С морфологической точки зрения кровеносные сосуды – трубки различного диаметра, состоящие из 3-х основных слоёв: внутреннего (эндотелиального), среднего (ГМК, коллагеновые и эластические волокна), наружного.

Помимо размеров, сосуды отличаются строением среднего слоя:

В аорте и крупных артериях преобладают эластические и коллагеновые волокна, что

обеспечивает их упругость и растяжимость (сосуды эластического типа);

В артериях среднего и мелкого калибра, артериолах, прекапиллярах и венулах

преобладают ГМК (сосуды мышечного типа, обладающие высокой сократимостью);

В средних и крупных венах есть ГМК, но их сократительная активность невысока;

Капилляры вообще лишены ГМК.

Это имеет определённое значение для функциональной классификации :

1) Упруго-растяжимые (магистральные) сосуды – аорта с крупными артериями в большом круге кровообращения и лёгочная артерия с её ветвями в малом круге кровообращения. Это сосуды эластического типа, образующие эластическую, или компрессионную, камеру. Обеспечивают преобразование пульсирующего кровотока в более равномерный и плавный. Часть кинетической энергии, развиваемой сердцем во время систолы, затрачивается на растяжение этой компрессионной камеры, в которую поступает значительный объём крови, растягивающий её. При этом кинетическая энергия, развитая сердцем, переходит в энергию эластического напряжения артериальных стенок. Когда систола заканчивается, растянутые стенки артерий компрессионной камеры спадаются и проталкивают кровь в капилляры, поддерживая кровоток во время диастолы.

2) Сосуды сопротивления (резистивные сосуды) – артериолы и прекапиллярные сфинктеры, т.е. сосуды мышечного типа. От прекапиллярных сфинктеров зависит число функционирующих капилляров.

3) Обменные сосуды – капилляры. Обеспечивают обмен газами и другими веществами между кровью и тканевой жидкостью. Количество функционирующих капилляров может изменяться в каждом участке ткани в значительных пределах, в зависимости от функциональной и метаболической активности.

4) Шунтирующие сосуды (артериовенозные анастомозы) – обеспечивают «сброс» крови из артериальной системы в венозную, минуя капилляры; значительно повышают скорость кровотока; участвуют в теплообмене.

5) Собирательные сосуды (кумулятивные) – вены.

6) Ёмкостные сосуды – крупные вены, обладающие высокой растяжимостью. Содержат ~ 75 % объёма циркулирующей крови (ОЦК). Артериальный отдел ~ 20 % ОЦК, капиллярный ~ 5-7,5 %.

ОЦК распределяется по частям тела не равномерно. Почки, печень, сердце, мозг, составляющие 5 % массы тела, получают более половины всей крови.

ОЦК – это не вся кровь организма. В состоянии покоя до 45 - 50 % всего объёма крови, имеющейся в организме, находится в кровяных депо: селезёнке, печени, подкожном сосудистом сплетении и лёгких. В селезёнке содержится ~ 500 мл крови, которая может быть почти выключена из кровотока. Кровь в сосудах печени и сосудистом сплетении кожи (до 1 л) циркулирует в 10 – 20 раз медленнее, чем в других сосудах.

Микроциркуляторное русло – совокупность конечных артерий, артериол, капилляров, венул, мелких венул. Движение крови по микроциркуляторному руслу обеспечивает транскапиллярный обмен.

Капилляры имеют диаметр ~ 5 – 7 мкм, длину ~ 0,5 – 1 мм. Скорость кровотока ~ 0,5 – 1 мм/с, т.е. каждая частица крови находится в капилляре ~ 1 с. Общая длина капилляров составляет ~ 100000 км.

Есть 2 вида функционирующих капилляров – магистральные, образующие кратчайший путь между артериолами и венулами, и истинные, которые отходят от артериального конца магистрального капилляра и впадают в его венозный конец. Истинные образуют капиллярные сети. В магистральных скорость кровотока выше.

В тканях с более интенсивным обменом число капилляров больше.

Капилляры различаются по строению эндотелиального каркаса:

1) С непрерывной стенкой – «закрытые». Это большинство капилляров большого круга кровообращения. Обеспечивают гистогематический барьер.

2) Окончатые (с фанестрами – окошечками). Способны пропускать вещества, диаметр которых достаточно велик. Располагаются в почечных клубочках, в слизистой кишечника.

3) С прерывистой стенкой – между соседними эндотелиальными клетками есть щели, через которые проходят форменные элементы крови. Располагаются в костном мозге, печени, селезёнке.

В закрытых капиллярах переход веществ из капилляра в ткань и наоборот совершается за счёт диффузии и фильтрации (с реабсорбцией). Пока кровь проходит через капилляр, может произойти 40-кратный обмен между кровью и тканями. Лимитирующий фактор – способность вещества проходить через фосфолипидные участки мембраны и размеры вещества. В среднем из капилляров каждую минуту выходит ~ 14 мл жидкости (~20 л/сутки). Вышедшая на артериальном конце капилляра жидкость дренирует межклеточное пространство, очищает его от метаболитов и ненужных частиц. На венозном конце капилляра большая часть жидкости с метаболитами вновь поступает в капилляр.

Закономерности, обуславливающие обмен жидкости между капиллярами и тканевыми пространствами, были описаны Старлингом.

Силы, способствующие фильтрации, - это гидростатическое давление крови (Ргк) и онкотическое тканевой жидкости (Рот), составляющие в сумме фильтрационное давление. Силы, препятствующие фильтрации, но способствующие реабсорбции, - это онкотическое давление крови (Рок) и гидростатическое давление тканевой жидкости (Ргт), составляющие в сумме реабсорбционное давление.

На артериальном конце капилляра:

Ргк ~ 32,5 мм рт. ст., Рот ~ 4,5 мм рт.ст., (Ргк + Рот) ~ 37 мм рт. ст.

Результирующее давление, обеспечивающее фильтрацию: 37 – 28 = 9 мм рт.ст.

На венозном конце капилляра:

Ргк ~ 17 мм рт. ст., Рот ~ 4,5 мм рт.ст., (Ргк + Рот) ~ 21,5 мм рт. ст.

Рок ~ 25 мм рт.ст., Ргт ~ 3 мм рт.ст., (Рок + Ргт) ~ 28 мм рт. ст.

Результирующее давление, обеспечивающее реабсорбцию: 21,5 – 28 = - 6,5 мм рт. ст.

Т.к. фильтрационная результирующая на артериальном конце капилляра выше, чем реабсорбционная результирующая на венозном, объём фильтрации на артериальном конце капилляра выше, чем объём реабсорбции на венозном (20 л/18 л в сутки). Остальные 2 л идут на образование лимфы. Это своеобразный дренаж тканей, благодаря которому крупные частицы, не способные пройти через стенку капилляра, проходят по лимфатической системе, в том числе через лимфатические узлы, где подвергаются разрушению. В конечном итоге, лимфа через грудной и шейный протоки возвращается в венозное русло.



Венозное русло предназначено для сбора крови, т.е. выполняет коллекторную функцию. В венозном русле кровь испытывает меньшее сопротивление, чем в мелких артериях и артериолах, однако большая протяжённость венозного русла приводит к тому, что давление крови по мере приближения к сердцу снижается почти до 0. Давление в венулах 12 – 18 мм рт.ст., в венах среднего калибра 5 – 8 мм рт.ст., в полых венах 1 – 3 мм рт.ст.. В то же время, линейная скорость кровотока, по мере приближения к сердцу, последовательно возрастает. В венулах она составляет 0,07 см/с, в средних венах 1,5 см/с, в полых венах 25 – 33 см/с.

Низкое гидростатическое давление в венозном русле затрудняет возврат крови к сердцу. Для улучшения венозного возврата есть ряд компенсаторных механизмов:

1) наличие в венах многочисленных полулунных клапанов эндотелиального происхождения, пропускающих кровь только по направлению к сердцу (исключение – полые вены, вены воротной системы, мелкие венулы);

2) мышечный насос – динамическая работа мышц приводит к выталкиванию венозной крови по направлению к сердцу (за счёт сдавливания вен и наличия в них клапанов);

3) присасывающее действие грудной клетки (снижение внутриплеврального давления на вдохе);

4) присасывающее действие полостей сердца (расширение предсердий во время систолы желудочков);

5) сифонное явление – устье аорты выше устья полых вен.

Время полного кругооборота крови (время прохождения 1 частицы крови через оба круга кровообращения) составляет в среднем 27 систол сердца. При ЧСС 70 – 80 в минуту кругооборот происходит ~ за 20 – 23 с. Однако скорость движения по оси сосуда выше, чем у его стенок и, поэтому, не вся кровь совершает полный кругооборот так быстро. Примерно 1/5 времени полного кругооборота приходится на прохождение малого круга и 4/5 – на прохождение большого.

Артериальный пульс – ритмические колебания стенки артерии, обусловленные повышением давления в период систолы. В момент изгнания крови из желудочков давление в аорте повышается, и стенка её растягивается. Волна повышенного давления и колебания сосудистой стенки распространяются до артериол и капилляров, где пульсовая волна гаснет. Скорость распространения пульсовой волны не зависит от скорости движения крови. Максимальная скорость кровотока по артериям 0,3 – 0,5 м/с; скорость же пульсовой волны в аорте 5,5 – 8 м/с, в периферических артериях 6 - 9 м/с. С возрастом, по мере понижения эластичности сосудов, скорость распространения пульсовой волны увеличивается.

Артериальный пульс можно обнаружить прикосновением к любой доступной ощупыванию артерии: лучевой, височной, наружной артерии стопы и т.д. Исследование пульса позволяет оценить наличие биений сердца, частоту его сокращений, напряжение. Напряжение (твёрдый, мягкий) пульса определяется по величине усилия, которое необходимо приложить для того, чтобы пульс в дистальном участке артерии исчез. В определённой степени отображает величину среднего АД.

Сердце и кровеносные сосуды образуют замкнутую разветвлённую сеть - сердечно-сосудистую систему. Кровеносные сосуды присутствуют почти во всех тканях. Их нет лишь в эпителиях, ногтях, хрящах, эмали зубов, в некоторых участках клапанов сердца и в ряде других областей, которые питаются за счёт диффузии необходимых веществ из крови. В зависимости от строения стенки кровеносного сосуда и его калибра, в сосудистой системе различают артерии, артериолы, капилляры, венулы и вены. Стенка артерий и вен состоит из трёх оболочек: внутренней (tunica intima), средней (t. media) и наружной (t. adventitia).

АРТЕРИИ

Артерии - кровеносные сосуды, транспортирующие кровь от сердца. Стенка артерий амортизирует ударную волну крови (систолический выброс) и переправляет далее выбрасываемую с каждым ударом сердца кровь. Артерии, расположенные вблизи сердца (магистральные сосуды), испытывают наибольший перепад давления. Поэтому они обладают выраженной эластичностью. Периферические же артерии имеют развитую мышечную стенку, способны изменять величину просвета, а следовательно, скорость кровотока и распределение крови в сосудистом русле.

Внутренняя оболочка. Поверхность t. intima выстлана пластом находящихся на базальной мембране плоских эндотелиальных клеток. Под эндотелием расположен слой рыхлой соединительной ткани (подэндотелиальный слой).

(membrana elastica interna) отделяет внутреннюю оболочку сосуда от средней.

Средняя оболочка. В состав t. media, помимо соединительнотканного матрикса с небольшим количеством фибробластов, входят ГМК и эластические структуры (эластические мембраны и эластические волокна). Соотношение этих элементов - главный критерий класси-

фикации артерий: в артериях мышечного типа преобладают ГМК, а в артериях эластического типа - эластические элементы. Наружная оболочка образована волокнистой соединительной тканью с сетью кровеносных сосудов (vasa vasorum) и сопровождающими их нервными волокнами (nervi vasorum, преимущественно терминальные ветвления постганглионарных аксонов симпатического отдела нервной системы).

Артерии эластического типа

К артериям эластического типа относят аорту, лёгочный ствол, общую сонную и подвздошные артерии. В состав их стенки в большом количестве входят эластические мембраны и эластические волокна. Толщина стенки артерий эластического типа составляет примерно 15% диаметра их просвета.

Внутренняя оболочка представлена эндотелием и подэндотелиальным слоем.

Эндотелий. Просвет аорты выстлан крупными эндотелиальными клетками полигональной или округлой формы, связанными плотными и щелевыми контактами. В области ядра клетка выпячивается в просвет сосуда. Эндотелий отделён от подлежащей соединительной ткани хорошо выраженной базальной мембраной.

Подэндотелиальный слой содержит эластические, коллагеновые и ретикулиновые волокна (коллагены типа I и III), фибробласты, продольно ориентированные ГМК, микрофибриллы (коллаген типа VI).

Средняя оболочка имеет толщину около 500 мкм и содержит окончатые эластические мембраны, ГМК, коллагеновые и эластические волокна. Окончатые эластические мембраны имеют толщину 2-3 мкм, их около 50-75. С возрастом их количество и толщина увеличиваются. Между эластическими мембранами располагаются спирально ориентированные ГМК. ГМК артерий эластического типа специализированы для синтеза эластина, коллагена и других компонентов межклеточного вещества. В средней оболочке аорты и лёгочного ствола присутствуют кардиомиоциты.

Наружная оболочка содержит пучки коллагеновых и эластических волокон, ориентированных продольно или идущих по спирали. Адвентиция содержит также мелкие кровеносные и лимфатические сосуды, миелиновые и безмиелиновые волокна. Vasa vasorum кровоснабжают наружную оболочку и наружную треть средней оболочки. Ткани внутренней оболочки и внутренних двух третей средней оболочки питаются за счёт диффузии веществ из крови, находящейся в просвете сосуда.

Артерии мышечного типа

Их суммарный диаметр (толщина стенки + диаметр просвета) достигает 1 см, диаметр просвета варьирует от 0,3 до 10 мм. Артерии мышечного типа относят к распределительным.

Внутренняя эластическая мембрана не во всех артериях мышечного типа развита одинаково хорошо. Сравнительно слабо она выражена в артериях мозга и его оболочек, в ветвях лёгочной артерии, а в пупочной артерии полностью отсутствует.

Средняя оболочка содержит 10-40 плотно упакованных слоёв ГМК. ГМК ориентированы спирально, что обеспечивает регуляцию просвета сосуда в зависимости от тонуса ГМК. Вазоконстрикция (сужение просвета) происходит при сокращении ГМК средней оболочки. Вазодилатация (расширение просвета) происходит при расслаблении ГМК. Снаружи средняя оболочка ограничена наружной эластической мембраной, выраженной слабее, чем внутренняя. Наружная эластическая мембрана имеется лишь в крупных артериях; в артериях меньшего калибра она отсутствует.

Наружная оболочка в артериях мышечного типа развита хорошо. Внутренний её слой - плотная волокнистая соединительная ткань, а наружный - рыхлая соединительная ткань. Обычно в наружной оболочке присутствуют многочисленные нервные волокна и окончания, сосуды сосудов, жировые клетки. В наружной оболочке коронарных и селезёночной артерий присутствуют ориентированные продольно (по отношению к продольной оси сосуда) ГМК.

АРТЕРИОЛЫ

Артерии мышечного типа переходят в артериолы - короткие сосуды, имеющие важное значение для регуляции артериального давления (АД). Стенка артериолы состоит из эндотелия, внутренней эластической мембраны, нескольких слоёв циркулярно ориентированных ГМК и наружной оболочки. Снаружи к артериоле прилегают периваскулярные соединительнотканные клетки, безмиелиновые нервные волокна, пучки коллагеновых волокон. В артериолах наименьшего диаметра внутренняя эластическая мембрана отсутствует, исключение составляют приносящие артериолы в почке.

Терминальная артериола содержит продольно ориентированные эндотелиальные клетки и непрерывный слой циркулярно ориентированных ГМК. Кнаружи от ГМК расположены фибробласты.

Метартериола отходит от терминальной и во многих участках содержит циркулярно ориентированные ГМК.

КАПИЛЛЯРЫ

Разветвлённая капиллярная сеть соединяет артериальное и венозное русла. Капилляры участвуют в обмене веществ между кровью и тканями. Общая обменная поверхность (поверхность капилляров и венул) составляет не менее 1000 м 2 , а в пересчёте на 100 г ткани - 1,5 м 2 . В регуляции капиллярного кровотока принимают непосредственное участие артериолы и венулы. Плотность капилляров в различных органах существенно варьирует. Так, на 1 мм 3 миокарда, головного мозга, печени, почек приходится 2500-3000 капилляров; в скелетной

Рис. 10-1. Типы капилляров: А - капилляр с непрерывным эндотелием; Б - с фенестрированным эндотелием; В - капилляр синусоидного типа.

мышце - 300-1000 капилляров; в соединительной, жировой и костной тканях их значительно меньше.

Типы капилляров

Стенка капилляра образована эндотелием, его базальной мембраной и перицитами. Различают три основных типа капилляров (рис. 10-1): с непрерывным эндотелием, с фенестрированным эндотелием и с прерывистым эндотелием.

Капилляры с непрерывным эндотелием - наиболее распространённый тип. Диаметр их просвета менее 10 мкм. Эндотелиальные клетки связаны при помощи плотных контактов, содержат множество пиноцитозных пузырьков, участвующих в транспорте метаболитов между кровью и тканями. Капилляры этого типа характерны для мышц. Капилляры с фенестрированным эндотелием присутствуют в капиллярных клубочках почки, эндокринных железах, ворсинках кишки. Фенестра - истончённый участок эндотелиальной клетки диаметром 50-80 нм. Фенестры облегчают транспорт веществ через эндотелий. Капилляр с прерывистым эндотелием называют также капилляром синусоидного типа, или синусоидом. Подобный тип капилляров присутствует в кроветворных органах, такие капилляры состоят из эндотелиальных клеток с щелями между ними и прерывистой базальной мембраны.

БАРЬЕРЫ

Частный случай капилляров с непрерывным эндотелием - капилляры, формирующие гематоэнцефалический и гематотимический барьеры. Для эндотелия капилляров барьерного типа характерно умеренное количество пиноцитозных пузырьков и плотные контакты. Гематоэнцефалический барьер (рис. 10-2) надёжно изолирует мозг от временных изменений состава крови. Непрерывный эндотелий капилляров - основа гематоэнцефалического барьера: эндотелиальные клетки связаны при помощи непрерывных цепочек плотных контактов. Снаружи эндотелиальная трубка покрыта базальной мембраной. Капилляры почти полностью окружены отростками астроцитов. Гематоэнцефалический барьер функционирует как избирательный фильтр.

МИКРОЦИРКУЛЯТОРНОЕ РУСЛО

Совокупность артериол, капилляров и венул составляет структурнофункциональную единицу сердечно-сосудистой системы - микроциркуляторное (терминальное) русло (рис. 10-3). Терминальное русло организовано следующим образом: под прямым углом от терминальной артериолы отходит метартериола, пересекающая всё капиллярное русло и открывающаяся в венулу. От артериол берут начало анастомо-

Рис. 10-2. Гематоэнцефалический барьер образован эндотелиальными клетками капилляров мозга. Базальная мембрана, окружающая эндотелий, и перициты, а также астроциты, ножки которых полностью охватывают капилляр снаружи, не являются компонентами барьера.

зирующие истинные капилляры, образующие сеть; венозная часть капилляров открывается в посткапиллярные венулы. В месте отделения капилляра от артериол имеется прекапиллярный сфинктер - скопление циркулярно ориентированных ГМК. Сфинктеры контролируют локальный объём крови, проходящей через истинные капилляры; объём же крови, проходящей через терминальное сосудистое русло в целом, определяется тонусом ГМК артериол. В микроциркуляторном русле присутствуют артериовенозные анастомозы, связывающие артериолы непосредственно с венулами или мелкие артерии с мелкими венами. Стенка сосудов анастомоза содержит много ГМК. Артериове-

Рис. 10-3. Микроциркуляторное русло. Артериола → метартериола → капиллярная сеть с двумя отделами - артериальный и венозный → венула. Артериовенозные анастомозы соединяют артериолы с венулами.

нозные анастомозы в большом количестве присутствуют в некоторых участках кожи (мочка уха, пальцы), где они играют важную роль в терморегуляции.

ВЕНЫ

Кровь из капилляров терминальной сети последовательно поступает в посткапиллярные, собирательные, мышечные венулы и попадает в вены. Венулы

Посткапиллярная венула (диаметр от 8 до 30 мкм) служит обычным местом выхода лейкоцитов из циркуляции. По мере увеличения диаметра посткапиллярной венулы увеличивается количество перицитов, ГМК отсутствуют.

Собирательная венула (диаметр 30-50 мкм) имеет наружную оболочку из фибробластов и коллагеновых волокон.

Мышечная венула (диаметр 50-100 мкм) содержит 1-2 слоя ГМК; в отличие от артериол, ГМК не полностью охватывают сосуд. В эндотелиальных клетках присутствует большое количество актиновых микрофиламентов, играющих важную роль для изменения формы клеток. Наружная оболочка сосуда содержит пучки коллагеновых волокон, ориентированных в различных направлениях, фибробласты. Мышечная венула переходит в мышечную вену, содержащую несколько слоёв ГМК.

Вены - сосуды, по которым кровь оттекает от органов и тканей к сердцу. Около 70% объёма циркулирующей крови находится в венах. В стенке вен, как и в стенке артерий, различают те же три оболочки: внутреннюю (интиму), среднюю и наружную (адвентициальную). Вены, как правило, имеют больший диаметр, чем одноимённые артерии. Их просвет, в отличие от артерий, не зияет. Стенка вены тоньше; средняя оболочка менее выражена, а наружная оболочка, напротив, более толстая, чем у одноимённых артерий. Некоторые вены имеют клапаны. Большие вены, как и артерии крупного калибра, имеют vasa vasorum.

Внутренняя оболочка состоит из эндотелия, снаружи от которого расположен подэндотелиальный слой (рыхлая соединительная ткань и ГМК). Внутренняя эластическая мембрана выражена слабо и часто отсутствует.

Средняя оболочка вен мышечного типа содержит циркулярно ориентированные ГМК. Между ними располагаются коллагеновые и в меньшем количестве эластические волокна. Количество ГМК в средней оболочке вен существенно меньше, чем в средней оболочке сопровождающей артерии. В этом отношении отдельно стоят вены нижних конечностей. Здесь (преимущественно в подкожных венах) средняя оболочка содержит значительное количество ГМК, во внутренней части средней оболочки они ориентированы продольно, а в наружной - циркулярно.

Клапаны вен пропускают кровь только к сердцу; представляют собой складки интимы. Соединительная ткань образует структурную основу створок клапанов, а вблизи их фиксированного края располагаются ГМК. Клапаны отсутствуют в венах брюшной полости, грудной клетки, мозга, сетчатки и костей.

Венозные синусы - пространства в соединительной ткани, выстланные эндотелием. Заполняющая их венозная кровь не выполняет метаболическую функцию, а придаёт ткани особые механические свойства (упругость, эластичность и др.). Подобным образом организованы коронарные синусы, синусы твёрдой мозговой оболочки и кавернозных тел.

РЕГУЛЯЦИЯ ПРОСВЕТА СОСУДОВ

Сосудистые афференты. Изменения pO 2 и рСО 2 крови, концентрации Н+, молочной кислоты, пирувата и ряда других метаболитов оказывают локальные эффекты на стенку сосудов. Эти же изменения регистрируют встроенные в стенку сосудов хеморецепторы, а также барорецепторы, реагирующие на давление в просвете сосудов. Эти сигналы достигают центров регуляции кровообращения и дыхания. Барорецепторы особенно многочисленны в дуге аорты и в стенке крупных вен, лежащих близко к сердцу. Эти нервные окончания образованы терминалями волокон, проходящих в составе блуждающего нерва. В рефлекторной регуляции кровообращения участвуют каротидный синус и каротидное тельце, а также подобные им образования дуги аорты, лёгочного ствола, правой подключичной артерии.

Каротидный синус расположен вблизи бифуркации общей сонной артерии, это расширение просвета внутренней сонной артерии тотчас у места её ответвления от общей сонной артерии. Здесь, в наружной оболочке, присутствуют многочисленные барорецепторы. Если учесть, что средняя оболочка сосуда в пределах каротидного синуса относительно тонка, то легко представить, что нервные окончания в наружной оболочке высокочувствительны к любым изменениям артериального давления. Отсюда информация поступает в центры, регулирующие деятельность сердечно-сосудистой системы. Нервные окончания барорецепторов каротидного синуса - терминали волокон, проходящих в составе синусного нерва - ветви языкоглоточного нерва.

Каротидное тельце (рис. 10-5) реагирует на изменения химического состава крови. Тельце расположено в стенке внутренней сонной артерии и состоит из клеточных скоплений, погружённых в густую сеть широких капилляров синусоидоподобного типа. Каждый клубочек каротидного тельца (гломус) содержит 2-3 гломусных клетки, или клетки типа I, а на периферии клубочка расположены 1-3 клетки типа II. Афферентные волокна для каротидного тельца содержат вещество P. Вазоконстрикторы и вазодилататоры. Просвет кровеносных сосудов уменьшается при сокращении ГМК средней оболочки (вазоконстрикция) или увеличивается при их расслаблении (вазодилатация). ГМК стенки сосудов (в особенности артериол) имеют рецепторы к разным гуморальным факторам, взаимодействие которых с ГМК приводит к вазоконстрикции или вазодилатации.

Гломусные клетки (I типа)

Рис. 10-5. Клубочек каротидного тельца состоит из 2-3 клеток типа I (гломусные клетки), окружённых клетками типа II. Клетки типа I образуют синапсы (нейромедиатор - дофамин) с терминалями афферентных нервных волокон.

Двигательная вегетативная иннервация. Величину просвета сосудов регулирует также вегетативная нервная система.

Адренергическая иннервация расценивается как преимущественно сосудосуживающая. Сосудосуживающие симпатические волокна обильно иннервируют мелкие артерии и артериолы кожи, скелетных мышц, почек и чревной области. Плотность иннервации од- ноимённых вен значительно меньше. Сосудосуживающий эффект реализуется при помощи норадреналина - агониста α-адренорецепторов.

Холинергическая иннервация. Парасимпатические холинергические волокна иннервируют сосуды наружных половых органов. При половом возбуждении вследствие активации парасимпатической холинергической иннервации происходит выраженное расширение сосудов половых органов и увеличение в них кровотока. Холинергический сосудорасширяющий эффект прослежен также в отношении мелких артерий мягкой мозговой оболочки.

Сердце

Развитие. Сердце закладывается на 3-й неделе внутриутробного развития. В мезенхиме между энтодермой и висцеральным листком спланхнотома образуются две эндокардиальные трубки, выстланные эндотелием. Эти трубки - зачаток эндокарда. Трубки растут и окружаются висцеральным листком спланхнотома. Эти участки спланхнотома утолщаются и дают начало миоэпикардиальным пластинкам. Позднее обе закладки сердца сближаются и срастаются. Теперь общая закладка сердца (сердечная трубка) имеет вид двухслойной трубки. Из эндокардиальной её части развивается эндокард, а из миоэпикардиальной пластинки - миокард и эпикард. Мигрирующие из нервного гребня клетки участвуют в формировании выносящих сосудов и клапанов сердца.

Стенка сердца состоит из трёх оболочек: эндокард, миокард и эпикард. Эндокард - аналог t. intima сосудов - выстилает полости сердца. В желудочках он тоньше, чем в предсердиях. Эндокард состоит из эндотелия, подэндотелиального, мышечно-эластического и наружного соединительнотканного слоёв.

Эндотелий. Внутренняя часть эндокарда представлена плоскими полигональными эндотелиальными клетками, расположенными на базальной мембране. Клетки содержат небольшое количество митохондрий, умеренно выраженный комплекс Гольджи, пиноцитозные пузырьки, многочисленные филаменты. Эндотелиальные клетки эндокарда имеют рецепторы атриопептина и a 1 -адренорецепторы.

Подэндотелиальный слой (внутренний соединительнотканный) представлен рыхлой соединительной тканью.

Мышечно-эластический слой, расположенный кнаружи от эндотелия, содержит ГМК, коллагеновые и эластические волокна.

Наружный соедошотетнотканный слой. Наружная часть эндокарда состоит из волокнистой соединительной ткани. Здесь можно встретить островки жировой ткани, мелкие кровеносные сосуды, нервные волокна.

Миокард. В состав мышечной оболочки сердца входят рабочие кардиомиоциты, миоциты проводящей системы, секреторные кардиомиоциты, поддерживающая рыхлая волокнистая соединительная ткань, коронарные сосуды. Разные типы кардиомиоцитов рассмотрены в главе 7 (см. рисунки 7-21, 7-22 и 7-24).

Проводящая система. Атипичные кардиомиоциты (водители ритма и проводящие миоциты, см. рис. 10-14, см. также рис. 7-24) образуют синусно-предсердный узел, предсердно-желудочковый узел, предсердно-желудочковый пучок. Клетки пучка и его ножек переходят в волокна Пуркинье. Клетки проводящей системы при помощи десмосом и щелевых контактов формируют волокна. Назначение атипичных кардиомиоцитов - автоматическая генерация импульсов и их проведение к рабочим кардиомиоцитам.

Синусно-предсердный узел - номотопный водитель ритма, определяет автоматию сердца (главный водитель ритма), генерирует 60-90 импульсов в минуту.

Предсердно-желудочковый узел. При патологии синусно-предсердного узла его функция переходит к атриовентрикулярному (АВ) узлу (частота генерации импульсов - 40-50 в минуту).

Рис. 10-14. Проводящая система сердца. Импульсы генерируются в синусно-предсердном узле и передаются по стенке предсердия в предсердно-желудочковый узел, а затем по предсердно-желудочковому пучку, его правой и левой ножкам до волокон Пуркинье в стенке желудочков.

Предсердно-желудочковый пучок состоит из ствола, правой и левой ножек. Левая ножка распадается на переднюю и заднюю ветви. Скорость проведения по предсердно-желудочковому пучку - 1-1,5 м/с (в рабочих кардиомиоцитах возбуждение распространяется со скоростью 0,5-1 м/с), частота генерации импульсов - 30-40/ мин.

Волокна Пуркинье. Скорость проведения импульса по волокнам Пуркинье - 2- 4 м/с, частота генерации импульсов - 20-30/ мин.

Эпикард - висцеральный листок перикарда, образован тонким слоем соединительной ткани, срастающейся с миокардом. Свободная поверхность покрыта мезотелием.

Перикард. Основу перикарда составляет соединительная ткань с многочисленными эластическими волокнами. Поверхность перикарда выстлана мезотелием. Артерии перикарда образуют густую сеть, в которой выделяют поверхностные и глубокие сплетения. В перикарде

присутствуют капиллярные клубочки и артериоло-венулярные анастомозы. Эпикард и перикард разделены щелевидным пространством - перикардиальной полостью, содержащей до 50 мл жидкости, которая облегчает скольжение серозных поверхностей.

Иннервация сердца

Регуляцию функций сердца осуществляют вегетативная двигательная иннервация, гуморальные факторы и автоматия сердца. Вегетативная иннервация сердца рассмотрена в главе 7. Афферентная иннервация. Чувствительные нейроны ганглиев блуждающих нервов и спинномозговых узлов (C 8 -Th 6) образуют свободные и инкапсулированные нервные окончания в стенке сердца. Афферентные волокна проходят в составе блуждающих и симпатических нервов.

Гуморальные факторы

Кардаомиоциты имеют a 1 -адренорецепторы, β-адренорецепторы, м-холинорецепторы. Активация a 1 -адренорецепторов способствует поддержанию силы сокращения. Агонисты β-адренорецепторов вызывают увеличение частоты и силы сокращения, м-холинорецепторов - уменьшение частоты и силы сокращения. Норадреналин выделяется из аксонов постганглионарных симпатических нейронов и действует на β 1 -адренорецепторы рабочих кардиомиоцитов предсердий и желудочков, а также пейсмейкерные клетки синусно-предсердного узла.

Коронарные сосуды. Симпатические влияния почти всегда приводят к увеличению коронарного кровотока. a 1 -Адренорецепторы и β-адренорецепторы неравномерно распределены по коронарному руслу. a 1 -Адренорецепторы присутствуют в ГМК сосудов крупного калибра, их стимуляция вызывает сужение артериол и вен сердца. β-Адренорецепторы чаще встречаются в мелких коронарных артериях. Стимуляция β-адренорецепторов расширяет артериолы.

в свою очередь, подразделяются на вены со слабым развитием мышечных элементов и вены со средним и сильным развитием мышечных элементов. В венах так же, как и в артериях, различают три оболочки: внутреннюю, среднюю и наружную. При этом сте пень выраженности этих оболочек в венах существенно отличает ся. Вены безмышечного типа - это вены твердой и мягкой мозго вых оболочек, вены сетчатки глаза, костей, селезенки и плаценты. Под действием крови эти вены способны к растяжению, но ско пившаяся в них кровь сравнительно легко под действием соб ственной силы тяжести оттекает в более крупные венозные ство лы. Вены мышечного типа отличают развитием в них мышечных элементов. К таким венам относят вены нижней части туловища. Также в некоторых видах вен имеется большое количество клапа нов, что препятствует обратному току крови, под силой собствен ной тяжести. Кроме того, ритмические сокращения циркулярно расположенных мышечных пучков также способствуют продви жению крови к сердцу. Кроме того, существенная роль в продви жении крови по направлению к сердцу принадлежит сокраще ниям скелетной мускулатуры нижних конечностей.

Лимфатические сосуды

По лимфатическим сосудам происходит отток лимфы в ве нозное русло. К лимфатическим сосудам относят лимфатические капилляры, интра и экстраорганные лимфатические сосуды, от водящие лимфу от органов, и лимфатические стволы тела, к кото рым относятся грудной проток и правый лимфатический проток, впадающие в крупные вены шеи. Лимфатические капилляры яв ляются началом лимфатической системы сосудов, в которые по ступают из тканей продукты обмена веществ, а в патологических случаях - инородные частицы и микроорганизмы. Также уже давно доказано, что по лимфатическим сосудам могут распрост раняться и клетки злокачественных опухолей. Лимфатические капилляры представляют собой систему замкнутых и анастомози рующих друг с другом и пронизывающих весь организм. Диаметр

Раздел 2. Частная гистология

лимфатических капилляров может быть больше кровеносных. Стенка лимфатических капилляров представлена эндотелиаль ными клетками, которые, в отличие от подобных клеток крове носных капилляров, не имеют базальной мембраны. Границы клеток извилистые. Эндотелиальная трубка лимфатического ка пилляра тесно связана с окружающей соединительной тканью. У лимфатических сосудов, приводящих лимфатическую жид кость к сердцу, отличительной особенностью строения является наличие в них клапанов и хорошо развитой наружной оболочки. Это можно объяснить сходством лимфо и гемодинамических условий функционирования этих сосудов: наличием низкого дав ления и направлением тока жидкости от органов к сердцу. По размерам диаметра все лимфатические сосуды делятся на мел кие, средние и крупные. Как и вены, эти сосуды по своему строе нию могут быть безмышечными и мышечными. Мелкие сосуды главным образом являются внутриорганными лимфатическими сосудами, мышечные элементы в них отсутствуют, и их эндоте лиальная трубка окружена только соединительно тканной обо лочкой. Средние и крупные лимфатические сосуды имеют три хо рошо развитые оболочки - внутреннюю, среднюю и наружную. Во внутренней оболочке, покрытой эндотелием, находятся про дольно и косо направленные пучки коллагеновых и эластических волокон. На внутренней оболочке сосудов имеются клапаны. Они состоят из центральной соединительно тканной пластинки, покрытой с внутренней и наружной поверхностей эндотелием. Границей между внутренней и средней оболочеками лимфатиче ского сосуда является не всегда четко выраженная внутренняя эла стическая мембрана. Средняя оболочка лимфатических сосудов слабо развита в сосудах головы, верхней части туловища и верх них конечностей. В лимфатических сосудах нижних конечностей она, наоборот, выражена очень отчетливо. В стенке этих сосудов находятся пучки гладких мышечных клеток, имеющие циркуляр ное и косое направление. Мышечный слой стенки лимфатическо го сосуда достигает хорошего развития в коллекторах подвздош

Тема 19. Сердечно*сосудистая система

ного лимфатического сплетения, около аортальных лимфатиче ских сосудов и шейных лимфатических стволов, сопровождающих яремные вены. Наружная оболочка лимфатических сосудов обра зована рыхлой волокнистой неоформленной соединительной тканью, которая без резких границ переходит в окружающую сое динительную ткань.

Васкуляризация . Все крупные и средние кровеносные сосуды имеют для своего питания собственную систему, носящую назва ние «сосуды сосудов». Эти сосуды необходимы для питания самой стенки крупного сосуда. В артериях сосуды сосудов проникают до глубоких слоев средней оболочки. Внутренняя оболочка артерий получает питательные вещества непосредственно из крови, про текающей в данной артерии. В диффузии питательных веществ через внутреннюю оболочку артерий большую роль играют бел ково мукополисахаридные комплексы, входящие в состав основ ного вещества стенок этих сосудов. Иннервация сосудами полу чается от вегетативной нервной системы. Нервные волокна этого отдела нервной системы, как правило, сопровождают сосуды

и заканчиваются в их стенке. По строению нервы сосудов являют ся либо миелиновыми, либо безмиелиновыми. Чувствительные нервные окончания в капиллярах многообразны по форме. Арте риоловенулярные анастомозы имеют сложные рецепторы, распо ложенные одновременно на анастомозе, артериоле и венуле. Конечные разветвления нервных волокон заканчиваются на глад ких мышечных клетках маленькими утолщениями - нервно мы шечными синапсами. Эффекторы на артериях и венах однотип ны. По ходу сосудов, особенно крупных, встречаются отдельные нервные клетки и небольшие ганглии симпатической природы. Регенерация. Кровеносные и лимфатические сосуды обладают высокой способностью к восстановлению как после травм, так

и после различных патологических процессов, происходящих в организме. Восстановление дефектов сосудистой стенки после ее повреждения начинается с регенерации и роста ее эндотелия. Уже через 1-2 дня на месте бывшего повреждения наблюдается

Раздел 2. Частная гистология

массовое амитотическое деление эндотелиальных клеток, а на 3- 4 й день появляется митотический вид размножения эндоте лиальных клеток. Мышечные пучки поврежденного сосуда, как правило, восстанавливаются более медленно и неполно по срав нению с другими тканевыми элементами сосуда. По скорости восстановления лимфатические сосуды несколько уступают кро веносным.

Сосудистые афференты

Изменения рО2 , рСО2 крови, концентрация Н+, молочной кислоты, пирувата и ряда других метаболитов оказывают как локальное воздействие на стенку сосудов, так и регистрируются встроенными в стенку сосудов хеморецепторами, а также баро рецепторами, реагирующими на давление в просвете сосудов. Эти сигналы достигают центров регуляции кровообращения и дыхания. Ответы центральной нервной системы реализует дви гательная вегетативная иннервация гладкомышечной клетки стенки сосудов и миокарда. Кроме того, существует мощная система гуморальных регуляторов гладкомышечных клеток стен ки сосудов (вазоконстрикторы и вазодилататоры) и проницаемо сти эндотелия. Барорецепторы особенно многочисленны в дуге аорты и в стенке крупных вен, лежащих близко к сердцу. Эти нерв ные окончания образованы терминалями волокон, проходящих в составе блуждающего нерва. В рефлекторной регуляции крово обращения участвуют каротидный синус и каротидное тельце, а также подобные им образования дуги аорты, легочного ствола, правой подключичной артерии.

Строение и функции каротидного синуса. Каротидный синус расположен вблизи бифуркации общей сонной артерии. Это рас ширение просвета внутренней сонной артерии тотчас у места ее ответвления от общей сонной артерии. В области расширения средняя оболочка истончена, а наружная, напротив, утолщена. Здесь, в наружной оболочке, присутствуют многочисленные баро рецепторы. Если учесть, что средняя оболочка сосуда в пределах

Тема 19. Сердечно*сосудистая система

каротидного синуса относительно тонка, то легко представить, что нервные окончания в наружной оболочке высокочувстви тельны к любым изменениям артериального давления. Отсюда информация поступает в центры, регулирующие деятельность сердечно сосудистой системы. Нервные окончания барорецепто ров каротидного синуса - терминали волокон, проходящих в со ставе синусного нерва - ветви языкоглоточного нерва.

Каротидное тельце . Каротидное тельце реагирует на измене ния химического состава крови. Тельце расположено в стенке внутренней сонной артерии и состоит из клеточных скоплений, погруженных в густую сеть широких капилляров синусоидопо добного типа. Каждый клубочек каротидного тельца (гломус) со держит 2-3 гломусные клетки (или клетки типа I), а на перифе рии клубочка расположены 1-3 клетки типа II. Афферентные волокна для каротидного тельца содержат вещество Р и относя щиеся к кальцитониновому гену пептиды.

Клетки типа I образуют синаптические контакты с термина лями афферентных волокон. Для клеток типа I характерно обилие митохондрий, светлых, и электроноплотных синаптических пу зырьков. Клетки типа I синтезируют ацетилхолин, содержат фер мент синтеза этого нейромедиатора (холинацетилтрансфераза), а также эффективно работающую систему захвата холина. Физио логическая роль ацетилхолина остается неясной. Клетки типа I имеют Н и М холинорецепторы. Активация любого из этих типов холинорецепторов вызывает или облегчает освобождение из кле ток типа I другого нейромедиатора - дофамина. При снижении рО2 секреция дофамина из клеток типа I возрастает. Клетки типа I могут формировать между собой контакты, похожие на синапсы.

Эфферентная иннервация

На гломусных клетках заканчиваются волокна, проходящие в составе синусного нерва (Херинга), и постганглионарные во локна из верхнего шейного симпатического ганглия. Терминали этих волокон содержат светлые (ацетилхолин) или гранулярные (катехоламины) синаптические пузырьки.

Раздел 2. Частная гистология

Каротидное тельце регистрирует изменения рСО2 и рО2 , а также сдвиги рН крови. Возбуждение передается через синапсы на афферентные нервные волокна, по которым импульсы посту пают в центры, регулирующие деятельность сердца и сосудов. Афферентные волокна от каротидного тельца проходят в составе блуждающего и синусного нервов (Херинга).

Главные клеточные типы сосудистой стенки

Гладкомышечная клетка . Просвет кровеносных сосудов умень шается при сокращении гладкомышечных клеток средней обо лочки или увеличивается при их расслаблении, что изменяет кро воснабжение органов и величину артериального давления.

Гладкомышечные клетки сосудов имеют отростки, образую щие с соседними ГМК многочисленные щелевые контакты. Такие клетки электрически сопряжены, через контакты возбуж дение (ионный ток) передается от клетки к клетке, Это обстоя тельство важно, так как в контакте с двигательными терминалями находятся только ГМК, расположенные в наружных слоях t. me dia. ГМК стенки сосудов (в особенности артериол) имеют рецеп торы к разным гуморальным факторам.

Вазоконстрикторы и вазодилататоры. Эффект вазоконстрик ции реализуется при взаимодействии агонистов с α адренорецеп торами, рецепторами серотонина, ангиотензина II, вазопрессина, тромбоксана. Стимуляция α адренорецепторов приводит к со кращению гладкомышечных клеток сосудов. Норадреналин - по преимуществу антагонист α адренорецепторов. Адреналин - антагонист α и β адренорецепторов. Если сосуд имеет гладкомы шечные клетки с преобладанием α адренорецепторов, то адрена лин вызывает сужение просвета таких сосудов.

Вазодилататоры. Если в ГМК преобладают α адренорецепто ры, то адреналин вызывает расширение просвета сосуда. Антаго нисты, вызывающие в большинстве случаев расслабление ГМК: атриопептин, брадикинин, VIP, гистамин, относящиеся к кальци тониновому гену пептиды, простагландины, оксид азота NО.

Тема 19. Сердечно*сосудистая система

Двигательная вегетативная иннервация. Вегетативная нерв ная система регулирует величину просвета сосудов.

Адренергическая иннервация расценивается как преимущест венно сосудосуживающая. Сосудосуживающие симпатические волокна обильно иннервируют мелкие артерии и артериолы кожи, скелетных мышц, почек и чревной области. Плотность иннервации одноименных вен значительно меньше. Сосудосужи вающий эффект реализуется при помощи норадреналина - антагониста α адренорецепторов.

Холинергическая иннервация. Парасимпатические холи нергические волокна иннервируют сосуды наружных половых органов. При половом возбуждении вследствие активации пара симпатической холинергической иннервации происходит выра женное расширение сосудов половых органов и увеличение в них кровотока. Холинергический сосудорасширяющий эффект про слежен также в отношении мелких артерий мягкой мозговой обо лочки.

Пролиферация

Численность популяции ГМК сосудистой стенки контроли руют факторы роста и цитокины. Так, цитокины макрофагов и В лимфоцитов (трансформирующий фактор роста ИЛ 1,) сдер живают пролиферацию ГМК. Эта проблема имеет важное значе ние при атеросклерозе, когда пролиферация ГМК усиливается под действием факторов роста, вырабатываемых в сосудистой стенке (тромбоцитарного фактора роста , щелочного фак тора роста фибробластов, инсулиноподобного фактора роста 1 и фактора некроза опухоли).

Фенотипы ГМК

Различают два варианта ГМК сосудистой стенки: сократи тельный и синтетический.

Сократительный фенотип. ГМК имеют многочисленные миофиламенты и отвечают на воздействие вазоконстрикторов

Раздел 2. Частная гистология

и вазодилататоров. Гранулярная эндоплазматическая сеть в них выражена умеренно. Подобные ГМК не способны к миграции

и не вступают в митозы, так как нечувствительны к эффектам факторов роста.

Синтетический фенотип. ГМК имеют хорошо развитые гра нулярную эндоплазматическую сеть и комплекс Гольджи, клетки синтезируют компоненты межклеточного вещества (коллаген, эластин, протеогликан), цитокины и факторы. ГМК в области атеросклеротического поражения сосудистой стенки перепрограм мируются с сократительного на синтетический фенотип. При ате росклерозе ГМК вырабатывают факторы роста (например, тромбоцитарный фактор PDGF], щелочной фактор роста фиб робластов , усиливающие пролиферацию соседних ГМК.

Регуляция фенотипа ГМК . Эндотелий вырабатывает и секре тирует гепариноподобные вещества, поддерживающие сократи тельный фенотип ГМК. Факторы паракринной регуляции, про дуцируемые эндотелиальными клетками, контролируют тонус сосудов. Среди них - производные арахидоновой кислоты (проста гландины, лейкотриены и тромбоксаны), эндотелин 1, оксид азо та NО и др. Одни из них вызывают вазодилатацию (например, простациклин, оксид азота NО), другие - вазоконстрикцию (на пример, эндотелин 1, ангиотензин II). Недостаточность NО вы зывает повышение АД, образование атеросклеротических бляшек избыток NО может привести к коллапсу.

Эндотелиальная клетка

Стенка кровеносного сосуда очень тонко реагирует на изме нения гемодинамики и химического состава крови. Своеобраз ным чувствительным элементом, улавливающим эти измене ния, является эндотелиальная клетка, которая с одной стороны омывается кровью, а другой обращена к структурам сосудистой стенки.

Тема 19. Сердечно*сосудистая система

Восстановление кровотока при тромбозе.

Воздействие лигандов (АДФ и серотонина, тромбинтром бина) на эндотелиальную клетку стимулирует секрецию NO. Его мишени - расположенные поблизости ГМК. В результате рас слабления гладкомышечной клетки просвет сосуда в области тромба увеличивается, и кровоток может восстановиться. К ана логичному эффекту приводит активация других рецепторов эндо телиальной клетки: гистамина, М холинорецепторов, α2 адрено рецепторов.

Свертывание крови . Эндотелиальная клетка - важный ком понент процесса гемокоагуляции. На поверхности эндотелиаль ных клеток может происходить активация протромбина фактора ми свертывания. С другой стороны, эндотелиальная клетка проявляет антикоагуляционные свойства. Прямое участие эндо телия в свертывании крови состоит в секреции эндотелиальными клетками некоторых плазменных факторов свертывания (напри мер, фактора Виллебранда). В нормальных условиях эндотелий слабо взаимодействует с форменными элементами крови, как и с факторами свертывания крови. Эндотелиальная клетка выра батывает простациклин PGI2, тормозящий адгезию тромбоцитов.

Факторы роста и цитокины . Эндотелиальные клетки синте зируют и секретируют факторы роста и цитокины, влияющие на поведение других клеток сосудистой стенки. Этот аспект имеет важное значение в механизме развития атеросклероза, когда в ответ на патологическое воздействие со стороны тромбоцитов, макрофагов и ГМК эндотелиальные клетки вырабатывают тром боцитарный фактор роста (PDGF), щелочной фактор роста фи бробластов (bFGF), инсулиноподобный фактор роста 1 (IGF 1), ИЛ 1, трансформирующий фактор роста. С другой стороны, эн дотелиальные клетки являются мишенями факторов роста и цитокинов. Например, митозы эндотелиальных клеток индуци руются щелочным фактором роста фибробластов (bFGF), а про лиферацию только эндотелиальных клеток стимулирует фактор роста эндотелиальных клеток, вырабатываемый тромбоцитами.

Раздел 2. Частная гистология

Цитокины из макрофагов и В лимфоцитов - трансформирую щий фактор роста (TGFp), ИЛ 1 и α ИФН - угнетают пролифе рацию эндотелиальных клеток.

Процессинг гормонов . Эндотелий участвует в модификации циркулирующих в крови гормонов и других биологически актив ных веществ. Так, в эндотелии сосудов легких происходит кон версия ангиотензина I в ангиотензин II.

Инактивация биологически активных веществ. Эндотелиаль ные клетки метаболируют норадреналин, серотонин, брадикинин, простагландины.

Расщепление липопротеинов . В эндотелиальных клетках проис ходит расщепление липопротеинов с образованием триглицери дов и холестерина.

Хоминг лимфоцитов . Венулы в паракортикальной зоне лимфа тических узлов, миндалин, пейеровой бляшки подвздошной кишки, содержащие скопление лимфоцитов, имеют высокий эндотелий, экспрессирующий на своей поверхности сосудистый адрессин, узнаваемый молекулой CD44 циркулирующих в крови лимфоцитов. В этих областях лимфоциты прикрепляются к эндо телию и выводятся из кровотока (хоминг).

Барьерная функция . Эндотелий контролирует проницаемость сосудистой стенки. Наиболее наглядно эта функция проявляется в гематоэнцефалическом и гематотимическом барьерах.

Развитие

Сердце закладывается на 3 й неделе внутриутробного разви тия. В мезенхиме между энтодермой и висцеральным листком спланхиотомы образуются две эндокардиальные трубки, выст ланные эндотелием. Эти трубки - зачаток эндокарда. Трубки ра стут и окружаются висцеральной спланхиотомой. Эти участки спланхиотомы утолщаются и дают начало миоэпикардиальным пластинкам. По мере смыкания кишечной трубки обе закладки сближаются и срастаются. Теперь общая закладка сердца (сердеч

По электро физиологическими свойствами ГМК сосудов отличаются как от полосатых мышц, так и от гладких мышц

других внутренних органов. Мембранный потенциал покоя (МПС) сосудистых ГМК у млекопитающих составляет -40 -50 и даже -60 мВ. Его величина зависит от степени проницаемости клеточной мембраны к ионам калия.

Спонтанные колебания МПС и потенциалы действия (ПД) в гладенькомьзових клетках большинства кровеносных сосудов млекопитающих при нормальных условиях отсутствуют. Они обнаружены только в воротной и печеночной венах, венах мезентерию млекопитающих и в артериолах крылья летучих мышей. В этих сосудах (наиболее исследованной в этом отношении является воротной вена) наблюдаются медленные деполяризации волны МПС амплитудой 10-20 мВ и длительностью 250-400 мс. На вершине медленной волны возникает один или несколько ПД, амплитуда которых при внутриклеточном отведении может достигать 30-50 мВ, а продолжительность 20-50 мс (Шуба, 1988). В других клетках той же сосуды можно наблюдать электрические потенциалы и значительно большей продолжительности. При этом возникают спонтанные сокращения мышечных клеток вышеупомянутых сосудов. На рисунке 4.13 приведены одновременная запись спонтанной электрической и механической активности полоски воротной вены и изменения их под влиянием аденозина (10-5 моль / л).

Электрофизиологические исследования показали, что между отдельными ГМК существует выраженный электрическая связь, благодаря которому происходит электротонических распространение потенциалов на значительно больших расстояниях, чем длина одной клетки. Такое свойство мышечных клеток обусловлена существованием между ними уже упоминавшихся плотных контактов и лежит в основе передачи возбуждения с одной ГМК на другие как электротонических, так и с помощью потенциалов действия.

Относительно природы спонтанной активности сосудистых ГМК большинство специалистов считают, что она имеет миогенная происхождения. По мнению одного из авторов этой гипотезы Б. фолковыми, в толще мышечного слоя стенки сосуда есть отдельные гладкомышечные клетки - пейсмекера, способные реагировать деполяризацией на их растяжение. Этот сигнал электротонических или с помощью ПД, также возникают в пейсмекерных клетках, передается на соседние ГМК и вызывает их сокращение.

Как деполяризация клеток воротной вены, так и ПД, возникающие при этом, обусловлены вхождением в клетку ионов кальция, а не натрия, как это имеет место в клетках полосатых мышц. Процесс осуществляется через потенциалокеровани кальциевые каналы, тогда как реполяризация мембраны ГМК обусловлена выходом из клетки ионов калия.

При поступлении в ГМК кровеносного сосуда сигнала клетка деполяризуется, и при достижении критического уровня деполяризации (на 10-15 мВ ниже уровня МПС) на ее мембране генерируется один или несколько потенциалов действия с последующим сокращением ГМК. В случае тормозного медиатора на мембране ГМК возникает гиперпо- поляризации, что сопровождается расслаблением клетки.

Выше уже отмечалось, что во многих случаях ПД в гладко- мышечных клетках кровеносных сосудов в ответ на действие физиологически активных веществ (ФАР) совсем не возникают или возникают редко, и в основном при большой силе раздражения. Сокращение изолированной полоски кровеносного сосуда развивается и при отсутствии ПД, а под влиянием сосудосуживающих веществ, например, серотонина, сокращение может возникать и без каких-либо изменений МПС. Это одна из особенностей гладких мышц кровеносных сосудов.

Недавно было обнаружено, что целый ряд веществ, которые расширяют артерии, действуют не прямо на ГМК, а опосредованно, через эндотелий этих сосудов. Так, известный вазодилататор ацетилхолин осуществляет свой сосудорасширяющий эффект, активируя выработку эндотелиальными клетками стенки сосудов оксида азота (N0). Последний проникает через мембрану внутрь ГМК и, как вторичный посредник, действует на внутриклеточные процессы, расслабляя клетку путем снижения в саркоплазме концентрации ионов кальция. Поскольку NO не взаимодействует с мембранными рецепторами клетки, ее МПС при этом не меняется. Исключение из описанного явления составляет воротной вена, которую ацетилхолин НЕ расширяет, а наоборот, сужает. Хотя он и здесь действует через эндотелий, механизм реакции остается неизвестным.

Вообще стоит отметить, что свойства ГМК различных кровеносных сосудов существенно отличаются. Они зависят не только от вида животного, но также от органа или ткани, где находится данная сосуд, от степени ее иннервации, наличия или отсутствия спонтанной активности и даже от ее калибра. Пожалуй, это одна из причин того, почему до сих пор не удается унифицировать гладкомышечные клетки кровеносной системы, описать наиболее общие закономерности их функционирования.

Подробности

Страница 1 из 2

Сосуды - это важный компонент сердечно-сосудистой системы. Они участвуют не только в доставке крови и кислорода к тканям и органам, но и осущевтляют регуляцию этих процессов.

1. Отличия в структуре стенки артерий и вен.

У артерий толстая мышечная медия, выраженный эластический слой.

Стенка вен менее плотная и более тонкая. Наиболее выраженный слой - адвентиция.

2. Типы мышечных волокон.

Многоядерные скелетные поперечно-полосатые мышечные волокна (по сути состоят не из отдельных клеток, а из синцитиев).

Кардиомиоциты тоже относятся к поперечно-полосатой мускулатуре, однако в них волокна связаны между собой контактами - нексусами, это обеспечивает распространение возбуждения по миокарду при его сокращении.

Гладкомышечные клетки имеют веретеновидную форму, они одноядерные.

3. Электронномикроскопическоая структура гладкой мышцы.

4. Фенотип гладкомышечной клетки.

5. Щелевые контакты в гладкой мышце осуществляют передачу возбуждения от клетки к клетке в унитарном типе гладких мышц.

6. Сравнительное изображение трех типов мышц.

7. Потенциал действия гладких мышц сосудов.

8. Тонический и фазический тип сокращений гладких мышц.