнейших биоантиоксидантов с чрезвычайно высокой антирадикальной активностью является витамин Е. В настоящее время под термином «витамин Е» объединяют довольно большую группу природных и синтетических токоферолов, растворимых только в жирах и органических растворителях и обладающих разной степенью биологической активности. Витамин Е принимает участие в жизнедеятельности большинства органов, систем и тканей организма, что в значительной степени обусловлено его ролью как важнейшего регулятора СРО.

    Следует отметить, что в настоящее время обоснована необходимость введения так называемого антиоксидантного комплекса витаминов (Е, А, С) с целью усиления антиоксидантной защиты нормальных клеток при ряде патологических процессов.

    Существенная роль в процессах свободнорадикального окисления также отводится селену, который является эссенциальным олигоэлементом. Недостаток селена в пище приводит к целому ряду заболеваний, прежде всего сердечно-сосудистой, снижает защитные свойства организма. Витамины-антиоксиданты увеличивают абсорбцию селена в кишечнике и способствуют усилению процесса антиоксидантной защиты.

    Важно использовать многочисленные пищевые добавки. Из последних наиболее эффективными оказались рыбий жир, масло вечерней примулы, семян черной смородины, новозеландские мидии, женьшень, чеснок, мед. Особое место занимают витамины и микроэлементы, среди которых в частности витамины Е, А и С и микроэлемент селен, что обусловлено их способностью влиять на процессы свободнорадикального окисления в тканях.

    , , , ,

    Важно знать!

    Гипоксия - кислородная недостаточностъ, состояние, возникающее при недостаточном снабжении тканей организма кислородом или нарушении его утилизации в процессе биологического окисления, сопровождает многие патологические состояния, являясь компонентом их патогенеза и клинически проявляясь гипоксическим синдромом, в основе которого лежит гипоксемия.


С.В.Оковитый 1 , Д.С.Суханов 2 , В.А.Заплутанов 1 , А.Н. Смагина 3

1 Санкт-Петербургская государственная химико-фармацевтическая академия
2 Северо-Западный государственный медицинский университет им. И.И.Мечникова
3 Санкт-Петербургский государственный медицинский университет им. акад. И.П. Павлова

Гипоксия представляет собой универсальный патологический процесс, сопровождающий и определяющий развитие самой разнообразной патологии. В наиболее общем виде гипоксию можно определить как несоответствие энергопотребности клетки энергопродукции в системе митохондриального окислительного фосфорилирования. Причины нарушения продукции энергии в гипоксической клетке неоднозначны: расстройства внешнего дыхания, кровообращения в легких, кислородтранспортной функции крови, нарушения системного, регионарного кровообращения и микроциркуляции, эндотоксемия. Вместе с тем в основе характерных для всех форм гипоксии нарушений лежит недостаточность ведущей клеточной энергопродуцирующей системы – митохондриального окислительного фосфорилирования. Непосредственной же причиной этой недостаточности при подаляющем большинстве патологических состояний является снижение поступления кислорода в митохондрии. В результате развивается угнетение митохондриального окисления. В первую очередь подавляется активность NAD-зависимых оксидаз (дегидрогеназ) цикла Кребса при начальном сохранении активности FAD-зависимой сукцинат-оксидазы, ингибирующейся при более выраженной гипоксии.
Нарушение митохондриального окисления приводит к угнетению сопряженного с ним фосфорилирования и, следовательно, вызывает прогрессирующий дефицит АТФ – универсального источника энергии в клетке. Дефицит энергии составляет суть любой формы гипоксии и обусловливает качественно однотипные метаболические и структурные сдвиги в различных органах и тканях. Уменьшение концентрации АТФ в клетке приводит к ослаблению ее ингибирующего влияния на один из ключевых ферметнов гликолиза – фосфофруктокиназу. Активирующийся при гипоксии гликолиз частично компенсирует недостаток АТФ, однако быстро вызывает накопление лактата и развитие ацидоза с результирующим аутоингибированием гликолиза.

Гипоксия приводит к комплексной модификации функций биологических мембран, затрагивающей как липидный бислой, так и мембранные ферменты. Повреждаются или модифицируются главные функции мембран: барьерная, рецепторная, каталитическая. Основными причинами этого явления служат энергодефицит и активация на его фоне фосфолиполиза и перекисного окисления липидов (ПОЛ). Распад фосфолипидов и ингибирование их синтеза ведут к повышению концентрации ненасыщенных жирных кислот, усилению их перекисного окисления. Последнее стимулируется в результате подавления активности антиоксидантных систем из-за распада и торможения синтеза их белковых компонентов, и в первую очередь, супероксиддисмутазы (СОД), каталазы (КТ), глутатионпероксидазы (ГП), глутатионредуктазы (ГР) и др.

Энергодефицит при гипоксии способствует накоплению Са 2+ в цитоплазме клетки, поскольку блокируются энергозависимые насосы, выкачивающие ионы Са 2+ из клетки или закачивающие его в цистерны эндоплазматического ретикулума, а накопление Са 2+ активирует Са 2+ -зависимые фосфолипазы. Один из защитных механизмов, препятствующий накоплению Са 2+ в цитоплазме, заключается в захвате Са 2+ митохондриями. При этом повышается метаболическая активность митохондрий, направленная на поддержание постоянства внутримитохондриального заряда и перекачку протонов, что сопровождается увеличением расхода АТФ. Замыкается порочный круг: недостаток кислорода нарушает энергетический обмен и стимулирует свободнорадикальное окисление, а активация свободнорадикальных процессов, повреждая мембраны митохондрий и лизосом, усугубляет энергодефицит, что, в итоге, может вызвать необратимые повреждения и гибель клетки.

В отсутствии гипоксии некоторые клетки (например, кардиомиоциты) получают АТФ за счет расщепления ацетил-КоА в цикле Кребса, и основными источниками энергии выступают глюкоза и свободные жирные кислоты (СЖК). При адекватном кровоснабжении 60-90% ацетил-КоА образуется за счет окисления свободных жирных кислот, а остальные 10-40% - за счет декарбоксилирования пировиноградной кислоты (ПВК). Примерно половина ПВК внутри клетки образуется за счет гликолиза, а вторая половина – из лактата, поступающего в клетку из крови. Катаболизм СЖК по сравнению с гликолизом требует большего количества кислорода для синтеза эквивалентного числа АТФ. При достаточном поступлении кислорода в клетку глюкозная и жирнокислотная системы энергообеспечения находятся в состоянии динамического равновесия. В условиях гипоксии количество поступающего кислорода недостаточно для окисления жирных кислот. В результате в митохондриях происходит накопление недоокисленных активированных форм жирных кислот (ацилкарнитин, ацил-КоА), которые способны блокировать адениннуклеотидтранслоказу, что сопровождается подавлением транспорта произведенного в митохондриях АТФ в цитозоль и повреждать мембаны клеток, оказываю детергентное действие.

Для улучшения энергетического статуса клетки могут быть использованы несколько подходов:

  • повышение эффективности использования митохондриями дефицитного кислорода вследствие предупреждения разобщения окисления и фосфорилирования, стабилизации мембран митохондрий
  • ослабление ингибирования реакций цикла Кребса, особенно поддержание активности сукцинатоксидазного звена
  • возмещение утраченых компонентов дыхательной цепи
  • формирование искусственных редокс-систем, шунтирующих перегруженную электронами дыхательную цепь
  • экономизация использования кислорода и снижение кислородного запроса тканей, либо ингибирование путей его потребления, не являющихся необходимыми для экстренного поддержания жизнедеятельности в критических состояниях (нефосфорилирующее ферментативное окисление – терморегуляторное, микросомальное и др., неферментативное окисление липидов)
  • увеличение образования АТФ в ходе гликолиза без увеличения продукции лактата
  • снижение расходования АТФ на процессы, не определяющие экстренное поддержание жизнедеятельности в критических ситуациях (различные синтетические востановительные реакции, функционирование энергозависимых транспортных систем и т.д.)
  • введение извне высокоэнергетических соединений

В настоящее время одним из путей реализации этих подходов является применение препаратов – антигипоксантов.

Классификация антигипоксантов (Оковитый С.В., Смирнов А.В., 2005)

  1. Ингибиторы окисления жирных кислот
  2. Сукцинатсодержащие и сукцинатобразующие средства
  3. Естественные компоненты дыхательной цепи
  4. Искусственные редокс-системы
  5. Макроэргические соединения

Пионером в разработке антигипоксантов в нашей стране была кафедра фармакологии Военно-медицинской академии. Еще в 60-х годах на ней под руководством профессора В.М.Виноградова были созданы первые антигипоксанты с поливалентным действием: гутимин, а затем амтизол,активно изучавшиеся впоследствие под руководством профессоров Л.В.Пастушенкова, А.Е.Александровой, А.В.Смирнова. Эти препараты показали высокую эффективность, но, к сожалению, в настоящее время они не производятся и не применяются в медицинской практике.

1. Ингибиторы окисления жирных кислот

Средствами, близкими по фармакологическим эффектам (но не по строению) к гутимину и амтизолу, являются препараты – ингибиторы окисления жирных кислот, использующиеся в настоящее время преимущественно в комплексной терапии ишемической болезни сердца. Среди них выделяют прямые ингибиторы карнитин-пальмитоилтрансферазы-I (пергекселин, этомоксир), парциальные ингибиторы окисления жирных кислот (ранолазин, триметазидин, мельдоний), и непрямые ингибиторы окисления жирных кислот (карнитин).

Пергекселин и этомоксир способны угнетать активность карнитин-пальмитоилтрансферазы-I, нарушая таким образом перенос длинноцепочечных ацильных групп на карнитин, что приводит к блокаде образования ацилкарнитина. Вследствие этого падает внутримитохондриальный уровень ацил-КоА и уменьшается NAD Н 2 /NAD соотношение, что сопровождается повышением активности пируватдегидрогеназы и фосфофруктокиназы, а следовательно стимуляцией окисления глюкозы, что яввляется более энергетически выгодным по сравнению с окислением жирных кислот.

Пергекселин назначается перорально в дозах 200-400 мг в сут длительностью до 3-х месяцев. Препарат может комбинироваться с антиангинальными препаратами, однако, его клиническое применение ограничивается неблагоприятными эффектами – развитием нейропатии и гепатотоксичностью. Этомоксир используют в дозе 80 мг в сут длительностью до 3-х мес, однако, вопрос о безопасности препарата окончательно не решен, учитывая тот факт, что он является необратимым ингибитором карнитин-пальмитоилтрансферазы-I.

Триметазидин, ранолазин и мельдоний относят к парциальным ингибиторам окисления жирных кислот. Триметазидин (Предуктал) блокирует 3-кетоацилтиолазу, один из ключевых ферментов окисления жирных кислот. В результате тормозится окисление в митохондриях всех жирных кислот - как длинноцепочечных (количество атомов углерода больше 8), так и короткоцепочечных (количество атомов углерода меньше 8), однако, никаким образом не изменяется накопление активированных жирных кислот в митохондриях. Под влиянием триметазидина увеличивается окисление пирувата и гликолитическая продукция АТФ, уменьшается концентрация АМФ и АДФ, тормозится накопление лактата и развитие ацидоза, подавляется свободнорадикальное окисление.

В настоящее время препарат применяется при ишемической болезни сердца, а также других заболеваниях, в основе которых лежит ишемия (например, при вестибулокохлеарной и хориоретинальной патологии). Получены свидетельства эффективности препарата при рефрактерной стенокардии. В комплексном лечении ИБС препарат назначается в виде лекарственной формы с замедленным высвобождением в разовой дозе 35 мг 2 раза в день, продолжительность курса может достигать 3 мес.

В европейском рандомизированном клиническом исследовании (РКИ) триметазидина (TEMS) у больных со стабильной стенокардией применение препарата способствовало уменьшению частоты и продолжительности эпизодов ишемии миокарда на 25%, что сопровождалось повышением толерантности больных к физической нагрузке. Назначение препарата в сочетании с?-адреноблокаторами (БАБ), нитратами и блокаторами кальциевых каналов (БКК) способствовует повышению эффективности антиангинальной терапии.

Раннее включение триметазидина в комплексную терапию острого периода инфаркта миокарда (ИМ) способствует ограничению размера некроза миокарда, предотвращает развитие ранней постинфарктной дилатации левого желудочка, увеличивает электрическую стабильность сердца, не влияя на параметры ЭКГ и вариабельность сердечного ритма. В то же время, в рамках крупного РКИ EMIР–FR, не подтвердилось ожидаемое положительное влияние короткого курса внутривенного введения препарата на долгосрочную, госпитальную смертность и частоту комбинированной конечной точки у больных с ИМ. Однако, триметазидин достоверно снижал частоту затяжных ангинозных приступов и рецидивов ИМ у больных, перенесших тромболизис.

У пациентов, перенесших ИМ, дополнительное включение триметазидина с модифицированным высвобождением в стандартную терапию позволяет достичь уменьшения числа приступов стенокардии, сокращения применения короткодействующих нитратов и повысить качество жизни (исследование ПРИМА).

В небольшом РКИ получены первые данные об эффективности триметазидина у больных с ХСН. Показано, что длительный прием препарата (20 мг 3 раза в сутки на протяжении примерно13 мес) улучшает функциональный класс и сократительную функцию левого желудочка у больных сердечной недостаточностью. В российском исследовании ПРЕАМБУЛА у больных с сочетанной патологией (ИБС+ХСН II-III ФК) триметазидин (35 мг 2 раза в сут) продемонстрировал способность несколько уменьшать ФК ХСН, улучшать клиническую симптоматику и переносимость физической нагрузки у таких больных. Однако, для окончательного определения места триметазидина для лечения больных с ХСН требуются дополнительные исследования.

Побочные эффекты при приеме препарата редки (дискомфорт в области желудка, тошнота, головная боль, головокружения, бессонница).

Ранолазин (Ранекса) также является ингибитором окисления жирных кислот, хотя, его биохимическая мишень пока не установлена. Он оказывает антиишемический эффект вследствие ограничения использования в качестве энергетического субстрата СЖК и повышения использования глюкозы. Это приводит к образованию большего количества АТФ на единицу потребленного кислорода.

Ранолазин обычно используется в комбинированной терапии больных ИБС вместе с антиангинальными препаратами. Так, в РКИ ERICA показана антиангинальная эффективность ранолазина у больных со стабильной стенокардией, имевших приступы, несмотря на прием максимально рекомендуемой дозы амлодипина. У женщин влияние ранолазина на тяжесть симптомов стенокардии и толерантность к нагрузке ниже, чем у мужчин.
Результаты РКИ MERLIN-TIMI 36, проводившегося для уточнения влияния ранолазина (внутривенно, затем перорально 1 г в сут) на частоту сердечно-сосудистых событий у больных с острым коронарным синдромом продемонстрировали, что ранолазин уменьшает выраженность клинических симптомов, однако не влияет на долгосрочный риск смерти и ИМ у пациентов с ИБС.

В этом же исследовании была обнаружена антиаритмическая активность ранолазина у больных ОКС без подъема сегмента ST в течение первой недели после их госпитализации (уменьшение числа эпизодов желудочковой и суправентрикулярной тахикардии). Предполагается, что этот эффект ранолазина связан с его способностью ингибировать позднюю фазу натриевого потока внутрь клетки во время реполяризации (поздний ток I Na), что вызывает снижение концентрации внутриклеточного Na + и перегрузки кардиомиоцитов Ca 2+ , предотвращая развитие как механической дисфункции миокарда, сопровождающей ишемию, так и к его электрической нестабильности.

Ранолазин обычно не вызывает выраженных побочных эффектов и не оказывает существенного влияния на ЧСС и АД, однако при применении относительно высоких доз и при комбинировании с БАБ или БКК каналов могут наблюдаются умеренно выраженные головные боли, головокружения, астенические явления. Кроме того, возможность увеличения препаратом интервала QT, накладывает определенные ограничения на его клиническое использование.

Мельдоний (Милдронат) обратимо ограничивает скорость биосинтеза карнитина из его предшественника – γ-бутиробетаина. Вследствие этого нарушается карнитин-опосредованный транспорт длинноцепочечных жирных кислот через мембраны митохондрий без воздействия на метаболизм короткоцепочечных жирных кислот. Это означает, что мельдоний практически не способен оказывать токсического действия на дыхание митохондрий, так как не может полностью блокировать окисления всех жирных кислот. Частичная блокада окисления жирных кислот включает альтернативную систему производства энергии - окисление глюкозы, которая значительно эффективнее (на 12%) использует кислород для синтеза АТФ. Кроме того, под влиянием мельдония повышается концентрация γ-бутиробетаина, способного индуцировать образование NO, что приводит к уменьшению общего периферического сопротивления сосудов (ОПСС).

Мельдоний, так и триметазидин, при стабильной стенокардии уменьшает частоту приступов стенокардии, повышает толерантность больных к физической нагрузке и снижает потребление короткодействующего нитроглицерина. Препарат малотоксичен, не вызывает существенных побочных эффектов, однако, при его использовании могут отмечаться кожный зуд, высыпания, тахикардия, диспепсические явления, психомоторное возбуждение, снижение АД.

Карнитин (витамин В т) является эндогенным соединением и образуется из лизина и метионина в печени и почках. Он играет важную роль в переносе длинноцепочечных жирных кислот через внутреннюю мембрану митохондрий, в то время как активация и проникновение низших жирных кислот происходит без картинитина. Кроме того, карнитин играет ключевую роль в образовании и регуляции уровня ацетил-КоА.

Физиологические концентрации карнитина обладают насыщающим действием на карнитин-пальмитоилтрансферазу I, а увеличение дозы препарата не повышает транспорт ацильных групп жирных кислот в митохондрии при участии данного фермента. Однако, это приводит к активации карнитин-ацилкарнитинтранслоказы (которая не насыщается физиологическими концентрациями карнитина) и падению внутримитохондриальной концентрации ацетил-КоА, который транспортируется в цитозоль (через образование ацетилкарнитина). В цитозоле избыток ацетил-КоА подвергается воздействию ацетил-КоА-карбоксилазы с образованием малонил-КоА, который обладает свойствами непрямого ингибитора карнитин-пальмитоилтрансферазы I. Уменьшение же интрамитохондриального ацетил-КоА коррелирует с повышением уровня пируватдегидрогеназы, которая обеспечивает окисление пирувата и ограничивает продукцию лактата. Таким образом, антигипоксическое действие карнитина связано с блокадой транспорта жирных кислот в митохондрии, является дозозависимым и проявляется при назначении высоких доз препарата, в то время как низкие дозы обладают лишь специфическим витаминным действием.

Одно из самых больших РКИ с применением карнитина – CEDIM. При проведении его было показано, что длительная терапия карнитином в достаточно высоких дозах (9 г 1 раз в сут 5 дней с последующим переходом на пероральный прием 2 г 3 раза в сут 12 мес) у больных с ИМ ограничивает дилатацию левого желудочка. Кроме того положительный эффект от применения препарата получен при тяжелых черепно-мозговых травмах, гипоксии плода, отравлении угарным газом и т.д., однако большая вариабельность курсов применения и не всегда адекватная дозовая политика затрудняют интерпретацию результатов таких исследований.

2. Сукцинатсодержащие и сукцинатобразующие средства

2.1. Сукцинатсодержащие средства
Практическое использование в качестве антигипоксантов находят препараты, поддерживающие при гипоксии активность сукцинатоксидазного звена. Это FAD-зависимое звено цикла Кребса, позднее угнетающееся при гипоксии по сравнению с NAD-зависимыми оксидазами, может определенное время подерживать энергопродукцию в клетке при условии наличия в митохондриях субстрата окисления в данном звене – сукцината (янтарной кислоты). Сравнительный состав препаратов приведен в табл.1.

Таблица 1.
Сравнительный состав сукцинатсодержащих препаратов

Компонент препарата Реамберин
(400 мл)
Ремаксол
(400 мл)
Цитофлавин
(10 мл)
Оксиметилэтилпиридина сукцинат (5 мл)
Парентеральные формы
Янтарная кислота 2112 мг 2112 мг 1000 мг -
- - - 250 мг
N-метилглюкамин 3490 мг 3490 мг 1650 мг -
Никотинамид - 100 мг 100 мг -
Инозин - 800 мг 200 мг -
Рибофлавина мононуклеотид - - 20 мг -
Метионин - 300 мг - -
NaCl 2400 мг 2400 мг - -
KCl 120 мг 120 мг - -
MgCl 48 мг 48 мг - -
Пероральные формы
Янтарная кислота - - 300 мг 100-150 мг
Оксиметилэтилпиридина сукцинат - - - -
Никотинамид - 25 мг -
Инозин - 50 мг -
Рибофлавина мононуклеотид - 5 мг -

В последние годы установлено, что янтарная кислота реализует свои эффекты не только как интермедиант различных биохимических циклов, но и как лиганд орфанных рецепторов (SUCNR1, GPR91), расположенных на цитоплазматической мембране клеток и сопряженных с G-белками (G i /G o и G q). Эти рецепторы обнаружены во многих тканях, впервую очередь в почках (эпителий проксимальных канальцев, клетки юкстагломерулярного аппарата), а также в печени, селезенке, сосудах. Активация этих рецепторов сукцинатом, присутствующем в сосудистом русле, увеличивает реабсорбцию фосфата и глюкозы, стимулирует глюконеогенез, повышает артериальное давление (через непрямое увеличеие образования ренина). Некоторые эффекты янтарной кислоты представлены на рис.1.

Одним из препаратов, созданных на основе янтарной кислоты является реамберин – представляющий собой сбалансированный полиионный раствор с добавлением смешанной натрий N-метилглюкаминовой соли янтарной кислоты (до 15 г/л).

Инфузия реамберина сопровождается повышением рН и буферной емкости крови, а также ощелачиванием мочи. В дополнение к антигипоксантной активности, реамберин обладает дезинтоксикационным (при различных интоксикациях, в частности, алкоголем, противотуберкулезными препаратами) и антиоксидантным (за счет активации ферментативного звена антиоксидантной системы) действием. Прерат используется при разлитом перитоните с синдромом полиорганной недостаточности, тяжелой сочетанной травме, острых нарушениях мозгового кровообращения (по ишемическому и геморрагическому типу), операциях прямой реваскуляризации на сердце.

Применение реамберина у больных с многососудистым поражением коронарных артерий при аорто-маммарно-коронарном шунтировании с пластикой левого желудочка и/или протезированием клапанов и использованием экстракорпорального кровообращения в интраоперационом периоде позволяет снизить частоту различных осложнений в раннем послеоперационном периоде (в том числе реинфарктов, инсультов, энцефалопатии).

Использование реамберина на этапе выведения из анестезии приводит к укорочению периода пробуждения пациентов, сокращению времени восстановления двигательной активности и адекватного дыхания, ускорению восстановления функций головного мозга.

Показана эффективность реамберина (сокращение длительности и тяжести основных клинических проявлений заболевания) при инфекционных заболеваниях (грипп и ОРВИ, осложненные пневмонией, острые кишечные инфекции), обусловленная его высоким детоксицирующим и непрямым антиоксидантным действием.
Побочных эффектов у препарата немного, в основном это кратковременное чувство жара и покраснение верхней части тела. Противопоказан реамберин при состояниях после черепно-мозговых травм, сопровождающихся отеком мозга.

Комбинированным антигипоксическим действием обладает препарат цитофлавин (янтарная кислота, 1000 мг + никотинамид, 100 мг + рибофлавина мононуклеотид, 20 мг + инозин, 200 мг). Основное антигипоксическое действие янтарной кислоты в данной рецептуре дополняется рибофлавином, способным за счет своих коферментных свойств увеичивать активность сукцинатдегидрогеназы и обладающим непрямым антиоксидантным действием (за счет восстановления окисленного глутатиона). Предполагается, что входящий в состав никотинамид активирует NAD-зависимые ферментые системы, однако этот эффект менее выражен, чем у NAD. За счет инозина достигается увеличение содержания общего пула пуриновых нуклеотидов, необходимых не только для ресинтеза макроэргов (АТФ и ГТФ), но и вторичных мессенджеров (цАМФ и цГМФ), а также нуклеиновых кислот. Определенную роль может играть способность инозина несколько подавлять активность ксантиноксидазы, уменьшая тем самым продукцию высокоактивных форм и соединений кислорода. Однако, по сравнению с другими компонентами препарата, эффекты инозина отсрочены во времени.

Основное применение цитофлавин нашел при гипоксических и ишемических повреждениях ЦНС (ишемический инсульт, токсическая, гипоксическая и дисциркуляторная энцефалопатия), а также в терапии различных патологических состояний, в том числе в комплексном лечении больных, находящихся в критическом состоянии. Так, применение препарата обеспечивает сниже¬ние летальности у пациентов с острым нарушением мозгового кровообращения до 4,8-9,6%, против 11,7-17,1% у больных, не получавших препарат.

В достаточно крупном РКИ, включавшем 600 пациентов с хронической ишемией головного мозга, цитофлавин продемонстрировал способность уменьшать когнитивно-мнестические расстройства и неврологические нарушения; восстанавливать качество сна и повышать качество жизни.

Клиническое применение цитофлавина для профилактики и лечения постгипоксических поражений ЦНС у недоношенных новорожденных, перенесших церебральную гипоксию/ишемию, позволяет снизить частоту и выраженность неврологических осложнений (тяжелые формы перивентрикулярных и внутрижелудочковых кровоизлияний, перивентрикулярные лейкомаляции). Использование цитофлавина в остром периоде перинатального поражения ЦНС позволяет достичь более высоких индексов психического и моторного развития детей на первом году жизни. Показана эффективность препарата у детей при бактериальных гнойных менингитах и вирусных энцефалитах.

Побочные эфекты цитофлавина включают гипогликемию, гиперурикемию, гипертензивные реакции, инфузионные реакции при быстром струйном введении (чувство жара, сухость во рту).

Ремаксол – оригинальный препарат, сочетающий свойства сбалансированного полиионного раствора (в состав которого дополнительно введены метионин, рибоксин, никотинамид и янтарная кислота), антигипоксанта и гепатоторопного средства.

Антгипоксический эффект ремаксола сходен с таковым реамберина. Янтарная кислота оказывает антигипоксическое действие (поддержание активности сукцинатоксидазного звена) и непрямое антиоксидантное (сохраниение пула восстановленного глутатиона), а никотинамид активирует NAD-зависимые ферментые системы. Благодаря этому происходит как активация синтетических процессов в гепатоцитах, так и поддержание их энергетического обеспечения. Кроме того, предполагается, что янтарная кислота может выступать как паракринный агент, выделяемый поврежденными гепатоцитами (например, при ишемии), оказывающий воздействие на перициты (клетки Ито) в печени через SUCNR1 рецепторы. Это обусловливает активацию перицитов, обеспечивающих синтез компонентов внеклеточного матрикса, участвующих в метаболизме и регенерации клеток печеночной паренхимы.

Метионин активно включается в синтез холина, лецитина и других фосфолипидов. Кроме того, под влиянием метионин аденозилтрансферазы из метионина и АТФ образуется в организме S-аденозилметионин (SAM).
Эффект инозина был рассмотрен выше, однако, стоит упомянуть о том, что он обладает и свойствами нестероидного анаболика, ускоряющего репаративную регенерацию гепатоцитов.

Наиболее заметное действие ремаксол оказывает на проявления токсемии, а также цитолиза и холестаза, что позволяет его использовать в качестве универсального гепатотропного препарата при различных поражениях печени как в лечебных, так и в лечебно-профилактических схемах. Эффективность препарата установлена при вирусных (ХВГС), лекарственных (противотуберкулезными агентами) и токсических (этанолом) поражениях печени.

Подобно экзогенно вводимому SAM, ремаксол обладает мягким антидепрессивным и антиастеническим эффектом. Кроме того, при острых алкогольных интоксикациях препарат снижает частоту развития и длительность алкогольного делирия, сокращает сроки пребывания больных в ОРИТ и общую продолжительность лечения.

В качестве комбинированного сукцинатсодержащего препарата может рассматриваться оксиметилэтилпиридина сукцинат (мексидол, мексикор) - представляющий собой комплекс сукцината с антиоксидантом эмоксипином, обладающим относительно слабой антигипоксической активностью, но увеличивающим транспорт сукцината через мембраны. Подобно эмоксипину, оксиметилэтилпиридина сукцинат (ОМЭПС) является ингибитором свободнорадикальных процессов, но оказывает более выраженное антигипоксическое действие. Основные фармакологические эффекты ОМЭПС можно суммировать следующим образом:

  • активно реагирует с перекисными радикалами белков и липидов, уменьшает вязкость липидного слоя клеточных мембран
  • оптимизирует энергосинтезирующие функции митохондрий в условиях гипоксии
  • оказывает модулирующее действие на некоторые мембрансвязанные ферменты (фосфодиэстеразу, аденилатциклазу), ионые каналы, улучшает синаптическую передачу
  • блокирует синтез некоторых простагландинов, тромбоксана и лейкотриенов
  • улучшает реологические свойства крови, подавляет агрегацию тромбоцитов

Основные клинические испытания ОМЭПС были проведены по изучению его эффективности при расстройствах ишемического генеза: в остром периоде ИМ, ИБС, острых нарушениях мозгового кровообращения, дисциркуляторной энцефалопатии, вегетососудистой дистонии, атеросклеротических нарушениях функций мозга и других состояниях, сопровождающихся гипоксией тканей.

Максимальная суточная доза не должна превышать 800 мг, разовая – 250 мг. Обычно ОМЭПС хорошо переносится. У некоторых больных возможно появление тошноты и сухости во рту.

Продолжительность приема и выбор индивидуальной дозы зависят от тяжести состояния больного и эффективности терапии ОМЭПС. Для вынесения окончательного суждения об эффективности и безопасности препарата необходимо проведение крупных РКИ.

2.2. Сукцинатобразующие средства

Со способностью превращаться в сукцинат в цикле Робертса (γ-аминобутиратном шунте) связано и противогипоксическое действие оксибутирата натрия, хотя оно и не очень выражено. Трансаминирование γ-аминомасляной кислоты (ГАМК) с α-кетоглутаровой кислотой является основным путем метаболической деградации ГАМК. Образующийся по ходу нейрохимической реакции полуальдегид янтарной кислоты с помощью cукцинатсемиальдегиддегидрогеназы при участии NAD окисляется в янтарную кислоту, которая включается в цикл трикарбоновых кислот. Этот процесс протекает преимущественно в нервной ткани, однако, в условиях гипоксии он может реализовываться и в других тканях.

Такое дополнительное действие весьма полезно при использовании оксибутирата натрия (ОН) в качестве общего анестетика. В условиях тяжелой циркуляторной гипоксии оксибутират (в высоких дозах) в очень короткие сроки успевает запустить не только клеточные адаптационные механизмы, но и подкрепить их перестройкой энергетического обмена в жизненно важных органах. Поэтому не стоит ожидать сколько-нибудь заметного эффекта от введения малых доз анестетика.

Благоприятное действие ОН при гипоксии обусловлено тем, что он активирует энергетически более выгодный пентозный путь обмена глюкозы с ориентацией его на путь прямого окисления и образования пентоз, входящих в состав АТФ. Помимо этого, активация пентозного пути окисления глюкозы создает повышенный уровень NADP Н, как необходимого кофактора синтеза гормонов, что особенно важно для функционирования надпочечников. Изменение гормонального фона при введении препарата сопровождается повышением в крови содержания глюкозы, которая дает максимальный выход АТФ на единицу использованного кислорода и способна поддерживать продукцию энергии в условиях недостатка кислорода.

Мононаркоз ОН представляет собой минимально токсичный вид общей анестезии и поэтому имеет наибольшую ценность у больных в состоянии гипоксии различной этиологии (тяжелая острая легочная недостаточность, кровопотеря, гипоксические и токсические повреждения миокарда). Он также показан у пациентов с различными вариантами эндогенной интоксикации, сопровождающимися оксидативным стрессом (септические процессы, разлитой перитонит, печеночная и почечная недостаточность).

Побочные эффекты при применении препаратов редки, в основном при внутривенном введении (двигательное возбуждение, судорожные подергивания конечностей, рвота). Эти неблагоприятные явления при применении оксибутирата могут быть предупреждены во время премедикации метоклопрамидом или купированы прометазином (дипразином).

С обменом сукцината частично связан также противогипоксический эффект полиоксифумарина , представляющего собой коллоидный раствор для внутривенного введения (полиэтиленгликоль с добавлением NaCl, MgCl, KI, а также фумарата натрия). Полиоксифумарин содержит один из компонентов цикла Кребса - фумарат, хорошо проникающий через мембраны и легко утилизируемый в митохондриях. При наиболее жесткой гипоксии происходит обращение терминальных реакций цикла Кребса, то есть они начинают протекать в обратном направлении, и фумарат превращается в сукцинат с накоплением последнего. При этом обеспечивается сопряженная регенерация окисленного NAD из его восстановленной при гипоксии формы, и, следовательно, возможность энергопродукции в NAD-зависимом звене митохондриального окисления. При уменьшении глубины гипоксии направление терминальных реакций цикла Кребса меняется на обычное, при этом накопившийся сукцинат активно окисляется в качестве эффективного источника энергии. В этих условиях и фумарат преимущественно окисляется после превращения в малат.

Введение полиоксифумарина приводит не только к постинфузионной гемодилюции, в результате которой уменьшается вязкость крови и улучшаются ее реологические свойства, но и повышению диуреза и проявлению дезинтоксикационного действия. Входящий в состав фумарат натрия оказывает антигипоксическое действие.

Кроме того, полиоксифумарин используется в качестве компонента перфузионной среды для первичного заполнения контура аппарата искусственного кровообращения (11%-30% объема) при операциях коррекции пороков сердца. При этом включение препарата состав перфузата положительно влияет на стабильность гемодинамики в постперфузионном периоде, снижает потребность в инотропной поддержке.

Конфумин - 15% раствор фумарата натрия для инфузий, обладающий заметным антигипоксическим действием. Обладает определенным кардиотоническим и кардиопротекторным действием. Используется при различных гипоксических состояниях (гипоксия при нормоволемии, шок, тяжелые интоксикации), в том числе в тех случаях, когда противопоказано введение больших объемов жидкости и другие инфузионные препараты с антигипоксическим действием не могут быть использованы.

3. Естественные компоненты дыхательной цепи

Практическое применение нашли и антигипоксанты, представляющие собой естественные для организма компоненты дыхательной цепи митохондрий, участвующие в переносе электронов. К ним относится цитохром С(Цитомак) и убихинон (Убинон). Даные препараты, в сущности, выполняют функцию заместительной терапии, поскольку при гипоксии из-за структурных нарушений митохондрии теряют часть своих компонентов, включая переносчики электронов.

В экспериментальных исследованиях доказано, что экзогенный цитохром С при гипоксии проникает в клетку и митохондрии, встраивается в дыхательную цепь и способствует нормализации энергопродуцирующего окислительного фосфорилирования.

Цитохром С может быть полезным средством комбинированной терапии критических состояний. Показана высокая эффективность препарата при отравлении снотворными средствами, окисью углерода, токсических, инфекционных и ишемических повреждениях миокарда, пневмониях, нарушениях мозгового и периферического кровообращения. Применяют также при асфиксии новорожденных и инфекционном гепатите. Обычная доза препарата составляет 10-15 мг внутривенно, внутримышечно или внутрь (1-2 раза в день).

Комбинированным препаратом, содержащим цитохром С является энергостим . В его состав помимо цитохрома С (10 мг) входят никотинамиддинуклеотид (0,5 мг) и инозин (80 мг). Данная комбинация обладает аддитивным эффектом, где эффекты NAD и инозина дополняют антигипоксическое действие цитохрома С. При этом экзогенно вводимый NAD несколько уменьшает дефицит цитозольного NAD и восстанавливает активность NAD–зависимых дегидрогеназ, участвующих в синтезе АТФ, способствует интенсификации работы дыхательной цепи. За счет инозина достигается увеличение содержания общего пула пуриновых нуклеотидов. Препарат предлагается применять при ИМ, а также при состояниях, сопровождающихся развитием гипоксии, однако доказательная база на настоящий момент достаточно слабая.

Убихинон (кофермент Q10) - кофермент, широко распространенный в клетках организма, представляющий собой производное бензохинона. Основная часть внутриклеточного убихинона сконцентрирована в митохондриях в окисленной (СоQ), восстановленной (СоН2, QH2) и полувосстановленной формах (семихинон, СоН, QH). В небольшом количестве он присутствует в ядрах, эндоплазматическом ретикулуме, лизосомах, аппарате Гольджи. Как и токоферол, убихинон в наибольших количествах содержится в органах с высокой интенсивностью метаболизма – сердце, печени, почках.

Он является переносчиком электронов и протонов от внутренней к наружной стороне мембраны митохондрий, компонентом дыхательной цепи, а также способен выполнять роль антиоксиданта.

Убихинон (Убинон) в основном может быть использован в комплексной терапии больных ишемической болезнью сердца, при ИМ, а также у пациентов с хронической сердечной недостаточностью (ХСН).
При использовании препарата у больных с ИБС улучшается клиническое течение заболевания (преимущественно у больных I-II функционального класса), снижается частота приступов; увеличивается толерантность к физической нагрузке; повышается в крови содержание простациклина и снижается тромбоксана. Однако, необходимо учитывать, что сам препарат не приводит к увеличению коронарного кровотока и не способствует уменьшению кислородного запроса миокарда (хотя и может давать небольшой брадикардитический эффект). Вследствие этого антиангинальный эффект препарата проявляется через некоторое, иногда довольно значительное время (до 3-х мес).

В комплексной терапии больных с ИБС убихинон может сочетаться с БАБ и ингибиторами ангиотензинпревращающего фермента. При этом снижается риск развития левожелудочковой сердечной недостаточности, нарушений сердечного ритма. Препарат малоэффективен у больных с резким снижением толерантности к физической нагрузке, а также при наличии высокой степени склеротического стенозирования коронарных артерий.

При ХСН использование убихинона в сочетании с дозированной физической нагрузкой (особенно в высоких дозах, до 300 мг в сут) позволяет увеличить мощность сокращений левого желудочка и улучшить эндотелиальную функцию. Достоверное положительное влияние препарат оказывает на функциональный класс больных с ХСН и число госпитализаций.

Следует отметить, что эффективность убихинона при ХСН в значительной мере зависит от его плазменного уровеня, определяемого, в свою очередь, метаболическими потребностями различных тканей. Предполагается, что упомянутые выше положительные эффекты препарата проявляются только при превышении концентрации коэнзима Q10 в плазме свыше 2,5 мкг/мл (нормальная концентрация примерно 0,6-1,0 мкг/мл). Этот уровень достигается при назначении высоких доз препарата: прием 300 мг в сут коэнзима Q10 дает 4-х кратное повышение его уровня в крови от исходного, но не при использовании низких доз (до 100 мг в сут). Поэтому, хотя ряд исследований при ХСН выполнялся с назначением пациентам убихинона в дозах 90-120 мг в сут, по-видимому, наиболее оптимальным при данной патологии следует считать использование высокодозовой терапии.

Согласно результатам небольшого пилотного исследования лечение убихиноном редуцирует выраженность миопатических симптомов у пациентов, получающих статины, уменьшает мышечную боль (на 40%) и улучшает ежедневную активность (на 38%) в отличие от токоферола, оказавшегося неэффективным.

Препарат обычно хорошо переносится. Иногда возможны тошнота и расстройства стула, беспокойство и инсомнии, в этом случае прием препарата прекращают.

В качестве производного убихинона может рассматриваться идебенон, который по сравнению с коэнзимом Q10 обладает меньшим размером (в 5 раз), меньшей гидрофобностью и большей антиоксидантной активностью. Препарат проникает через гемато-энцефалический барьер и в значительных количествах распределяется в ткани мозга. Механизм действия идебенона сходен с таковым убихинона. Наряду с антигипоксическим и антиоксидантным эффектами он оказывает мнемотропное и ноотропное действие, развивающееся после 20-25 дней лечения. Основные показания к применению идебенона - цереброваскулярная недостаточность различного генеза, органические поражения ЦНС.

Наиболее частым побочным эффектом препарата (до 35%) является нарушение сна, обусловленное его активирующим действием, в связи с чем послений прием идебенона должен осуществляться не позднее 17 ч.

4. Искусственные редокс-системы

Создание антигипоксантов с электроноакцепторными свойствами, образующими искуственные редокс-системы, преследует цель в какой-то мере компенсировать развивающийся при гипоксии дефицит естественного акцептора электронов – кислорода. Такие препараты должны шунтировать звенья дыхательной цепи, перегруженные электронами в условиях гипоксии, «снимать» электроны с этих звеньев и тем самым в определенной степени восстанавливать функцию дыхательной цепи и сопряженного с ней фосфорилирования. Кроме того, искусственные акцепторы электронов могут обеспечивать окисление пиридиннуклеотидов (NADН) в цитозоле клетки, предупреждая в результате ингибирование гликолиза и избыточное накопление лактата.

Из средств, формирующих искусственные редокс-системы, в медицинскую практику внедрен полидигидроксифенилентиосульфонат натрия – олифен (гипоксен), представляющий собой синтетический полихинон. В межклеточной жидкости препарат, очевидно, диссоциирует на полихиноновый катион и тиоловый анион. Антигипоксический эффект препарата связан, в первую очередь, с наличием в его структуре полифенольного хинонового компонента, участвующего вшунтирования транспорта электронов в дыхательной цепи митохондрий (с I-го комплекса на III-й). В постгипоксическом периоде препарат приводит к быстрому окислению накопленных восстановленных эквивалентов (NADP H2, FADН). Способность легко образовывать семихинон обеспечивает ему заметное антиоксидантное действие, необходимое для нейтрализации продуктов ПОЛ.

Применение препарата разрешено при тяжелых травматических поражениях, шоке, кровопотере, обширных оперативных вмешательствах. У больных ишемической болезнью сердца он уменьшает ишемические проявления, нормализует гемодинамику, снижает свертываемость крови и общее потребление кислорода. Клинические исследования показали, что при включении олифена в комплекс терапевтических мероприятий понижается летальность больных с травматическим шоком, отмечается более быстрая стабилизация гемодинамических показателей в послеоперационном периоде.

У больных с сердечной недостаточностью на фоне олифена снижаются проявления тканевой гипоксии, но не происходит особого улучшения насосной функции сердца, что ограничивает применение препарата при острой сердечной недостаточности. Отсутствие положительного влияния на состояние нарушенной центральной и внутрисердечной гемодинамики при ИМ не позволяет сформировать однозначного мнения об эффективности препарата при данной патологии. Кроме того, олифен не дает непосредственного антиангинального эффекта и не устраняет нарушений ритма, возникающих при ИМ.

Олифен используется в комплексной терапии острого деструктивного панкреатита (ОДП). При данной патологии эффективность применения препарата тем выше, чем раньше начато лечение. При назначении олифена регионарно (внутриаортально) в раннюю фазу ОДП следует тщательно определять момент возникновения заболевания, так как попрошествии периода управляемости и наличии уже сформировавшегося панкреонекроза применение препарата противопоказано.

Остается открытым вопрос об эффективности олифена в остром периоде цереброваскулярных заболеваний (декомпенсация дисциркуляторной энцефалопатии, ишемический инсульт). Показано отсутствие влияния препарата на состояние магистрального мозгового и динамику системного кровотока.

Среди побочных эффектов олифена можно отметить нежелательные вегетативные сдвиги, включая длительное повышение АД или коллапсы у части больных, аллергические реакции и флебиты; редко кратковременное чувство сонливости, сухость во рту; при ИМ может несколько пролонгироваться период синусовой тахикардии. При длительном курсовом применении олифена преобладают два основных побочных эффекта – острые флебиты (у 6% больных) и аллергические реакции в виде гиперемии ладоней и кожного зуда (у 4% больных), реже отмечаются кишечные расстройства (у 1% людей).

5. Макроэргические соединения

Антигипоксантом, созданным на основе естественного для организма макроэргического соединения – креатинфосфата, является препарат Неотон. В миокарде и в скелетной мышце креатинфосфат выполняет роль резерва химической энергии и используется для ресинтеза АТФ, гидролиз которой обеспечивает образование энергии, необходимой в процессе сокращения актомиозина. Действие как эндогенного, так и экзогенно вводимого креатинфосфата состоит в непосредственном фосфорилировании АДФ и увеличении тем самым количества АТФ в клетке. Кроме того, под влиянием препарата стабилизируется сарколеммальная мембрана ишемизированных кардиомиоцитов, снижается агрегация тромбоцитов и увеличивается пластичность мембран эритроцитов. Наиболее изучено нормализующее влияние неотона на метаболизм и функции миокарда, так как при повреждении миокарда существует тесная связь между содержанием в клетке высокоэнергетических фосфорилирующих соединений, выживаемостью клетки и способностью к восстановлению функции сокращения.

Основными показаниями к применению креатинфосфата являются ИМ (острый период), интраоперационная ишемия миокарда или конечностей, ХСН. При этом следует отметить, что однократная инфузия препарата не влияет на клинический статус и состояние сократительной функции левого желудочка.

Показана эффективность препарата у больных с острым нарушением мозгового кровообращения. Кроме того, препарат может быть использован и в спортивной медицине для предотвращения неблагоприятных последствий физического перенапряжения. Включение неотона в состав комплексной терапии ХСН позволяет, как правило, уменьшить дозу сердечных гликозидов и диуретиков. Дозы внутривенно капельно вводимого препарата различаются в зависимости от вида патологии.

Для вынесения окончательного суждения об эффективности и безопасности препарата необходимо проведение крупных РКИ. Также требует дополнительного изучения экономическая целесообразность применения креатинфосфата, учитывая его высокую стоимость.

Побочные эффекты редки, иногда возможно кратковременное снижение артериального давления при быстрой внутривенной инъекции в дозе свыше 1 г.

Иногда в качестве макроэргического антигипоксанта рассматривают АТФ (кислота аденозинтрифосфорная). Результаты применения АТФ в качестве антигипоксанта оказались противоречивы а клинические перспективы сомнительны, что объясняется чрезвычайно плохим проникновением экзогенной АТФ через неповрежденные мембраны и ее быстрым дефосфорилированием в крови.

В то же время, определенный терапевтический эффект, не связанный с прямым антигипоксическим действием препарат все же оказывает, что обусловлено как его нейромедиаторными свойствами (модулирующее влияние на адрено-, холино-, пуриновые рецепторы), так и влиянием на обмен веществ и клеточные мембраны продуктов деградации АТФ – АМФ, цАМФ, аденозина, инозина. Последний обладает вазодилятаторным, антиаритмическим, антиангинальным и антиагрегационным эффектом и реализует свои эффекты через Р 1 -Р 2 -пуринергические (аденозиновые) рецепторы в различных тканях. Основное показание к применению АТФ в настоящее время - купирование пароксизмов наджелудочковых тахикардий.

Завершая характеристику антигипоксантов, необходимо еще раз подчеркнуть, что применение данных препаратов имеет самые широкие перспективы, поскольку антигипоксанты нормализуют саму основу жизнедеятельности клетки – ее энергетику, определяющую все остальные функции. Поэтому использование антигипоксических средств в критических состояниях может предотвращать развитие необратимых изменений в органах и вносить решающий вклад в спасение больного.

Практическое использование препаратов данного класса должно основываться на раскрытии их механизмов антигипоксического действия, учете фармакокинетических особенностей, результатах крупных рандомизированных клинических исследований и экономической целесообразности.

Антигипоксанты — это средства, улучшающие усвоение организмом кислорода и снижающие потребность органов и тканей в кислороде, тем самым способствующие повышению устойчивости организма к кислородной недостаточности.

История открытия средства

История открытия средства, повышающего устойчивость организма к кислородной недостаточности, началась еще в 30-40-х годах минувшего столетия. Однако, тогда поиски среди препаратов, усиливающих функцию дыхательной и сердечно-сосудистой систем, не увенчались значительным успехом.

В нашей стране поиск и изучение антигипоксантов широкого спектра действия начаты в 1960 году. В это время впервые была доказана возможность фармакологической защиты организма от действия гравитационной величины. В качестве защитного агента использовали вещество - гуанилтиомочевина (препарат #92). Защитное действие гуанилтиомочевины связано с противогипоксической активностью.

В 1963 году были подведены первые итоги изучения препарата #92, обладающего мощной противогипоксической активностью и не оказывающего отрицательного влияния на физическую выносливость и нервную систему. В 1965 году Фармакологический комитет МЗ СССР разрешил гуанилтиомочевину (под названием гутимин) к апробации в качестве противогипоксического средства.

С этого времени начинается активная разработка антигипоксантов во многих лабораториях страны.

Группы антигипоксантов

Условно антигипоксанты можно разделить на 3 группы:

  1. Прямого действия.
  2. Непрямого действия.
  3. Растения-антигопоксанты.

Прямого действия оказывают положительное влияние на энергетические процессы клетки. Они активируют аэробный и анаэробный гликолиз, усиливают утилизацию продуктов распада молочной кислоты. Сочетают в себе свойства антигипоксантов и антиоксидантов. Эти препараты эффективны при действии многих экстремальных факторов. Способны проявлять множественные фармакологические эффекты. К ним относятся такие препараты как: «Олифен», «Триметазицин», «Милдронат», «Элькар», «Таурин», «Мексидол», «Аспаркам» и другие.

Не прямого действия обеспечивают эффект за счет перевода организма на более низкий уровень функционирования, при котором невозможна полноценная физическая и умственная деятельность. Противогипоксическое действие у таких препаратов является опосредованным. К ним относятся такие препараты как: «Пентаксифилин», «Винпоцетин», «Ценаризи»н и другие.

Растения-антигипоксанты выделяют в отдельную группу.

Имеют широкий спектр действия, эффект от их применения сохраняется длительное время. Противогипоксическое действие связано с наличием в них биологически активных веществ, таких как флавоноиды, каратиноиды, компоненты цикла лимонной кислоты, которые в сочетании с и микроэлементами (селен, цинк, магний, медь и другие) вмешиваются в процессы биоэнергетики и повышают устойчивость к гипоксии. Механизм действия растений-антигипоксантов мало изучен. К растениям-антигипоксантам относятся: арника горная, боярышник кроваво-красный, донник лекарственный, календула лекарственная, двудомная, мелиса лекарственная, смородина чёрная.

Антигипоксанты. Повышение физической и умственной работоспособности

Спортивная деятельность практически во всех видах спорта сопряжена с выполнением и перенесением интенсивных физических нагрузок, при которых практически всегда развивается гипоксия, как правило, смешанного типа. Поэтому применение в спортивной практике препаратов-антигипоксантов, особенно в тренировочном процессе и на этапе восстановления после соревнований, очень актуально. Благодаря действию антигипоксантов существенно увеличивается устойчивость организма к гипоксии, расширяются возможности адаптации к различным неблагоприятным факторам, повышается качество обменных процессов и, как следствие, происходит повышение физической и умственной работоспособности.

Препараты-антигипоксанты

Проблема гипоксии в спорте высших достижений стоит достаточно остро. Решается она с помощью применения фармакологических средств-антигипоксантов. Приведём пример некоторых препаратов-антигипоксантов и рассмотрим действия, которые они оказывают.

«Актовегин» (антигопоксант прямого действия) - оказывает системное действие на организм, переводит процессы окисления глюкозы на аэробный путь. Вторичным эффектом является улучшение кровоснабжения. Он улучшает доставку кислорода и уменьшает выраженность ишемических повреждений тканей. «Актовегин» оказывает действие при метаболических нарушениях в центральной нервной системе, возникающих при подготовке спортсменов в среднегорье. Применение: 80 мг 3 раза в день внутримышечно или внутривенно или по 1-2 драже 200 мг 3 раза в день от 2 до 6 недель.

«Олифен» («Гипоксен») (антигопоксант прямого действия) - антигипоксант, улучшающий переносимость гипоксии за счёт увеличения скорости потребления кислорода клетками организма. «Олифен» способствует поднятию организма на определённый базовый уровень. Он, будучи препаратом прямого действия, может обеспечить кислородом любую клетку за счёт малых размеров молекул. В связи с этим его применение возможно при всех видах гипоксии. Это самый мощный антигипоксант, применяемый в спорте. Его применение возможно для срочной ликвидации кислородного голодания после финиша на короткие дистанции, а также при длительной работе для повышения устойчивости к недостатку кислорода. Применяется в виде таблеток по 0,5 г (рекомендуемый курс 10-50таблеток) или в виде напитков с «Олифеном».

«Цитохром С» (антигопоксант прямого действия) - ферментный препарат. Действующее вещество - гемопротеид - принимает участие в тканевом дыхании, является катализатором клеточного дыхания. Препарат ускоряет ход окислительных процессов. При применении препарата возможны аллергические реакции.

«Оксибутилат натрия» (антигипоксант непрямого действия) - антигипоксические свойства связаны со способностью препарата уменьшать потребность организма в кислороде. «Оксибутилат натрия» сам способен расщепляться с образованием энергии, запасаемой в виде АТФ. Кроме того, при его постоянном введении повышается содержание в крови сомотропного гормона и кортизола, снижается содержание молочной кислоты. Кроме основного антигипоксического свойства, обладает также адаптогенным и слабым анаболическим действиями.

В связи с лёгким седативным действием, препарат не рекомендуется назначать в дневное время тем, кому нужна быстрая психофизическая реакция. Применяется в виде 5% сиропа или 20% раствора для внутривенного и внутримышечного введения. Запрещён к использованию во время соревнований по стрельбе.

К препаратам на основе растений антигипоксантов можно отнести «Кардиотон ». В его состав входит боярышник кроваво-красный, который принадлежит к группе растений-антиоксидантов. Входящие в его состав флавоноиды и каратиноиды, а также микроэлементы и минералы повышают устойчивость организма к гипоксии.

НОВОСТИ ЗДОРОВЬЯ:

ВСЁ О СПОРТЕ

Спортсмены-вегетарианцы сегодня мало кого удивляют. Многие звезды спорта осознанно выбирают такой путь и остаются только в выигрыше. Куда более удивителен тот факт, что подобная практика существовала задолго до того, как вегетарианство стало мейнстримом. Великие атлеты прошлого принципиально отказывались от мяса, но при этом продолжали бить рекорд за рекордом. Кто же эти герои, и в чем…

Проблема гипоксии в спорте высших достижений стоит достаточно остро. Клинические данные и теоретические исследования убедительно свидетельствуют, что наиболее перспективным в борьбе с гипоксией является использование фармакологических средств, улучшающих утилизацию организмом циркулирующего в нем кислорода, снижающих потребность в кислороде органов и тканей и тем самым способствующих уменьшению гипоксии и повышению устойчивости организма к кислородной недостаточности. Эти средства называют антигипоксантами.

Условно антигипоксанты могут быть разделены на две группы:

  • 1) действующие на транспортную функцию крови;
  • 2) корригирующие метаболизм клетки.

К первой группе относятся соединения, повышающие кислородную емкость крови, сродство гемоглобина к кислороду, а также вазоактивные вещества эндогенной и экзогенной природы. Во вторую группу входят соединения мембранопротекторного действия, прямого энергезирующего действия (т.е. влияющие на окислительно-восстановительный потенциал клетки, цикл Кребса и дыхательную цепь митохондрий) и препараты непосредственно анти-гипоксического действия.

Актовегин - препарат, который производится на основе экстракта из сыворотки крови телят и содержит исключительно физиологические компоненты, обладающие высокой биологической активностью - органические низкомолекулярные соединения: аминокислоты, олигопептиды, нуклеозиды и гликолипвды, электролиты и ряд важных микроэлементов.

Актовегин существенно повышает энергетический резерв клеток и их устойчивость к гипоксии за счет оптимизации потребления кислорода и глюкозы. При применении актовегина в 18 раз возрастает синтез АТФ - основного энергетического субстрата. За счет этого увеличивает время работы критической мощности при уменьшении напряженности метаболических сдвигов (рН, содержания лактата).

В условиях внутриклеточной недостаточности кислорода клетка поддерживает собственные энергетические потребности за счет активации процессов анаэробного гликолиза. В результате идет истощение внутренних энергетических резервов, деструкция клеточных мембран и разрушение клеток. Преобладание анаэробных путей воспроизводства энергии служит ведущим механизмом развития гипоксических и ишемических повреждений органов и тканей.

Актовегин оказывает системное действие на организм и переводит процессы окисления глюкозы на аэробный путь. Активная фракция препарата повышает транспорт глюкозы, в зависимости от дозы, до пятикратного увеличения. Вторичным эффектом является улучшение кровоснабжения. В условиях тканевой гипоксии, вызванной нарушением микроциркуляции, актовегин способствует становлению капиллярной сети за счет новообразующихся сосудов. Улучшая доставку кислорода и уменьшая выраженность ишемических повреждений тканей, актовегин, кроме того, опосредованно способствует белково-синтезирующей функции клеток и оказывает иммуномодулирующее действие. Оказывает действие при метаболических и циркуляторных нарушениях в центральной нервной системе, возникших при подготовке в среднегорье. Применение - 80 мг в/м, в/в ежедневно около 2-х недель или по 1-2 драже 200 мг 3 раза в день от 2 до 6 недель.

Олифен (Гипоксен) - антигипоксант, улучшающий переносимость гипоксии за счет увеличения скорости потребления кислорода митохондриями и повышения сопряженности окислительного фосфорилирования. Олифен способствует поднятию организма на определенный базовый уровень. Олифен, будучи препаратом прямого действия, может обеспечить кислородом любую клетку за счет малых размеров молекул. В связи с этим его применение возможно при всех видах гипоксии. Это самый мощный антигипоксант, применяемый в спорте. Возможно его применение для срочной ликвидации кислородной задолженности после финиша на короткие дистанции, т.е. после работы в гликолитическом режиме. А также при более длительной работе для повышения устойчивости к кислородной недостаточности. Применяется в виде таблеток по 0,5 г (рекомендуемый курс - 10-50 таблеток), а также в виде напитков с олифеном.

Цитохром С - ферментный препарат, получаемый из ткани сердца крупного рогатого скота. Гемопротеид, принимающий участие в процессах тканевого дыхания, является катализатором клеточного дыхания. Железо, содержащееся в Цитохроме С, обратимо переходит из окисленной формы в восстановленную, в связи с чем применение препарата ускоряет ход окислительных процессов. Поскольку это вещество животного происхождения, состоящее из крупных молекул, оно лишено возможности проникать в каждую клетку. При применении препарата возможны аллергические проявления у предрасположенных к ним.

Оксибутират натрия - антигипоксические свойства связаны со способностью активизировать бескислородное окисление энергетических субстратов и уменьшать потребность организма в кислороде. Оксибутират натрия сам способен расщепляться с образованием энергии, запасаемой в виде АТФ. Кроме того, при его постоянном введении повышается содержание в крови соматотропного гормона, а также кортизола, значительно снижается содержание молочной кислоты. Под действием оксибутирата натрия происходит гипертрофия митохондрий и мышечных волокон, увеличивается количество гликогена в мышцах и в печени. Обладает адаптогенным действием и слабым анаболическим. Оказывает также противошоковое действие.

В связи с седативным эффектом препарат не следует назначать в дневные часы тем, кому нужна быстрая психофизическая реакция. Применяется в виде 5% сиропа для приема внутрь или 20% раствора для введения в вену или мышцу. Запрещено использовать во время соревнований по стрельбе.

Антигипоксанты - это лекарства, которые крайне популярны среди пациентов и врачей. Первые часто считают их панацеей от всех болезней, а вторые назначают их, так как приверженность к такому лечению обычно очень высока. Что же такое антигипоксанты, как они помогают бороться с кислородным голодом и есть ли среди них действительно эффективные? Подробности в новой статье на портале MedAboutMe.

Как действуют лекарства антигипоксанты?

Эти лекарства находят широкое применение в различных областях медицины, так как имеют достаточно общий механизм действия - нормализуют энергетический метаболизм клеток, подвергшихся ишемии, предотвращают снижение содержания внутриклеточного АТФ, обеспечивают сохранение клеточного гомеостаза или обмена веществ. Таким образом, их назначают при различных заболеваниях и состояниях, сопровождающихся нехваткой кислорода в органах и тканях. Перечень таких недугов крайне широк, равно как и список потенциальных покупателей таких лекарств.

Однако гипоксия никогда не развивается внезапно у здорового человека. И она всегда имеет причину. Главным звеном в лечении является борьба с ней и по возможности устранение (тромб в сосуде, отравление ядом, болезни дыхательной системы, анемия и др.). Антигипоксанты призваны ликвидировать последствия этого состояния, насколько это вообще возможно.

Триметазидин

Триметазидин продается в нашей стране под различными торговыми названиями, самым популярным из которых является Предуктал. В инструкции к препарату можно найти информацию, что это лекарство обладает антиишемическим действием, то есть призвано бороться с гипоксией. Предуктал МВ - это улучшенная версия традиционного лекарственного средства, которая отличается модицифированным высвобождением, то есть действующее вещество выходит из таблетки не сразу, а постепенно. Таким образом, поддерживается постоянное поступление в кровь этого препарата, и он не прекращает своего действия в течение целого дня. К тому же простой Предуктал содержит всего 20 мг триметазидина, а МВ-форма - 35 мг. Предуктал ОД - это высокодозное лекарство, так как содержит уже 80 мг действующего вещества, которые также высвобождаются равномерно в течение целого дня.

Отношение к этому препарату неодинаковое. Часть людей, в том числе врачей верят в его эффективность, так как производитель указывает отличные результаты, которые показал триметазидин в клинических исследованиях у людей, страдающих ишемической болезнью сердца, а другие относятся к нему скептически. Описаны следующие эффекты триметазидина: снижение частоты приступов стенокардии, потребности в нитроглицерине, улучшение переносимости физической нагрузки и ускорение восстановления после инфаркта.

Однако в Федеральном руководстве по использованию лекарств 2017 года указано, что эти исследования относятся к категории С, то есть качество их выполнения вызывает множество вопросов. Этот факт не позволяет верить им однозначно. К тому же всем испытуемым, помимо триметазидина, был назначен традиционный список лекарств, подтвердивших свою эффективность у больных с ишемической болезнью сердца, лишать которых этой терапии просто не этично. Чаще всего этот препарат шел пятым или шестым в листе назначений, поэтому приписывать только ему положительный результат лечения по меньшей степени некорректно. И, тем не менее, Предуктал часто назначают кардиологи, так как перспектива борьбы с гипоксией в клетках миокарда кажется крайне радужной для пациентов, и они охотно приобретают этот препарат.

Мельдоний

Этот препарат окружен «допинговой» славой и не случайно - борьба с кислородным голоданием в клетках различных мышц является его главным эффектом. Исходя из информации в инструкции по медицинскому применению, он может быть использован для лечения людей, страдающих ишемической болезнью сердца, при хроническом нарушении мозгового кровообращения, у тех, кто ежедневно сталкивается со стрессами, испытывает физические перегрузки, только что перенес оперативное вмешательство, а также больных, страдающих от нарушения обменных процессов в сетчатке глаза. Таким образом, список потенциальных покупателей этого препарата очень широк, причем до такой степени, что практически любой может обнаружить у себя показания для его применения.

Единственное, что не совсем поддается объяснению, почему такой универсальный препарат выпускают только в России и Латвии (ведь именно там он и был создан). Ни одно европейское государство не заинтересовалось производством мельдония на своих заводах возможно потому, что не было проведено качественных клинических исследований, соответствующих международным стандартам. Поэтому достоверно говорить о выдающейся эффективности мельдония на сегодняшний день сложно, равно как и о его бесполезности.

Таким образом, этот препарат входит в состав комбинированной терапии при большом количестве болезней и состояний, однако его нельзя считать препаратом первой линии. И, тем не менее, учитывая популярность и его хорошую репутацию у российских граждан, его активно назначают врачи и приобретают пациенты.

Цитофлавин

Этот препарат содержит несколько важных компонентов, которые при одновременном введении в организм больного призваны бороться с кислородным голоданием. Среди них янтарная кислота, инозин, никотинамид и рибофлавин. Главным направлением, по которому применяется этот препарат, является неврология. Он может быть назначен людям, перенесшим мозговое кровообращение по ишемическому типу, страдающим от дисциркуляторной энцефалопатии, церебрального атеросклероза, различными невротическими расстройствами. Дополнительным показанием иногда служит снижение переносимости нагрузок, эмоциональный стресс, снижение концентрации внимания.

Цитофлавин - это препарат, который, в отличие от предыдущего, привлекал внимание, как отечественных, так и зарубежных исследователей в области медицины. Проведенные испытания показывали неодинаковые результаты. Однако с достаточной степенью убедительности было показано, что он может быть назначен на восстановительном этапе после перенесенного ишемического инсульта, так как способствует лучшим отдаленным прогнозам (улучшение чувствительности, двигательной активности, памяти, глотания и других психических функций). Плюсом терапии является тот факт, что начать терапию Цитофлавином можно в стационаре в виде внутривенных инъекций и продолжить в виде таблеток уже дома.

Другие области применения препарата исследованы не так качественно, поэтому точных данных о его эффективности и безопасности по другим показаниям нет.

Актовегин

Этот препарат также зарегистрирован как антигипоксант, препарат, способствующий ускоренному заживлению тканей именно за счет борьбы с кислородным голоданием. Областей его применения также много, как и у других препаратов этой группы, ведь механизм действия универсален. В состав препарата входит дериват из крови телят, что служит своебразным «камнем преткновения», ведь по сути человек употребляет внутрь биоматериал. Теоретически он может вызывать так называемые прионные болезни - передающиеся с кровью, в данном случае телят. Именно это служит поводом для значительных ограничений в использовании Актовегина во многих странах мира, в основном европейских.

В нашей стране их почему-то совсем не боятся и широко назначают пациентам всех возрастов. Самым безопасным является применение препарата в виде мази, которую рекомендуют наносить на раны, трофические язвы, послеоперационные рубцы, ведь в этом случае препарат практически не всасывается в общий кровоток и действует локально. Несмотря на определенные ограничения и запреты, препарат подтвердил свою эффективность в клинических исследованиях у больных, страдающих ишемической болезнью головного мозга, а именно после ишемического инсульта. Но, аналогично Цитофлавину, он не является препаратом первой линии и используется в составе комбинированной терапии.

Кислород

Как это не банально, но самым эффективным препаратом, который помогает бороться с гипоксией является сам кислород. Существует огромный перечень заболеваний, при которых организм испытывает недостаток этого важнейшего элемента. Однако единственный способ получить его извне, помимо вдыхаемого воздуха - это подача 100%-ного газа через кислородную маску или носовой катетер. Именно его всегда назначают при всех неотложных состояниях, сопровождающихся тяжелой гипоксией (ишемический инсульт, инфаркт, обширная пневмония, сепсис и др.). Другого пути введения на сегодняшний день не существует.

Помимо вышеуказанных, самых популярных, существует еще очень много различных антигипоксантов: тиоктовая кислота, солкосерил, карнитин, цитохром С и другие. У каждого из них есть свои плюсы и минусы и области применения. Вопреки кажущейся безобидности они имеют особенности и противопоказания, поэтому перед покупкой все-таки стоит проконсультироваться с доктором.

Пройдите тестРазбираетесь ли Вы в лекарствах?Только отвечая на вопросы честно, Вы получите достоверный результат.