Масса крови перемещается по замкну­той сосудистой системе, состоящей из боль­шого и малого кругов кровообращения, в строгом соответствии с основными физи­ческими принципами, в том числе с прин­ципом неразрывности потока. Согласно этому принципу разрыв потока при вне­запных травмах и ранениях, сопровожда­ющихся нарушением целостности сосудис­того русла, приводит к потере как час­ти объема циркулирующей крови, так и большого количества кинетической энер­гии сердечного сокращения. В нормально функционирующей системе кровообраще­ния согласно принципу неразрывности потока через любое поперечное сечение замкнутой сосудистой системы в единицу времени перемещается один и тот же объем крови.

Дальнейшее изучение функций крово­обращения как в эксперименте, так и в кли­нике, привело к пониманию того, что кро­вообращение наряду с дыханием относится к числу наиболее важных жизнеобес­печивающих систем, или к так называе­мым «витальным» функциям организма, прекращение функционирования которых приводит к смерти в течение нескольких секунд или минут. Между общим состоя­нием организма больного и состоянием кровообращения существует прямая зави­симость, поэтому состояние гемодинами­ки является одним из определяющих кри­териев тяжести заболевания. Развитие любого тяжелого заболевания всегда со­провождается изменениями функции кро­вообращения, проявляющимися либо в его патологической активации (напряжение), либо в депрессии той или иной степени выраженности (недостаточность, несосто­ятельность). Первичное поражение цир­куляции характерно для шоков различ­ной этиологии.

Оценка и поддержание адекватности гемодинамики являются важнейшим ком­понентом деятельности врача при проведении анестезии, интенсивной терапии и реанимации.

Система кровообращения осуществля­ет транспортную связь между органами и тканями организма. Кровообращение вы­полняет множество взаимосвязанных функ­ций и обуславливает интенсивность сопря­женных процессов, в свою очередь, влия­ющих на кровообращение. Все реализуе­мые кровообращением функции характе­ризуются биологической и физиологичес­кой специфичностью и ориентированы на осуществление феномена переноса масс, клеток и молекул, выполняющих защит­ные, пластические, энергетические и инфор­мационные задачи. В наиболее общей фор­ме функции кровообращения сводятся к массопереносу по сосудистой системе и к массообмену с внутренней и внешней сре­дой. Это явление, наиболее четко просле­живаемое на примере газообмена, лежит в основе роста, развития и гибкого обеспе­чения различных режимов функциональ­ной активности организма, объединяя его в динамическое целое.


К основным функциям кровообращения относятся:

1. Транспорт кислорода из легких к тка­ням и углекислого газа из тканей к легким.

2. Доставка пластических и энергетичес­ких субстратов к местам их потребления.

3. Перенос продуктов метаболизма к органам, где происходит их дальнейшее превращение и экскреция.

4. Осуществление гуморальной взаимо­связи между органами и системами.

Кроме этого, кровь играет роль буфера между внешней и внутренней средой и является наиболее активным звеном в гид­рообмене организма.

Система кровообращения образована сердцем и сосудами. Оттекающая от тка­ней венозная кровь поступает в правое предсердие, а оттуда - в правый желудо­чек сердца. При сокращении последнего кровь нагнетается в легочную артерию. Протекая через легкие, кровь подвергает­ся полной или частичной эквилибрации с альвеолярным газом, в результате чего она отдает избыток углекислого газа и насы­щается кислородом. Система легочных сосудов (легочные артерии, капилляры и вены) образует малый (легочный) круг кровообращения . Артериализированная кровь из легких по легочным венам по­ступает в левое предсердие, а оттуда - в левый желудочек. При его сокращении кровь нагнетается в аорту и далее - в артерии, артериолы и капилляры всех ор­ганов и тканей, откуда по венулам и ве­нам оттекает в правое предсердие. Систе­ма перечисленных сосудов образует боль­шой круг кровообращения. Любой элемен­тарный объем циркулирующей крови пос­ледовательно проходит все перечисленные отделы системы кровообращения (за ис­ключением порций крови, подвергающих­ся физиологическому либо патологичес­кому шунтированию).

Исходя из целей клинической физио­логии, кровообращение целесообразно рас­сматривать как систему, состоящую из сле­дующих функциональных отделов:

1. Сердце (сердечный насос) - глав­ный двигатель циркуляции.

2. Сосуды-буферы, или артерии, выпол­няющие преимущественно пассивную транспортную функцию между насосом и системой микроциркуляции.

3. Сосуды-емкости, или вены, выполня­ющие транспортную функцию возврата крови к сердцу. Это более активная, чем артерии, часть системы кровообращения, поскольку вены способны изменять свой объем в 200 раз, активно участвуя в регу­ляции венозного возврата и циркулирую­щего объема крови.

4. Сосуды распределения (сопротивле­ния) - артериолы, регулирующие кро­воток через капилляры и являющиеся глав­ным физиологическим средством регио­нарного распределения сердечного выбро­са, а также венулы.

5. Сосуды обмена - капилляры, интег­рирующие систему кровообращения в об­щее движение жидкости и химических ве­ществ в организме.

6. Сосуды-шунты - артерио-венозные анастомозы, регулирующие периферичес­кое сопротивление при спазме артериол, сокращающем кровоток через капилляры.

Три первых отдела кровообращения (сердце, сосуды-буферы и сосуды-емко­сти) представляют собой систему макроциркуляции, остальные - образуют сис­тему микроциркуляции.

В зависимости от уровня давления кро­ви выделяют следующие анатомо-функциональные фрагменты системы крово­обращения:

1. Система высокого давления (от ле­вого желудочка до капилляров большого круга) кровообращения.

2. Система низкого давления (от капил­ляров большого круга до левого предсер­дия включительно).

Хотя сердечно-сосудистая система яв­ляется целостным морфофункциональным образованием, для понимания процессов циркуляции целесообразно рассматривать основные аспекты деятельности сердца, сосудистого аппарата и регуляторных ме­ханизмов по отдельности.

Сердце

Этот орган массой около 300 г снабжа­ет кровью «идеального человека» массой 70 кг в течение примерно 70 лет. В покое каждый желудочек сердца взрослого че­ловека выбрасывает 5 -5,5 л крови в ми­нуту; следовательно, за 70 лет производи­тельность обоих желудочков составляет приблизительно 400 млн. л, даже если че­ловек находится в состоянии покоя.

Обменные потребности организма зави­сят от его функционального состояния (покой, физическая активность, тяжелые заболевания, сопровождающиеся гипер­метаболическим синдромом). Во время тяжелой нагрузки минутный объем может возрастать до 25 л и более в результате увеличения силы и частоты сердечных со­кращений. Некоторые из этих изменений обусловлены нервными и гуморальными воздействиями на миокард и рецепторный аппарат сердца, другие являются физичес­ким следствием воздействия «растяги­вающей силы» венозного возврата на со­кратительную силу волокон сердечной мышцы.

Процессы, происходящие в сердце, ус­ловно разделяют на электрохимические (автоматия, возбудимость, проводимость) и механические, обеспечивающие сократи­тельную активность миокарда.

Электрохимическая деятельность серд­ца. Сокращения сердца происходят вслед­ствие периодически возникающих в сер­дечной мышце процессов возбуждения. Сердечная мышца - миокард - обладает рядом свойств, обеспечивающих его непре­рывную ритмическую деятельность, - автоматией, возбудимостью, проводимостью и сократимостью.

Возбуждение в сердце возникает перио­дически под влиянием процессов, проте­кающих в нем. Это явление получило на­звание автоматии. Способностью к автоматии обладают определенные участки сердца, состоящие из особой мышечной тка­ни. Эта специфическая мускулатура об­разует в сердце проводящую систему, со­стоящую из синусового (синусно-предсердного, синоатриального) узла - главного водителя ритма сердца, расположенного в стенке предсердия около устьев полых вен, и предсердно-желудочкового (атриовентрикулярного) узла, находящегося в ниж­ней трети правого предсердия и межже­лудочковой перегородки. От атриовентрикулярного узла берет начало предсердно-желудочковый пучок (пучок Гиса), про­бодающий предсердно-желудочковую пе­регородку и разделяющийся на левую и правую ножки, следующие в межжелудоч­ковую перегородку. В области верхушки сердца ножки предсердно-желудочкового пучка загибаются вверх и переходят в сеть сердечных проводящих миоцитов (волок­на Пуркинье), погруженных в сократи­тельный миокард желудочков. В физио­логических условиях клетки миокарда на­ходятся в состоянии ритмической актив­ности (возбуждения), что обеспечивается эффективной работой ионных насосов этих клеток.

Особенностью проводящей системы серд­ца является способность каждой клетки самостоятельно генерировать возбужде­ние. В обычных условиях автоматия всех расположенных ниже участков проводя­щей системы подавляется более частыми импульсами, поступающими из синусно-предсердного узла. В случае поражения этого узла (генерирующего импульсы с час­тотой 60 - 80 ударов в минуту) водителем ритма может стать предсердно-желудочковый узел, обеспечивающий частоту 40 - 50 ударов в минуту, а если оказывается выключенным и этот узел - волокна пуч­ка Гиса (частота 30 - 40 ударов в мину­ту). При выходе из строя и этого водите­ля ритма процесс возбуждения может воз­никнуть в волокнах Пуркинье с очень ред­ким ритмом - примерно 20/мин.

Возникнув в синусовом узле, возбуж­дение распространяется на предсердие, до­стигая атриовентрикулярного узла, где бла­годаря небольшой толщине его мышечных волокон и особому способу их соедине­ния возникает некоторая задержка про­ведения возбуждения. Вследствие этого возбуждение достигает предсердно-желу-дочкового пучка и волокон Пуркинье лишь после того, как мускулатура предсер­дий успевает сократиться и перекачать кровь из предсердий в желудочки. Таким образом, атриовентрикулярная задержка обеспечивает необходимую последова­тельность сокращений предсердий и же­лудочков.

Наличие проводящей системы обеспечи­вает ряд важных физиологических функ­ций сердца: 1) ритмическую генерацию им­пульсов; 2) необходимую последователь­ность (координацию) сокращений предсер­дий и желудочков; 3) синхронное вовле­чение в процесс сокращения клеток мио­карда желудочков.

Как экстракардиальные влияния, так и факторы, непосредственно поражающие структуры сердца, могут нарушать эти со­пряженные процессы и приводить к раз­витию различных патологий сердечного ритма.

Механическая деятельность сердца. Сердце нагнетает кровь в сосудистую сис­тему благодаря периодическому сокра­щению мышечных клеток, составляющих миокард предсердий и желудочков. Со­кращение миокарда вызывает повышение давления крови и изгнание ее из камер сердца. Вследствие наличия общих слоев миокарда у обоих предсердий и обоих желудочков возбуждение одновременно достигает их клеток и сокращение обоих предсердий, а затем и обоих желудоч­ков осуществляется практически син­хронно. Сокращение предсердий начинается в области устьев полых вен, в результате чего устья сжимаются. Поэтому кровь может двигаться через предсердно-желудочковые клапаны только в одном направ­лении - в желудочки. В момент диасто­лы желудочков клапаны раскрываются и пропускают кровь из предсердий в желу­дочки. В левом желудочке находится дву­створчатый, или митральный, клапан, в правом - трехстворчатый клапан. Объем желудочков постепенно возрастает до тех пор, пока давление в них не превысит дав­ление в предсердии и клапан не закроет­ся. В этот момент объем в желудочке пред­ставляет собой конечный диастолический объем. В устьях аорты и легочной арте­рии имеются полулунные клапаны, состо­ящие из трех лепестков. При сокращении желудочков кровь устремляется в сторо­ну предсердий и створки предсердно-желудочковых клапанов захлопываются, в это время полулунные клапаны тоже пока остаются закрытыми. Начало сокращения желудочка при полностью закрытых кла­панах, превращающих желудочек во вре­менно изолированную камеру, соответству­ет фазе изометрического сокращения.

Повышение давления в желудочках при их изометрическом сокращении происхо­дит до тех пор, пока оно не превысит дав­ление в крупных сосудах. Следствием этого является изгнание крови из правого желудочка в легочную артерию и из лево­го желудочка в аорту. При систоле желу­дочков лепестки клапана под давлением крови прижимаются к стенкам сосудов, и она беспрепятственно изгоняется из же­лудочков. Во время диастолы давление в желудочках становится ниже, чем в круп­ных сосудах, кровь устремляется из аорты и легочной артерии в направлении желу­дочков и захлопывает полулунные клапа­ны. Вследствие падения давления в каме­рах сердца во время диастолы, давление в венозной (приносящей) системе начинает превышать давление в предсердиях, куда кровь притекает из вен.

Наполнение сердца кровью обусловле­но рядом причин. Первая - наличие ос­татка движущей силы, вызванной сокра­щением сердца. Среднее давление крови в венах большого круга - 7 мм рт. ст., а в полостях сердца во время диастолы стре­мится к нулю. Таким образом, градиент давления составляет всего около 7 мм рт. ст. Это надо учитывать во время хирургичес­ких вмешательств - любое случайное сдавливание полых вен может полностью прекратить доступ крови к сердцу.

Вторая причина притока крови к серд­цу - сокращение скелетных мышц и на­блюдающееся при этом сдавливание вен конечностей и туловища. В венах имеют­ся клапаны, пропускающие кровь только в одном направлении - к сердцу. Эта так называемая венозная помпа обеспечивает значительное увеличение притока веноз­ной крови к сердцу и сердечного выброса при физической работе.

Третья причина увеличения венозного возврата - присасывающий эффект кро­ви грудной клеткой, которая представляет собой герметически закрытую полость с отрицательным давлением. В момент вдо­ха эта полость увеличивается, органы, рас­положенные в ней (в частности, полые ве­ны), растягиваются, и давление в полых венах и предсердиях становится отрица­тельным. Определенное значение имеет также присасывающая сила расслабляю­щихся подобно резиновой груше желудоч­ков.

Под сердечным циклом понимают пе­риод, состоящий из одного сокращения (систола) и одного расслабления (диас­тола).

Сокращение сердца начинается с сис­толы предсердий, длящейся 0,1 с. При этом давление в предсердиях повышается до 5 - 8 мм рт. ст. Систола желудочков про­должается около 0,33 с и состоит из не­скольких фаз. Фаза асинхронного сокра­щения миокарда длится от начала сокра­щения до закрытия атриовентрикулярных клапанов (0,05 с). Фаза изометрического сокращения миокарда начинается с захло­пывания атриовентрикулярных клапанов и заканчивается открытием полулунных (0,05 с).

Период изгнания составляет около 0,25 с. За это время часть крови, содержащейся в желудочках, изгоняется в крупные сосу­ды. Остаточный систолический объем зависит от величины сопротивления работы сердца и от силы его сокращения.

Во время диастолы давление в желу­дочках падает, кровь из аорты и легочной артерии устремляется обратно и захлопы­вает полулунные клапаны, затем кровь притекает в предсердия.

Особенностью кровоснабжения миокар­да является то, что кровоток в нем осуще­ствляется в фазу диастолы. В миокарде имеются две системы сосудов. Снабжение левого желудочка происходит по сосудам, отходящим от коронарных артерий под острым углом и проходящим по поверх­ности миокарда, их ветви снабжают кровью 2/3 наружной поверхности миокарда. Другая система сосудов проходит под ту­пым углом, прободает всю толщу миокар­да и осуществляет кровоснабжение 1/3 внутренней поверхности миокарда, развет­вляясь эндокардиально. В период диа­столы кровоснабжение этих сосудов зави­сит от величины внутрисердечного давле­ния и давления извне на сосуды. На суб-эндокардиальную сеть влияет среднее дифференциальное диастолическое давле­ние. Чем оно выше, тем хуже наполнение сосудов, т. е. нарушается коронарный кро­воток. У больных с дилатацией чаще воз­никают очаги некроза в субэндокардиальном слое, чем интрамурально.

Правый желудочек тоже имеет две сис­темы сосудов: первая проходит через всю толщу миокарда; вторая образует субэндокардиальное сплетение (1/3). Сосуды перекрывают друг друга в субэндокардиальном слое, поэтому инфарктов в об­ласти правого желудочка практически не бывает. Дилатированное сердце всегда имеет плохой коронарный кровоток, но потребляет кислорода больше, чем нор­мальное.

В статье будет раскрыта вся тема нормальной физиологии сердца и сосудов, а именно как работает сердце, что заставляет приводить кровь в движение, а также учтутся особенности васкулярной системы. Разберем изменения, возникающие в системе с возрастом, при некоторых наиболее распространенных среди населения патологий, а также у маленьких представителей – у детей.

Анатомия и физиология сердечно-сосудистой системы – две неразрывно связанные между собой науки, между которыми есть прямая связь. Нарушение анатомических параметров кардиоваскулярной системы безоговорочно ведет к изменениям в ее работе, откуда уже в дальнейшем вытекает характерная симптоматика. Симптомы, связанные одним патофизиологическим механизмом формируют синдромы, а синдромы – заболевания.

Знание нормальной физиологии сердца очень важно для врача любой специальности. Не каждый должен углубляться в детали работы человеческого насоса, но фундаментальные знания необходимы всем.

Ознакомление населения с особенностями работы кардиоваскулярной системы позволит расширить знания о сердце, а также позволит понять некоторые симптомы, возникающие при вовлечении сердечной мышцы в патологию, а также разобраться с профилактическими мерами, позволяющими укрепить ее и предупредить возникновение множества патологий. Сердце – как мотор автомобиля, требует бережного отношения к себе.

Анатомические особенности

В одной из статей подробно рассматривается . В данном случае мы затронем эту тему лишь бегло для напоминания об анатомии и общего представления, необходимого, прежде чем затронуть тему нормальной физиологии.

Итак, сердце – полый мышечный орган, сформированный четырьмя камерами – двумя предсердиями и двумя желудочками. Кроме мышечной основы в нем имеется фиброзный каркас, на котором закреплен клапанный аппарат, а именно створки левого и правого атриовентрикулярных клапанов (митрального и трикуспидального).

В данный аппарат также входят сосочковые мышцы и сухожильные хорды, натягивающиеся от папиллярных мышц к свободным краям створок клапанов.

Сердце состоит из трех слоев.

  • эндокард – внутренний слой, выстилающий изнутри как камеры, так и покрывающий сам клапанный аппарат (представлен эндотелием);
  • миокард – собственно мышечная масса сердца (вид ткани является специфичным только для сердца, и не относится ни к поперечнополосатой, ни к гладкой мускулатуре);
  • эпикард – наружный слой, покрывающий сердце извне, и участвующий в формировании перикардиальной сумки, в которую заключено сердце.

Сердце – это не только его камеры, но и его сосуды, которые впадают в предсердия и выходят из желудочков. Рассмотрим, чем они представлены.

Важно! Единственно важная инструкция, направленная на поддержания здоровой сердечную мышцу, заключается в ежедневной физической активности человека и правильном питании, покрывающего все потребности организма в нутриентах, витаминах.

  1. Аорта. Крупный эластический сосуд, выходящий из левого желудочка. Подразделяется на торакальный и абдоминальный отделы. В грудном отделе выделяют восходящую часть аорты и дугу, которая дает три основные ветви, снабжающие верхнюю часть тела – плечеголовной ствол, левая общая сонная и левая подключичная артерии.Брюшной отдел, состоящий из нисходящей части аорты дает большое количество ветвей, питающих органы абдоминальной и тазовой полостей, а также нижние конечности.
  2. Легочной ствол. Главный сосуд правого желудочка – легочная артерия является началом малого круга кровообращения. Подразделяясь на правую и левую пульмональные артерии, а в дальнейшем три правых и две левых артерии, идущие в легкие, она играет основную роль в процессе оксигенации крови.
  3. Полые вены. Верхняя и нижняя полые вены (англ., IVC and SVC), впадая в правое предсердие, оканчивают, таким образом, большой круг кровообращения. Верхняя собирает венозную кровь, богатую на продукты метаболизма тканей и углекислый газ из головы шеи, верхних конечностей и верхней части туловища, а нижняя, соответственно, из оставшихся частей туловища.
  4. Легочные вены. Четыре легочные вены, впадая в левое предсердие, и перенося в себе артериальную кровь, являются частью малого круга кровообращения. Оксигенированная кровь в дальнейшем разносится по всем органам и тканям организма, питая их кислородом и обогащая питательными веществами.
  5. Коронарные артерии. Венечные артерии, в свою очередь являются собственными сосудами сердца. Сердце, как мышечный насос также требует питания, которое поступает из коронарных сосудов, выходящих из аорты, в непосредственной близости к полулунным аортальным клапанам.

Важно! Анатомия и физиология сердца и сосудов – две взаимосвязанные между собой науки.

Внутренние секреты сердечной мышцы

Три основных слоя мышечной ткани формируют сердце – предсердный и желудочковый (англ., atrial and ventricular) миокард, и специализированные возбуждающие и проводящие мышечные волокна. Атриальный и вентрикулярный миокард сокращаются подобно скелетной мышце за исключением длительности сокращений.

Возбуждающие и проводящие волокна в свою очередь сокращаются слабо, даже бессильно за счет того, что в своем составе имею всего несколько сократительных миофибрилл.

Вместо обычных сокращений последний вид миокарда генерирует электрический разряд с одинаковой ритмичностью и автоматизмом, проводит его через сердце, обеспечивая возбуждающую систему, которая контролирует ритмичные сокращения миокарда.

Также как и в скелетной мускулатуре, сердечную мышцу формируют актиновые и миозиновые волокна, которые во время сокращений скользят один относительного другого. В чем же отличия?

  1. Иннервация. К скелетным мышцам подходят веточки соматической нервной системы, в то время как работа миокарда автоматизирована. Конечно, к сердцу подходят нервные окончания, например, веточки блуждающего нерва, однако, они не играют ключевой роли в генерации потенциала действия и последующих сокращений сердца.
  2. Строение. Сердечная мускулатура состоит из множества индивидуальных клеток с одним-двумя ядрами, соединенных в параллельные тяжи между собой. Миоциты скелетной мышцы – мультиядерные.
  3. Энергия. Митохондрии – так званные «энергетические станции» клеток в большем количестве содержатся в сердечной мускулатуре, чем в скелетной. Для более наглядного примера – 25% всего клеточного пространства кардиомиоцитов занимают митохондрии, и, напротив, лишь 2% — в клетках скелетной мышечной ткани.
  4. Длительность сокращений. Потенциал действия скелетной мускулатуры вызван в большей степени внезапным открытием большого количества быстрых натриевых каналов. Это приводит к устремлению огромного количества ионов натрия внутрь миоцитов из внеклеточного пространства. Длится этот процесс всего несколько тысячных секунды, после чего каналы внезапно закрываются, и наступает период реполяризации.
    В миокарде, в свою очередь, потенциал действия обусловлен открытием сразу двух типов каналов в клетках – тех же быстрых натриевых, а также медленных кальциевых каналов. Особенность последних заключается в том, что они не только медленнее открываются, но и дольше остаются открытыми.

В течение этого времени больше ионов натрия и кальция входят в клетку, приводя к более продолжительному периоду деполяризации, за которым следует фаза плато в потенциале действия. Более подробно о различиях и сходствах между миокардом и скелетной мускулатурой рассказано в видео в этой статье. Обязательно дочитайте до конца эту статью, чтобы узнать как устроена физиология сердечно — сосудистой системы.

Главный генератор импульса в сердце

Синоатриальный узел, находящийся в стенке правого предсердия вблизи устья верхней полой вены, является основой работы возбуждающей и проводящей систем сердца. Это группа клеток, способных спонтанно генерировать электрический импульс, который в дальнейшем передается по всей проводящей системе сердца, продуцируя сокращения миокарда.

Синусовый узел способен продуцировать ритмичные импульсы, задавая тем самым нормальную частоту сокращений сердца – от 60 до 100 ударов в минуту у взрослых. Его также называют естественным водителем ритма.

После синоатриального узла импульс распространяется по волокнам от правого предсердия к левому, после – передается на атриовентрикулярный узел, расположенный в межпредсердной перегородке. Он является «переходным» этапом от предсердий к желудочкам.

По левой и правой ножке пучков Гиса электрический импульс переходит к волокнам Пуркинье, которые оканчиваются в желудочках сердца.

Внимание! Цена полноценной работы сердца зависит во многом от нормальной работы его проводящей системы.

Особенности проведения сердечного импульса:

  • существенная задержка в проведении импульса от предсердий к желудочкам позволяет первым полностью опустеть и наполнить кровью желудочки;
  • скоординированные сокращения вентрикулярных кардиомиоцитов обуславливают продукцию максимального систолического давления в желудочках, благодаря чему возможно вытолкнуть кровь в сосуды большого и малого кругов кровообращения;
  • обязательный период релаксации сердечной мышцы.

Сердечный цикл

Каждый цикл инициируется потенциалом действия, сгенерированном в синоатриальном узле. Состоит из периода релаксации – диастолы, в течение которого желудочки наполняются кровью, после которого наступает систола – период сокращения.

Общая продолжительность сердечного цикла, включающего систолу и диастолу, обратно пропорциональна частоте сердечных сокращений. Так при ускорении частоты сокращения сердца значительно укорачивается время, как релаксации, так и сокращения желудочков. Это обуславливает неполноценное наполнение и опустошение камер сердца перед следующим сокращением.

ЭКГ и сердечный цикл

Зубцы P, Q, R, S, T являются электрокардиографической записью с поверхности тела электрического вольтажа, сгенерированного сердцем. Зубец Р представляет собой распространение процесса деполяризации по предсердиям, вслед за которым происходит их сокращение и выталкивание крови в желудочки в диастолическую фазу.

Комплекс QRS – графическое изображение электрической деполяризации, в результате которой начинается сокращение желудочков, возрастает давление внутри полости, что способствует выталкиванию крови из желудочков в сосуды большого и малого кругов кровообращения. Зубец Т, в свою очередь, представляет стадию реполяризации желудочков, когда начинается расслабление мышечных волокон.

Насосная функция сердца

Около 80% крови, втекающей из легочных вен в левое предсердие и из полых вен в правое – пассивно перетекает в полость желудочков. Оставшиеся 20% попадают в желудочки путем активной фазы диастолы – во время сокращения предсердий.

Таким образом, первичная насосная функция предсердий увеличивает насосную эффективность желудочков примерно на 20%. В состоянии покоя выключение данной функции предсердий не сказывается на деятельности организма симптоматически, до того момента пока не возникает физическая активность. В таком случае недостаток 20% от ударного объема приводит к признакам сердечной недостаточности, в особенности одышке.

Например, при фибрилляции предсердий не возникает полноценных их сокращений, а лишь трепетоподобное движение их стенок. В результате активной фазы наполнения желудочков также не происходит. Патофизиология сердечно-сосудистой системы в данном случае направлена максимально на компенсацию недостатка этих 20% работой желудочкового аппарата, однако опасна развитием ряда осложнений.

Как только начинается сокращение желудочков, то есть наступает фаза систолы, давление в их полости резко возрастает, и из-за разницы давлений в предсердиях и желудочках митральный и трикуспидальный клапаны закрываются, что препятствует в свою очередь регургитации крови в обратном направлении.

Вентрикулярные мышечные волокна не сокращаются одномоментно – вначале возрастает их напряжение, и лишь после – укорочение миофибрилл и, собственно, сокращение. Рост внутриполостного давления в левом желудочке выше 80 мм.рт.ст приводит к открытию полулунных клапанов аорты.

Выброс крови в сосуды также подразделяется на быструю фазу, когда выкидывается около 70% всего ударного объема крови, а также медленную фазу, с выбросом оставшихся 30%. Возрастные анатомофизиологические заключаются в основном воздействием коморбидных патологий, влияющих как на работы проводящей системы, так и его сократительной способности.

Физиологические показатели сердечно сосудистой системы включают в себя следующие параметры:

  • объем конечно-диастолический – объем крови, накопившейся в желудочке в конце диастолы (приблизительно120 мл);
  • ударный объем – объем крови, выбрасываемый желудочком в одну систолу (около 70 мл);
  • конечно-систолический объем – объем крови, остающийся в желудочке по окончанию систолической фазы (около 40-50 мл);
  • фракция выброса – величина, рассчитываемая как отношение ударного объема к объему, оставшемуся в желудочке в конце диастолы (в норме должна быть выше 55%).

Важно! Анатомические и физиологические особенности сердечно-сосудистой системы у детей обуславливают другие нормальные показатели вышеперечисленных параметров.

Клапанный аппарат

Атриовентрикулярные клапаны (митральный и трехстворчатый) предупреждают обратный ток крови в предсердия в фазу систолы. Та же задача у полулунных клапанов аорты и легочной артерии, только они ограничивают регургитацию обратно в желудочки. Это один из наиболее ярких примеров, где физиология и анатомия сердечно сосудистой системы тесно связаны между собой.

Клапанный аппарат состоит из створок, фиброзного кольца, сухожильных хорд и папиллярных мышц. Нарушение работы одного из этих компонентов достаточно для ограничения работы всего аппарата.

Примером тому может служить инфаркт миокарда с вовлечением в процесс сосочковой мышцы левого желудочка, от которой тянется хорда к свободному краю митрального клапана. Ее некроз приводит к отрыву створки и развитие острой левожелудочковой недостаточности на фоне инфаркта.

Открытие и закрытие клапанов зависит от градиента давления между предсердиями и желудочками, а также желудочками и аортой или легочным стволом.

Клапаны аорты и легочного ствола, в свою очередь, построены иначе. Они имеют полулунную форму и способны вынести большее повреждение, нежели двухстворчатый и трикуспидальный клапаны, за счет более плотной фиброзной ткани. Это объясняется постоянно высокой скоростью потока крови через просвет аорты и легочной артерии.

Анатомия физиология и гигиена сердечно-сосудистой системы – фундаментальные науки, которыми обладает не только кардиолог, но и врачи других специальностей, так как здоровье кардиоваскулярной системы влияет на нормальную работу всех органов и систем.

  • Характеристика сердечно сосудистой системы
  • Сердце: анатомо физиологические особенности строения
  • Сердечно сосудистая система: сосуды
  • Физиология сердечно сосудистой системы: большой круг кровообращения
  • Физиология сердечно сосудистой системы: схема малого круга кровообращения

Сердечно сосудистая система — это совокупность органов, которые отвечают за обеспечение циркуляции кровотока в организмах всех живых существ, в том числе у человека. Значение сердечно сосудистой системы очень масштабно для организма в целом: она отвечает за процесс кровообращения и за обогащение всех клеток организма витаминами, минералами и кислородом. Вывод СО 2 , отработанных органических и неорганических веществ осуществляется тоже с помощью сердечно сосудистой системы.

Характеристика сердечно сосудистой системы

Основными составляющими сердечно сосудистой системы являются сердце и кровеносные сосуды. Классифицировать сосуды можно на самые мелкие (капилляры), средние (вены) и крупные (артерии, аорта).

Кровь проходит по циркулирующему сомкнутому кругу, такое движение происходит благодаря работе сердца. Оно выступает в роли своеобразного насоса или поршня и обладает нагнетательной способностью. Благодаря тому, что процесс кровообращения непрерывен, сердечно сосудистая система и кровь выполняют жизненно важные функции, а именно:

  • транспортировку;
  • защиту;
  • гомеостатические функции.

Кровь отвечает за доставку и перенос необходимых веществ: газов, витаминов, минералов, метаболитов, гормонов, ферментов. Все переносимые кровью молекулы практически не трансформируются и не изменяются, лишь могут вступить в то или иное соединение с белковыми клетками, гемоглобином и переноситься уже видоизмененными. Транспортную функцию можно разделить на:

  • дыхательную (из органов дыхательной системы О 2 переносится в каждую клетку тканей всего организма, СО 2 — из клеток в органы дыхания);
  • питательную (перенос питательных веществ — минералов, витаминов);
  • выделительную (ненужные продукты обменных процессов выводятся из организма);
  • регуляторную (обеспечение химических реакций с помощью гормонов и биологически активных веществ).

Защитную функцию также можно разделить на:

  • фагоцитарную (лейкоциты фагоцитируют чужеродные клетки и инородные молекулы);
  • иммунную (антитела отвечают за уничтожение и борьбу с вирусами, бактериями и любой попавшей в организм человека инфекцией);
  • гемостатическую (кровосвертываемость).

Задача гомеостатических функций крови заключается в поддержании уровня pH, осмотического давления и температуры.

Вернуться к оглавлению

Сердце: анатомо физиологические особенности строения

Область размещения сердца — грудная клетка. От него зависит вся сердечно сосудистая система. Сердце защищено ребрами и практически полностью покрыто легкими. Оно подвержено небольшому смещению благодаря поддержке сосудов, чтобы иметь возможность в процессе сокращения двигаться. Сердце является мышечным органом, разделенным на несколько полостей, имеет массу до 300 г. Сердечная стенка образована несколькими слоями: внутренний называется эндокардом (эпителий), средний — миокард — является сердечной мышцей, наружный назван эпикардом (тип ткани — соединительный). Поверх сердца присутствует еще один слой-оболочка, в анатомии ее называют околосердечной сумкой или перикардом. Внешняя оболочка достаточно плотная, она не растягивается, что позволяет лишней крови не заполнять сердце. В перикарде есть закрытая полость между слоями, заполненная жидкостью, она обеспечивает защиту от трения в процессе сокращений.

Составляющие сердца — это 2 предсердия и 2 желудочка. Разделение на правую и левую сердечную части происходит с помощью сплошной перегородки. Для предсердий и желудочков (правой и левой стороны) предусмотрено соединение между собой отверстием, в котором находится клапан. Он имеет 2 створки с левой стороны и называется митральным, 3 створки с правой стороны — называется трискупидальным. Открытие клапанов происходит только в полость желудочков. Это происходит благодаря сухожильным нитям: один конец их прикреплен на створках клапанов, другой — на сосочковой мышечной ткани. Сосочковые мышцы — выросты на стенках желудочков. Процесс сокращения желудочков и сосочковых мышц происходит одновременно и синхронно, при этом натягиваются сухожильные нити, что препятствует допуску обратного кровотока в предсердия. В левом желудочке находится аорта, в правом — легочная артерия. На выходе этих сосудов присутствуют по 3 створки клапанов полулунной формы. Их функция — обеспечение кровотока в аорту и легочную артерию. Обратно кровь не попадает благодаря заполнению клапанов кровью, распрямлению их и смыканию.

Вернуться к оглавлению

Сердечно сосудистая система: сосуды

Наука, которая изучает строение и функции кровеносных сосудов, называется ангиологией. Самая большая непарная артериальная ветвь, которая участвует в большом круге кровоциркуляции — это аорта. Ее периферические ответвления обеспечивают кровотоки ко всем мельчайшим клеткам организма. У нее есть три составляющих элемента: восходящая, дуга и нисходящий отдел (грудная, брюшная). Начинает свой выход аорта из левого желудочка, затем как дуга обходит сердце и устремляется вниз.

В аорте отмечается самое высокое давление крови, поэтому ее стенки являются прочными, крепкими и толстыми. В ее состав входят три слоя: внутренняя часть состоит из эндотелия (очень похожа на слизистую оболочку), средний слой — плотная соединительная ткань и гладкие мышечные волокна, наружный слой образован мягкой и рыхлой соединительной тканью.

Аортальные стенки являются до такой степени мощными, что сами нуждаются в снабжении питательными веществами, которое обеспечивают мелкие близлежащие сосуды. Такое же строение у легочного ствола, который выходит из правого желудочка.

Сосуды, которые отвечают за перенос крови от сердца к клеткам тканей, называются артериями. Стенки артерий выстланы тремя слоями: внутренний образован эндотелиальным однослойным плоским эпителием, который лежит на соединительной ткани. Средний — это гладкий мышечный волокнистый слой, в котором присутствуют эластические волокна. Внешний слой выстлан адвентициальной рыхлой соединительной тканью. Крупные сосуды имеют диаметр от 0,8 см до 1,3 см (у взрослого человека).

Вены отвечают за перенос крови от клеток органов к сердцу. По строению вены схожи с артериями, но имеется единственное отличие в среднем слое. Он выстлан менее развитыми мышечными волокнами (эластические волокна — отсутствуют). Именно по этой причине при порезе вены она спадается, отток крови слабый и медленный благодаря низкому давлению. Две вены всегда сопровождают одну артерию, поэтому если посчитать количество вен и артерий, то первых почти в два раза больше.

Сердечно сосудистая система имеет мелкие кровеносные сосуды — капилляры. Стенки их очень тонкие, они образованы единичным слоем эндотелиальных клеток. Это способствует обменным процессам (О 2 и СО 2), транспортировке и доставке необходимых веществ из крови в клетки тканей органов всего организма. В капиллярах происходит выход плазмы, которая участвует в формировании межтканевой жидкости.

Артерии, артериолы, мелкие вены, венулы — это составляющие микроциркуляторного русла.

Артериолы являются мелкими сосудами, которые переходят в капилляры. Они регулируют приток крови. Венулы — это мелкие кровеносные сосуды, которые обеспечивают отток венозной крови. Прекапилляры — это микрососуды, они отходят от артериол и переходят в гемокапилляры.

Между артериями, венами и капиллярами присутствуют соединительные ветви, называемые анастомозами. Их бывает настолько много, что образуется целая сетка из сосудов.

Функция окольного кровотока отведена для коллатеральных сосудов, они способствуют восстановлению кровообращения в местах закупорки основных сосудов.

ТЕМА: ФИЗИОЛОГИЯ СЕРДЕЧНО-СОСУДИСТОЙ СИСТЕМЫ

Занятие 1. Физиология сердца.

Вопросы для самоподготовки.

1. Сердце и его значение. Физиологические свойства сердечной мышцы.

2. Автоматия сердца. Проводящая система сердца.

3. Связь между возбуждением и сокращением (электромеханическое сопряжение).

4. Сердечный цикл. Показатели сердечной деятельности

5. Основные законы сердечной деятельности.

6. Внешние проявления деятельности сердца.

Базовая информация.

Кровь может выполнять свои функции только находясь в непрерывном движении. Это движение обеспечивается системой кровообращения. Система кровообращения состоит из сердца и сосудов – кровеносных и лимфатических. Сердце за счет своей нагнетательной деятельности обеспечивает движение крови по замкнутой системе сосудов. Каждую минуту от сердца в кровеносную систему поступает около 6 л крови, в сутки – свыше 8 тыс. л, в течение жизни (средняя продолжительность 70 лет) – почти 175 млн. л крови. О функциональном состоянии сердца судят по различным внешним проявлениям его деятельности.

Сердце человека – полый мышечный орган. Сплошной вертикальной перегородкой сердце делится на две половины: левую и правую. Вторая перегородка, идущая в горизонтальном направлении, образует в сердце четыре полости: верхние полости – предсердия, нижние – желудочки.

Нагнетательная функция сердца основана на чередовании расслабления (диастолы) и сокращения (систолы) желудочков. Во время диастолы желудочки заполняются кровью, а во время систолы выбрасывают ее в крупные артерии (аорту и легочную вену). У выхода из желудочков расположены клапаны препятствующие обратному поступлению крови из артерий в сердце. Перед тем как заполнить желудочки кровь притекает по крупным венам (полым и легочным) в предсердия. Систола предсердий предшествует систоле желудочков, таким образом предсердия служат как бы вспомогательными насосами, способствующими заполнению желудочков.

Физиологические свойства сердечной мышцы. Сердечная мышца, как и скелетная, обладает возбудимостью , способностью проводить возбуждение и сократимостью. К физиологическим особенностям сердечной мышцы относится удлиненный рефрактерный период и автоматия.

Возбудимость сердечной мышцы. Сердечная мышца менее возбудима, чем скелетная. Для возникновения возбуждения в сердечной мышце необходимо применить более сильный раздражитель, чем для скелетной. Кроме того, установлено, что величина реакции сердечной мышцы не зависит от силы наносимых раздражений (электрических, механических, химических и т. д.). Сердечная мышца максимально сокращается и на пороговое, и на более сильное по величине раздражение, полностью подчиняясь закону «все или ничего».

Проводимость . Волны возбуждения проводятся по волокнам сердечной мышцы и так называемой специальной ткани сердца с неодинаковой скоростью. Возбуждение по волокнам мышц предсердий распространяется со скоростью 0,8 1,0 м/с, по волокнам мышц желудочков 0,8 0,9 м/с, по специальной ткани сердца 2,0 4,2 м/с. Возбуждение же по волокнам скелетной мышцы распространяется с гораздо большей скоростью, которая составляет 4,7 5 м/с.

Сократимость . Сократимость сердечной мышцы имеет свои особенности. Первыми сокращаются мышцы предсердий, затем папиллярные мышцы и субэндокардиальный слой мышц желудочков. В дальнейшем сокращение охватывает и внутренний слой желудочков, обеспечивая тем самым движение крови из полостей желудочков в аорту и легочный ствол. Сердце для осуществления механической работы (сокращения) получает энергию, которая освобождается при распаде макроэргических фосфорсодержащих соединений (креатинфосфат, аденозинтрифосфат).

Рефрактерный период . В сердце в отличие от других возбудимых тканей имеется значительно выраженный и удлиненный рефрактерный период. Он характеризуется резким снижением возбудимости ткани в течение ее активности.

Различают абсолютный и относительныйрефрактерный период. Во время абсолютного рефрактерного периода, какой бы СИЛЫ не наносили раздражение на сердечную мышцу, она не отвечает на него возбуждением и сокращением. Длительность абсолютного рефрактерного периода сердечной мышцы соответствует по времени систоле и началу диастолы предсердий и желудочков. Во время относительного рефрактерного периода возбудимость сердечной мышцы постепенно возвращается к исходному уровню. В этот период сердечная мышца может ответить сокращением на раздражитель сильнее порогового. Относительный рефрактерный период обнаруживается во время диастолы предсердий и желудочков сердца. Благодаря выраженному рефрактерному периоду, который длится дольше, чем период систолы (0,1 0,3 с), сердечная мышца неспособна к тетаническому (длительному) сокращению и совершает свою работу по типу одиночного мышечного сокращения.

Автоматия сердца . Вне организма при определенных условиях сердце способно сокращаться и расслабляться, сохраняя правильный ритм. Следовательно, причина сокращений изолированного сердца лежит в нем самом. Способность сердца ритмически сокращаться под влиянием импульсов, возникающих в нем самом, носит название а в т о м а т и и.

В сердце различают рабочую мускулатуру, представленную поперечно-полосатой мышцей, и атипическую ткань, в которой возникает проводится возбуждение. Из этой ткани образованы волокна водителя ритма (пейспекера) и проводящей системы. В норме ритмические импульсы генерируются только клетками водителя ритма и проводящей системы. У высших животных и человека проводящая система состоит из:

1. синоатриального узла (описан Кис и Флеком), располагающегося на задней стенке правого предсердия у места впадения полых вен;

2. атриовентрикулярного (предсердно-желудочковый) узла (описан Ашоффом и Таварой), находящегося в правом предсердии вблизи перегородки между предсердиями и желудочками;

3. пучка Гиса (предсердно-желудочковый пучок) (описан Гисом), отходящего от атриовентрикулярного узла одним стволом. Пучок Гиса, пройдя через перегородку между предсердиями и желудочками, делится на две ножки, идущие к правому и левому желудочкам.

4. Заканчивается пучок Гиса в толще мышц волокнами Пуркинье. Пучок Гиса – это единственный мышечный мостик, соединяющий предсердия с желудочками.

Синоаурикулярный узел является ведущим в деятельности сердца (водитель ритма), в нем возникают импульсы, определяющие частоту сокращений сердца. В норме атриовентрикулярный узел и пучок Гиса являются только передатчиками возбуждений из ведущего узла к сердечной мышце. Однако им присуща способность к автоматии, только выражена она в меньшей степени, чем у синоаурикулярного узла, и проявляется лишь в условиях патологии.

Атипическая ткань состоит из малодифференцированных мышечных волокон. В области синоаурикулярного узла обнаружено значительное количество нервных клеток, нервных волокон и их окончаний, которые здесь образуют нервную сеть. К узлам атипической ткани подходят нервные волокна от блуждающих и симпатических нервов.

Электрофизиологические исследования сердца, проведенные на клеточном уровне, позволили понять природу автоматики сердца. Установлено, что в волокнах ведущего и атриовентрикулярного узлов вместо стабильного потенциала в период расслабления сердечной мышцы наблюдается постепенное нарастание деполяризации. Когда последняя достигнет определенной величины – максимального диастолического потенциала , возникает ток действия. Диастолическую деполяризацию в волокнах водителя ритма называют потенциалами автоматии. Таким образом, наличие диастолической деполяризации объясняет природу ритмической деятельности волокон ведущего узла. В рабочих волокнах сердца электрическая активность во время диастолы отсутствует.

Связь между возбуждением и сокращением (электромеханическое сопряжение). Сокращение сердца, как и скелетных мышц, запускается потенциалом действия. Тем не менее временные соотношения между возбуждением и сокращением в этих двух типах мышц различны. Длительность потенциала действия скелетных мышц составляет лишь несколько миллисекунд, и сокращение их начинается тогда, когда возбуждение уже почти закончилось. В миокарде же возбуждение и сокращение в значительной степени перекрываются во времени. Потенциал действия клеток миокарда заканчивается только после начала фазы расслабления. Поскольку последующее сокращение может возникнуть лишь в результате очередного возбуждения, а это возбуждение в свою очередь возможно только по окончании периода абсолютной рефрактерности предшествующего потенциала действия, сердечная мышца в отличие от скелетной не может отвечать на частые раздражения суммацией одиночных сокращений, или тетанусом.

Это свойство миокарда – неспособность к состоянию тетануса — имеет большое значение для нагнетательной функции сердца; тетаническое сокращение, продолжающееся дольше периода изгнания крови, препятствовало бы наполнению сердца. Вместе с тем сократимость сердца не может регулироваться путем суммации одиночных сокращений, как это происходит в скелетных мышцах, сила сокращений которых в результате такой суммации зависит от частоты потенциалов действия. Сократимость миокарда в отличие от скелетных мышц не может изменяться и путем включения различного числа двигательных единиц, так как миокард представляет собой функциональный синцитий, в каждом сокращении которого участвуют все волокна (закон «все или ничего»). Эти несколько невыгодные с физиологической точки зрения особенности компенсируются тем, что в миокарде гораздо более развит механизм регуляции сократимости путем изменения процессов возбуждения либо за счет прямого влияния на электромеханическое сопряжение.

Механизм электромеханического сопряжения в миокарде . У человека и млекопитающих структуры, которые отвечают за электромеханическое сопряжение в скелетных мышцах, в основном имеются и в волокнах сердца. Для миокарда характерна система поперечных трубочек (Т-система); особенно хорошо она развита в желудочках, где эти трубочки образуют продольные ответвления. Напротив, система продольных трубочек, служащих внутриклеточным резервуаром Са 2+ , в мышце сердца развита в меньшей степени, чем в скелетных мышцах. Как структурные, так и функциональные особенности миокарда свидетельствуют в пользу тесной взаимосвязи между внутриклеточными депо Са 2+ и внеклеточной средой. Ключевым событием в сокращении служит вход в клетку Са 2+ во время потенциала действия. Значение этого кальциевого тока состоит не только в том, что он увеличивает длительность потенциала действия и вследствие этого рефрактерного периода: перемещение кальция из наружной среды в клетку создает условия для регуляции силы сокращения. Однако количество кальция, входящего во время ПД, явно недостаточно для прямой активации сократительного аппарата; очевидно, большую роль играет выброс Са 2+ из внутриклеточных депо, запускаемый входом Са 2+ извне. Кроме того, входящие в клетку ионы пополняет запасы Са 2+ , обеспечивая последующие сокращения.

Таким образом, потенциал действия влияет на сократимость по меньшей мере двумя путями. Он – играет роль пускового механизма («триггерное действие»), вызывающего сокращение путем высвобождения Са 2+ (преимущественно из внутриклеточных депо); – обеспечивает пополнение внутриклеточных запасов Са 2+ в фазе расслабления, необходимое для последующих сокращений.

Механизмы регуляции сокращений. Целый ряд факторов оказывает косвенное влияние на сокращение миокарда, изменяя длительность потенциала действия и тем самым величину входящего тока Са 2+ . Примеры такого влияния — снижение силы сокращений вследствие укорочения ПД при повышении внеклеточной концентрации К + или действии ацетилхолина и усиление сокращений в результате удлинения ПД при охлаждении. Увеличение частоты потенциалов действия влияет на сократимость так же, как и повышение их длительности (ритмоинотропная зависимость, усиление сокращений при нанесении парных стимулов, постэкстрасистолическая потенциация). Так называемый феномен лестницы (нарастание силы сокращений при их возобновлении после временной остановки) также связан с увеличением внутриклеточной фракции Са 2+ .

Учитывая эти особенности сердечной мышцы, не приходится удивляться тому, что сила сокращений сердца быстро изменяется при изменении содержания Са 2+ во внеклеточной жидкости. Удаление Са 2+ из внешней среды приводит к полному разобщению электромеханического сопряжения; потенциал действия при этом остается почти неизменным, но сокращений не происходит.

Ряд веществ, блокирующих вход Са 2+ во время потенциала действия, оказывает такой же эффект, как и удаление кальция из внешней среды. К таким веществам относятся так называемые антагонисты кальция (верапамил, нифедипин, дилтиазем) Напротив, при повышении внеклеточной концентрации Са 2+ или при действии веществ, увеличивающих вход этого иона во время потенциала действия (адреналин, норадреналин), сократимость сердца увеличивается. В клинике для усиления сердечных сокращений используют так называемые сердечные гликозиды (препараты наперстянки, строфанта и т. д.).

В соответствии с современными представлениями сердечные гликозиды повышают силу сокращений миокарда преимущественно путем подавления Nа+/К+-АТФазы (натриевого насоса), что приводит к повышению внутриклеточной концентрации Nа +. В результате снижается интенсивность обмена внутриклеточного Са 2+ на внеклеточный Nа+, зависящего от трансмембранного градиента Nа, и Са 2+ накапливается в клетке. Это дополнительное количество Са 2+ запасается в депо и может быть использовано для активации сократительного аппарата

Сердечный цикл совокупность электрических, механических и биохимических процессов, происходящих в сердце в течение одного полного цикла сокращения и расслабления.

Сердце человека в среднем сокращается 70 -75 раз в 1 мин, при этом одно сокращение длится 0,9 – 0,8 с. В цикле сокращений сердца различают три фазы: систолу предсердий (ее длительность 0,1 с), систолу желудочков (ее длительность 0,3 – 0,4 с) и общую паузу (период, в течение которого одновременно расслаблены и предсердия, и желудочки,-0,4 – 0,5 с).

Сокращение сердца начинается с сокращения предсердий. В момент систолы предсердий кровь из них проталкивается в желудочки через открытые атриовентрикулярные клапаны. Затем сокращаются желудочки. Предсердия во время систолы желудочков расслаблены, т. е. находятся в состоянии диастолы. В этот период атриовентрикулярные клапаны закрываются под давлением крови со стороны желудочков, а полулунные клапаны раскрываются и кровь выбрасывается в аорту и легочные артерии.

В систоле желудочков различают две фазы: фазу напряжения – период, в течение которого давление крови в желудочках достигает максимальной величины, и фазу изгнания – время, в течение которого открываются полулунные клапаны и кровь выбрасывается в сосуды. После систолы желудочков наступает их расслабление -диастола, которая длится 0,5 с. В конце диастолы желудочков начинается систола предсердий. В самом начале паузы полулунные клапаны захлопываются под давлением крови в артериальных сосудах. Во время паузы предсердия и желудочки наполняются новой порцией крови, поступающей из вен.

Показатели сердечной деятельности.

Показателями работы сердца являются систолический и минутный объем сердца,

Систолический или ударный объем сердца это количество крови, которое сердце выбрасывает в соответствующие сосуды при каждом сокращении. Величина систолического объема зависит от размеров сердца, состояния миокарда и организма. У взрослого здорового человека при относительном покое систолический объем каждого желудочка составляет приблизительно 70 80 мл. Таким образом, при сокращении желудочков в артериальную систему поступает 120 – 160 мл крови.

Минутный объем сердца это количество крови, которое сердце выбрасывает в легочный ствол и аорту за 1 мин. Минутный объем сердца это произведение величины систолического объема на частоту сердечных сокращений в 1 мин. В среднем минутный объем составляет 3 5 л.

Систолический и минутный объем сердца характеризует деятельность всего аппарата кровообращения.

Минутный объем сердца увеличивается пропорционально тяжести выполняемой организмом работы. При малой мощности работы минутный объем сердца увеличивается за счет повышения величины систолического объема и частоты сердечных сокращений, при большой мощности только за счет нарастания ритма сердца.

Работа сердца. Во время сокращения желудочков: кровь из них выбрасывается в артериальную систему.. Желудочки, сокращаясь, должны изгнать кровь в сосуды, преодолевая давление в артериальной системе. Кроме того, в период систолы желудочки способствуют ускорению тока крови по сосудам. Пользуясь физическими: формулами и средними значениями параметров (давление и ускорение тока крови) для левого и правого желудочков, можно вычислить, какую работу выполняет сердце во время одного сокращения. Установлено, что желудочки в период систолы совершают работу около 1 Дж с мощностью 3,3 Вт (учитывая, что систола желудочков продолжается 0,3 с) .

Суточная работа сердца равна работе крана, поднявшего груз массой 4000 кг на высоту 6-этажного дома. За 18 ч сердце совершает работу, за счет которой можно поднять человека массой 70 кг на высоту телебашни в Останкино 533 м. При физической работе производительность сердца значительно повышается.

Установлено, что объем крови, выбрасываемой при каждом сокращении желудочков, зависит от величины конечного диастолического наполнения полостей желудочков кровью. Чем больше крови поступает в желудочки во время их диастолы, тем сильнее растягиваются мышечные волокна, От степени же растяжения мышечных волокон находится в прямой зависимости сила, с которой сокращаются мышцы желудочков.

Законы сердечной деятельности

Закон сердечного волокна – описан английским физиологом Старлингом. Закон формулируется следующим образом: чем больше растянуто мышечное волокно, тем сильнее оно сокращается . Следовательно, сила сердечных сокращений зависит от исходной длины мышечных волокон перед началом их сокращений. Проявление закона сердечного волокна было установлено и на изолированном сердце животных, и на полоске сердечной мышцы, вырезанной из сердца.

Закон сердечного ритма описан английским физиологом Бейнбриджем. Закон гласит: чем больше крови притекает к правому предсердию, тем чаще становится ритм сердца . Проявление этого закона связано с возбуждением механорецепторов, расположенных в правом предсердии в области впадения полых вен. Механорецепторы, представленные чувствительными нервными окончаниями блуждающих нервов, возбуждаются при усиленном венозном – возврате крови к сердцу, например при мышечной работе. Импульсы от механорецепторов направляются по блуждающим нервам в продолговатый мозг к центру блуждающих нервов. Под влиянием этих импульсов снижается активность центра блуждающих нервов и усиливаются воздействия симпатических нервов на деятельность сердца, что и обусловливает учащение ритма сердца.

Законы сердечного волокна и сердечного ритма, как правило, проявляются одновременно. Значение этих законов состоит в том, что они приспосабливают работу сердца к изменяющимся условиям существования: изменению положения тела и отдельных его частей в пространстве, двигательной активности и т. д. Вследствие этого законы сердечного волокна и сердечного ритма относят к механизмам саморегуляции, за счет которых изменяется сила и частота сердечных сокращений.

Внешние проявления деятельности сердца Врач судит о работе сердца по внешним проявлениям его деятельности, к которым относятся верхушечный толчок, сердечные тоны и электрические явления, возникающие в работающем сердце.

Верхушечный толчок . Сердце во время систолы желудочков совершает вращательное движение, поворачиваясь слева направо, и меняет свою форму — из эллипсоидального оно становится круглым. Верхушка сердца поднимается и надавливает на грудную клетку в области пятого межреберного промежутка. Во время систолы сердце становится очень плотным, поэтому надавливание верхушки сердца на межреберный промежуток можно видеть, особенно у худощавых субъектов. Верхушечный толчок можно прощупать (пальпировать) и тем самым определить его границы и силу.

Сердечные тоны — это звуковые явления, возникающие в работающем сердце. Различают два тона: I – систолический и II – диастолический.

Систолический тон. В происхождении этого тона принимают участие главным образом атриовентрикулярные клапаны. Во время систолы желудочков атриовентрикулярные клапаны закрываются и колебания их створок и прикрепленных к ним сухожильных нитей обусловливают 1 тон. Установлено, что звуковые явления возникают в фазу изометрического сокращения и в начале фазы быстрого изгнания крови из желудочков. Кроме того, в происхождении 1 тона принимают участие звуковые явления, которые возникают при сокращении мышц желудочков. По своим звуковым особенностям 1 тон протяжный и низкий.

Диастолический тон возникает в начале диастолы желудочков во время протодиастолической фазы, когда происходит закрытие полулунных клапанов. Колебание створок клапанов при этом является источником звуковых явлений. По звуковой характеристике 11 тон короткий и высокий.

Использование современных методов исследования (фонокардиография) позволило обнаружить еще два тона — III и IV, которые не прослушиваются, но могут быть зарегистрированы в виде кривых, Параллельная запись электрокардиограммы помогает уточнить продолжительность каждого тона.

Тоны сердца (I и II) можно определить в любом участке грудной клетки. Однако имеются места наилучшего их прослушивания: I тон лучше выражен в области верхушечного толчка и у основания мечевидного отростка грудины, II тон — во втором межреберье слева от грудины и справа от нее. Тоны сердца прослушивают при помощи стетоскопа, фонендоскопа или непосредственно ухом.

Занятие 2. Электрокардиография

Вопросы для самоподготовки.

1. Биоэлектрические явления в сердечной мышце.

2. Регистрация ЭКГ. Отведения

3. Форма кривой ЭКГ и обозначение ее компонентов.

4. Анализ электрокардиограммы.

5. Использование ЭКГ в диагностике Влияние физической нагрузки на ЭКГ

6. Некоторые патологические типы ЭКГ.

Базовая информация.

Возникновение электрических потенциалов в сердечной мышце связано с движением ионов через клеточную мембрану. Основную роль при этом играют катионы натрия и калия Содержание калия внутри клетки значительно больше во внеклеточной жидкости. Концентрация внутриклеточного натрия, наоборот, намного меньше, чем вне клетки. В состоянии покоя наружная поверхность клетки миокарда заряжена положительно вследствие преобладания там катионов натрия; внутренняя поверхность клеточной мембраны имеет отрицательный заряд вследствие преобладания внутри клетки анионов (С1 - , НСО 3 - .). В этих условиях клетка поляризована; при регистрации электрических процессов с помощью наружных электродов разности потенциалов не будет выявлено. Однако если в этот период ввести микроэлектрод внутрь клетки, то будет зарегистрирован так называемый потенциал покоя, достигающий 90 мВ. Под воздействием внешнего электрического импульса клеточная мембрана становится проницаемой для катионов натрия, которые устремляются внутрь клетки (вследствие разности внутри- и внеклеточной концентраций) и переносят туда свой положительный заряд. Наружная поверхность данного участка приобретает отрицательный заряд вследствие преобладания там анионов. При этом появляется разность потенциалов между положительным и отрицательным участками поверхности клетки и регистрирующий прибор зафиксирует отклонение от изоэлектрической линии. Этот процесс носит название деполяризации и связан с потенциалом действия. Вскоре вся наружная поверхность клетки приобретает отрицательный заряд, а внутренняя – положительный, т. е. происходит обратная поляризация. Регистрируемая кривая при этом вернется к изоэлектрической линии. В конце периода возбуждения клеточная мембрана становится менее проницаемой для ионов натрия, но более проницаемой для катионов калия; последние устремляются из клетки (вследствие разности вне- и внутриклеточной концентрации). Выход калия из клетки в этот период преобладает над поступлением натрия в клетку, поэтому наружная поверхность мембраны снова постепенно приобретает положительный заряд, я внутренняя — отрицательный. Этот процесс носит название реполяризации Регистрирующий прибор вновь зафиксирует отклонение кривой, но в другую сторону (так как положительный и отрицательный полюсы клетки поменялись местами) и меньшей амплитуды (так как поток ионов К + движется медленнее). Описанные процессы происходят во время систолы желудочков. Когда вся наружная поверхность вновь приобретет положительный заряд, внутренняя – отрицательный, на кривой снова будет зафиксирована изоэлектрическая линия, что соответствует диастоле желудочков. Во время диастолы происходит медленное обратное движение ионов калия и натрия, которое мало влияет на заряд клетки, так как такие разнонаправленные перемещения ионов происходят одновременно и уравновешивают друг друга.

Описанные процессы относятся к возбуждению единичного волокна миокарда. Возникающий при деполяризации импульс вызывает возбуждение соседних участков миокарда и этот процесс охватывает весь миокард по типу цепной реакции. Распространение возбуждения по миокарду осуществляется по проводящей системе сердца.

Таким образом, в работающем сердце создаются условия для возникновения электрического тока. Во время систолы предсердия становятся электроотрицательными по отношению к желудочкам, находящимся в это время в фазе диастолы. Таким образом, при работе сердца возникает разность потенциалов, которая может быть зарегистрирована при помощи электрокардиографа. Запись изменения суммарного электрического потенциала, возникающего при возбуждении множества миокардиальных клеток называется электрокардиограммой (ЭКГ) которая отражает процесс возбуждения сердца, но не его сокращения .

Тело человека является хорошим проводником электрического тока, поэтому биопотенциалы, возникающие в сердце, могут быть обнаружены на поверхности тела. Регистрация ЭКГ осуществляется с помощью электродов, накладываемых на различные участки тела. Один из электродов подсоединен к положительному полюсу гальванометра, другой – к отрицательному. Система расположения электродов называется электрокардиографическими отведениями. В клинической практике наиболее распространены отведения с поверхности тела. Как правило при регистрации ЭКГ используют 12 общепринятых отведений: – 6 от конечностей и 6 – грудных.

Эйнтховен (1903) одним из первых зарегистрировал биопотенциалы сердца, отводя их с поверхности тела при помощи струнного гальванометра. Им предложены первые три классических стандартных отведения . В этом случае электроды накладывают следующим образом:

I – на внутренней поверхности предплечий обеих рук; левая (+), правая (-).

II – на правой руке (-) и в области икроножной мышцы левой ноги (+);

III – на левых конечностях; нижняя (+), верхняя (-) .

Оси этих отведений в грудной клетке образуют во фронтальной плоскости так называемый треугольник Эйтховена.

Регистрируют также усиленные отведения от конечностей AVR – от правой руки, AVL – от левой руки, aVF – от левой ноги. При этом к положительному полюсу аппарата подсоединяют проводник электрода от соответствующей конечности, а к отрицательному полюсу – объединенный проводник электродов от двух остальных конечностей.

Шесть грудных отведений обозначают V 1- V 6 . При этом электрод от положительного полюса устанавливают на следующие точки:

V 1 - в четвертом межреберье у правого края грудины;

V 2 - в четвертом межреберье у правого края грудины;

V 3 - посередине между точками V 1 и V 2 ;

V 4 - в пятом межреберье по левой срединно-ключичной линии;

V 5 - на уровне отведения V 4 по левой передней аксиллярной линии;

V 6 - на том же уровне по левой аксиллярной линии.

Форма зубцов ЭКГ и обозначение ее компонентов.

Нормальная электрокардиограмма (ЭКГ) состоит из ряда положительных и отрицательных колебаний (зубцов ) обозначаемых латинскими буквами от Р до Т. Расстояния между двумя зубцами называют сегментом , а совокупность зубца и сегмента – интервалом .

При анализе ЭКГ учитывают высоту, ширину, направление, форму зубцов, а также продолжительность сегментов и интервалов между зубцами и их комплексами. Высота зубцов характеризует возбудимость, продолжительность зубцов и интервалов между ними отражает скорость проведения импульсов в сердце.

3 у б е ц Р характеризует возникновение и распространение возбуждения в предсердиях. Продолжительность его не превышает 0,08 – 0,1 с., амплитуда – 0,25 мВ. В зависимости от отведения может быть и положительным и отрицательным.

И н т е р в а л Р-Q отсчитывается от начала зубца Р, до начала зубца Q, или при его отсутствии – R. Предсердно-желудочковый интервал характеризует скорость распространения возбуждения от ведущего узла к желудочкам, т.о. характеризует прохождение импульса по наибольшему участку проводящей системы сердца. В норме, продолжительность интервала 0,12 – 0,20 с., и зависит от частоты сердечного ритма.

Таб.1 Максимальная нормальная продолжительность интервала P-Q

при различной частоте сердечного ритма

Продолжительность интервала P-Q в сек.

Частота сокращений сердца в 1 мин.

Продолжительность

3 у б е ц Q это всегда направленный вниз зубец желудочкового комплекса, предшествующий зубцу R. Отражает возбуждение межжелудочковой перегородки и внутренних слоев миокарда желудочков. В норме этот зубец очень небольшой, нередко на ЭКГ не обнаруживается.

3 у б е ц R это любой положительный зубец комплекса QRS, самый высокий зубец ЭКГ (0,5-2,5 мВ), соответствует периоду охвата возбуждением обоих желудочков.

3 у б е ц S любой следующий за зубцом R отрицательный зубец комплекса QRS характеризует завершение распространения возбуждения в желудочках. Максимальная глубина зубца S в отведении где он наиболее выражен, в норме, не должна превышать 2.5 мВ.

К о м п л е к с з у б ц о в QRS отражает скорость распространения возбуждения по мышцам желудочков. Измеряют от начала зубца Q до конца зубца S. Продолжительность этого комплекса 0,06 – 0,1 с.

3 у б е ц T отражает процесс реполяризации в желудочках. В зависимости от отведения может быть и положительным и отрицательным. Высота этого зубца характеризует состояние обменных процессов., происходящих в сердечной мышце. Ширина зубца Т колеблется от 0.1 до 0.25 с, но эта величина не имеет существенного значения в анализе ЭКГ.

И н т е р в а л Q-Т соответствует продолжительности всего периода возбуждения желудочков. Он может рассматриваться как электрическая систола сердца и поэтому имеет важное значение как показатель характеризующий функциональные возможности сердца. Измеряется от начала зубца Q(R) до конца зубца Т. Продолжительность этого интервала зависит от частоты сердечных сокращений и рядя других факторов. Она выражается формулой Базетта:

Q-T = K Ö R-R

где К- константа равная для мужчин – 0,37, а для женщин – 0,39. Интервал R-R отражает длительность сердечного цикла в секундах.

Т а б 2. Минимальная и максимальная длительность интервала Q – Т

в норме при различной частоте ритма сердца

40 – 41 0.42 – 0,51 80 – 83 0,30 – 0,36

42 – 44 0.41 – 0,50 84 – 88 0,З0 -0,35

45 – 46 0.40 – 0,48 89 – 90 0,29 – 0,34

47 – 48 0.39 – 0,47 91 – 94 0,28 – 0,34

49 – 51 0.38 – 0,46 95 – 97 0,28 – 0.33

52 – 53 0.37 – 0,45 98 – 100 0,27 – 0,33

54 – 55 0.37 – 0,44 101 – 104 0,27 – 0,32

56 – 58 0.36 – 0,43 105 – 106 0,26 – 0,32

59 – 61 0.35 – 0,42 107 – 113 0,26 – 0,31

62 – 63 0.34 – 0,41 114 – 121 0,25 – 0,30

64 – 65 0.34 – 0,40 122 – 130 0,24 – 0,29

66 – 67 0,ЗЗ – 9,40 131 – 133 0,24 – 0,28

68 – 69 0,33 – 0,39 134 – 139 0,23 – 0,28

70 – 71 0.32 – 0,39 140 – 145 0,23 – 0,27

72 – 75 0.32 – 0,38 146 – 150 0.22 – 0,27

76 – 79 0.31 – 0,37 151 – 160 0,22 – 0,26

С е г м е н т Т-Р – это отрезок электрокардиограммы от конца зубца Т до начала зубца Р. Этот интервал соответствует покою миокарда, он характеризует отсутствие разности потенциалов в сердце (общая пауза). Этот интервал представляет собой изоэлектрическую линию.

Анализ электрокардиограммы.

При анализе ЭКГ прежде всего необходимо проверить правильность техники ее регистрации, в частности амплитуду контрольного милливольта (соответствует ли она 1 см). Неправильная калибровка аппарата может существенно изменить амплитуду зубцов и привести к диагностическим ошибкам.

Для правильного анализа ЭКГ необходимо, также, точно знать скорость движения ленты во время записи. В клинической практике ЭКГ обычно регистрируют при скорости ленты 50 или 25 мм/с. (Ширина интервала Q- T при записи со скоростью 25 мм./ с никогда не достигает трех, а чаще даже меньше двух клеток, т.е. 1 см или 0,4 с. Таким образом, по ширине интервала Q- T, как правило, можно определить, при какой скорости движения ленты записана ЭКГ.)

Анализ сердечного ритма и проводимости. Расшифровку ЭКГ обычно начинают с анализа сердечного ритма. Прежде всего следует оценить регулярность интервалов R-R во всех зарегистрированных циклах ЭКГ. Затем определяется частота ритма желудочков. Для этого нужно разделить 60 (число секунд в минуте) на величину интервала R-R, выраженную в секундах. Если ритм сердца правильный (интервалы R-R равны между собой), то полученное частное будет соответствовать числу сокращений сердца в минуту.

Для выражения интервалов ЭКГ в секундах необходимо помнить, что 1 мм сетки (одна маленькая клетка.) соответствует 0,02 с при записи со скоростью ленты 50 мм/с и 0,04 с при скорости 25 мм/с. Для определения продолжительности интервала R-R в секундах нужно умножить число клеток, уместившихся в этом интервале, на величину, соответствующую одной клетке сетки. В случае, если ритм желудочков неправильный и интервалы различны, для определения частоты ритма используют среднюю продолжительность, вычисленную по нескольким интервалам R-R.

В случае если ритм желудочков неправильный и интервалы различны, для определения частоты ритма используют среднюю продолжительность, вычисленную по нескольким интервалам R-R.

После подсчета частоты ритма следует определить его источник. Для этого необходимо выявить зубцы Р и их отношение к желудочковым комплексам QRS Если при анализе выявляются зубцы Р, имеющие нормальную форму и направление и предшествующие каждому комплексу QRS, то можно констатировать, что источником ритма сердца является синусовый узел, что является нормой. Если нет – следует обратиться к врачу.

Анализ зубца Р . Оценка амплитуды зубцов Р позволяет выявить возможные признаки изменения миокарда предсердий. Амплитуда зубца Р в норме не превышает 0.25 мВ. Зубец Р имеет наибольшую высоту во II отведении.

Если амплитуда зубцов Р возрастает в I отведении, приближаясь к амплитуде Р II и значительно превышает амплитуду Р III то говорят об отклонении предсердного вектора влево, что может быть одним из признаков увеличения левого предсердия.

Если же высота зубца Р в III отведении значительно превышает высоту Р в I отведении и приближается к Р II то говорят об отклонении предсердного вектора вправо, что наблюдается при гипертрофии правого предсердия.

Определение положения электрической оси сердца. Положение оси сердца во фронтальной плоскости определяют по соотношению величин зубцов R и S в отведениях от конечностей. Положение электрической оси дает представление о положении сердца в грудной клетке. Кроме того, изменение положения электрической оси сердца является диагностическим признаком ряда патологических состояний. Поэтому оценка этого показателя имеет важное практическое значение.

Электрическую ось сердца выражают в градусах угла, образованного в шестиосевой системе координат этой осью и осью первого отведения, которая соответствует 0 0 . Для определения величины этого угла подсчитывают соотношение амплитуд положительных и отрицательных зубцов комплекса QRS в двух любых отведениях от конечностей, (как правило в отведениях I и III). Вычисляют алгебраическую сумму величин положительных и отрицательных зубцов в каждом из двух отведений с учетом знака. А затем откладывают эти величины на осях соответствующих отведений в шестиосевой системе координат от центра в сторону соответствующего знака. Из вершин полученных векторов восстанавливают перпендикуляры и находят точку их пересечения. Соединив эту точку с центром, получают результирующий вектор, соответствующий направлению электрической оси сердца, и подсчитывают величину угла.

Положение электрической оси сердца у здоровых людей находится в пределах от 0 0 до +90 0 .Положение электрической оси от +30 0 до +69 0 называют нормальным.

Анализ сегмента S- T. Этот сегмент в норме, изоэлектричен. Смещение сегмента S-T выше изоэлектрической линии может указывать па острую ишемию или инфаркт миокарда, аневризму сердца, иногда наблюдается при перикардитах, реже при диффузных миокардитах и гипертрофии желудочков, а также у здоровых лиц с так называемым синдромом ранней реполяризации желудочков.

Смещенный ниже изоэлектрической линии сегмент S-T может быть различной формы и направления, что имеет определенное диагностическое значение. Так, горизонтальная депрессия этого сегмента чаще является признаком коронарной недостаточности; нисходящая депрессия , чаще наблюдается при гипертрофии желудочка и полной блокаде ножек пучка Гиса; корытообразное смещение данного сегмента в виде дуги, выгнутой вниз, характерно для гипокалиемии (дигиталисной интоксикации) и, наконец, восходящая депрессия сегмента чаще имеет место при выраженной тахикардии.

Анализ зубца Т . При оценке зубца Т обращают внимание на его направление, форму и амплитуду. Изменения зубца Т неспецифичны: они могут наблюдаться при самых разнообразных патологических состояниях. Так, увеличение амплитуды зубца Т может отмечаться при ишемии миокарда, гипертрофии левого желудочка, гиперкалиемии и изредка наблюдается у нормальных лиц. Уменьшение амплитуды («сглаженный» зубец Т) может наблюдаться при дистрофиях миокарда, кардиомиопатиях, атеросклеротическом и постинфарктном кардиосклерозе, а также при заболеваниях, вызывающих уменьшение амплитуды всех зубцов ЭКГ.

Двухфазные или отрицательные (инвертированные) зубцы Т в тех отведениях, где они в норме положительны, могут иметь место при хронической коронарной недостаточности, инфаркте миокарда, гипертрофии желудочков, дистрофиях миокарда и кардиомиопатиях, миокардитах, перикардитах, гипокалиемии, нарушениях мозгового кровообращения и других состояниях. При выявлении изменений зубца Т их необходимо сопоставить с изменениями комплекса QRS и сегмента S -Т.

Анализ интервала Q-Т . Учитывая, что этот интервал характеризует электрическую систолу сердца, его анализ имеет важное диагностическое значение.

При нормальном состоянии сердца расхождения между фактической и должной систолой составляют не более 15% в ту или другую сторону. Если эти величины укладываются в данные параметры, то это говорит о нормальном распространении волн возбуждения по сердечной мышце.

Распространение возбуждения по сердечной мышце характеризует не только длительность электрической систолы, но и так называемый систолический показатель (СП), представляющий отношение длительности электрической систолы к продолжительности всего сердечного цикла (в процентах):

СП = ——— x 100%.

Отклонение от нормы, которая определяется по той же формуле с использованием Q-Т долж, не должно превышать 5% в обе стороны.

Иногда интервал Q-Т удлиняется под влиянием медикаментозных средств, а также при отравлениях некоторыми алкалоидами.

Таким образом, определение амплитуды основных зубцов и длительности интервалов электрокардиограммы дает возможность судить о состоянии сердца.

Заключение по анализу ЭКГ. Результаты анализа ЭКГ оформляются а виде протокола на специальных бланках. Проведя анализ перечисленных показателей, необходимо сопоставить их с клиническими данными и сформулировать заключение по ЭКГ. В нем следует указать источник ритма, назвать обнаруженные нарушения ритма и проводимости, отметить выявленные признаки изменений миокарда предсердий и желудочков, указав, по возможности, их характер (ишемия, инфаркт, рубцы, дистрофия, гипертрофия и т. д.) и локализацию.

Использование ЭКГ в диагностике

ЭКГ имеет чрезвычайно важное значение в клинической кардиологии, так как это исследование позволяет распознать нарушения возбуждения сердца, являющиеся причиной или следствием его поражения. По обычным кривым ЭКГ врач может судить о следующих проявлениях деятельности сердца и его патологических состояниях.

* Частота сокращений сердца . Можно определить нормальную частоту (6О – 90 уд. в 1 мин в покое), тахикардию (более 90 уд. в 1 мин) или брадикардию (менее 6О уд. в 1 мин).

* Локализация очага возбуждения. Можно установить, расположен ли ведущий пейсмекер в синусном узле, предсердиях, АВ-узле, правом или левом желудочке.

* Нарушения ритма сердца . ЭКГ дает возможность распознать различные виды аритмий (синусовая аритмия, наджелудочковые и желудочковые экстрасистолы, трепетание и фибрилляция) и выявить их источник.

* Нарушения проведения. Можно определить степень и локализацию блокады или задержки проведения (например, при синоатриальной или атриовентрикулярной блокаде, блокаде правой или левой ножки пучка Гиса или их ветвей либо при комбинированных блокадах).

* Направление электрической оси сердца . Направление электрической оси сердца отражает его анатомическое расположение, а при патологии указывает на нарушение распространения возбуждения (гипертрофия одного, из отделов сердца, блокада ножки пучка Гиса и т. п.).

* Влияние различных внешних факторов на сердце . На ЭКГ отражаются влияния вегетативных нервов, гормональные и обменные нарушения, сдвиги в концентрациях электролитов, действие ядов, лекарств (например, наперстянки) и т.д.

* Поражения сердца . Существуют электрокардиографические симптомы недостаточности коронарного кровообращения, снабжения сердца кислородом, воспалительных заболеваний сердца, поражений сердца при общих патологических состояниях и травмах, при врожденных или приобретенных пороках сердца и т. п.

* Инфаркт миокарда (полное нарушение кровоснабжения какого-либо участка сердца). По ЭКГ можно судить о локализации, обширности и динамике инфаркта.

Следует, однако, помнить, что отклонения ЭКГ от нормы, за исключением некоторых типичных признаков нарушения возбуждения и проведения, дают возможность только предположить наличие патологии. О том, является ли ЭКГ нормальной или патологической, часто можно судить лишь на основании общей клинической картины, и окончательное решение о причине тех или иных нарушений ни в коем случае нельзя принимать исходя только из ЭКГ.

Некоторые патологические типы ЭКГ

Разберем на примере нескольких типичных кривых, как отражаются на ЭКГ нарушения ритма и проводимости. За исключением особо оговоренных случаев, везде будут характеризоваться кривые, записанные при стандартном отведении II.

В норме в сердце наблюдается синусный ритм . . Пейсмекер расположен в СА-узле; QRS-комплексу предшествует нормальный зубец Р. Если роль водителя ритма берет на себя другой отдел проводящей системы наблюдается нарушение ритма сердца.

Ритмы, возникающие в атриовентрикулярном соединении. При таких ритмах импульсы из источника, расположенного в области АВ-соединения (в АВ-узле и непосредственно прилегающих к нему отделах проводящей системы), поступают как в желудочки, так и в предсердия. При этом импульсы могут проникать и в СА-узел. Поскольку возбуждение распространяется по предсердиям ретроградно, зубец Р в таких случаях отрицателен, а комплекс QRS не изменен, так как внутрижелудочковое проведение не нарушено. В зависимости от временных соотношений между ретроградным возбуждением предсердий и возбуждением желудочков отрицательный зубец Р может предшествовать комплексу QRS, сливаться с ним или следовать за ним. В этих случаях говорят соответственно о ритме из верхнего, среднего или нижнего отдела АВ-соединения, хотя эти термины не совсем точны.

Ритмы, возникающие в желудочке . Движение возбуждения из эктопического внутрижелудочкового очага может идти разными путями в зависимости от местонахождения этого очага и от того, в какой момент и где именно возбуждение проникает в проводящую систему. Поскольку скорость проведения в миокарде меньше, чем в проводящей системе, длительность распространения возбуждения в таких случаях обычно увеличена. Ненормальное проведение импульса приводит к деформации комплекса QRS.

Экстрасистолы. Внеочередные сокращения, временно нарушающие ритм сердца, называются экстрасистолами. Импульсы вызывающие экстрасистолы могут поступать из различных отделов проводящей системы сердца. В зависимости от места возникновения различают наджелудочковые (предсердные если внеочередной импульс приходит из СА-узла или предсердий; предсердно-желудочковые – если из АВ-соединения), и желудочковые .

В простейшем случае экстрасистолы возникают в промежутке между двумя нормальными сокращениями и не влияют на них; такие экстрасистолы называют интерполированными. Интерполированные экстрасистолы встречаются крайне редко, так как они могут возникать лишь при достаточно медленном исходном ритме, когда интервал между сокращениями длительнее одиночного цикла возбуждения. Такие экстрасистолы всегда исходят из желудочков, поскольку возбуждение из желудочкового очага не может распространяться по проводящей системе, находящейся в фазе рефрактерности предыдущего цикла, переходить на предсердия и нарушать синусный ритм.

Если желудочковые экстрасистолы возникают на фоне более высокой частоты сокращений сердца, то они, как правило, сопровождаются так называемыми компенсаторными паузами . Это связано с тем, что очередной импульс из СА-узла поступает к желудочкам, когда они еще находятся в фазе абсолютной рефрактерности экстрасистолического возбуждения, из-за чего импульс не может их активировать. К моменту прихода следующего импульса желудочки уже находятся в состоянии покоя, поэтому первое постэкстрасистолическое сокращение следует в нормальном ритме.

Промежуток времени между последним нормальным сокращением и первым постэкстрасистолическим равен двум интервалам RR, однако, когда наджелудочковые или желудочковые экстрасистолы проникают в СА-узел, наблюдается сдвиг по фазе исходного ритма. Этот сдвиг связан с тем, что возбуждение, ретроградно прошедшее в СА-узел, прерывает диастолическую деполяризацию в его клетках, вызывая новый импульс.

Нарушения атриовентрикулярного проведения . Это нарушения проведения через атриовентрикулярный узел, выражающееся в разобщении работы синоатриального и атриовентрикулярного узлов. При полной атриовентрикулярной блокаде предсердия и желудочки сокращаются независимо друг от друга – предсердия в синусном ритме, а желудочки в более медленном ритме пейсмекера третьего порядка. Если водитель ритма желудочков при этом локализован в пучке Гиса, то распространение возбуждения по нему не нарушается и форма QRS-комплекса не искажается.

При неполной атриовентрикулярной блокаде импульсы от предсердий периодически не проводятся на желудочки; например, к желудочкам может проходить только каждый второй (блокада 2: 1) или каждый третий (блокада 3: 1) импульс из СА-узла. В некоторых случаях интервал РQ постепенно увеличивается, и наконец наблюдается выпадение QRS-комплекса; затем вся эта последовательность повторяется (периоды Венкебаха). Подобные нарушения атриовентрикулярной проводимости легко могут быть получены в эксперименте при воздействиях, снижающих потенциал покоя (увеличение содержания К +, гипоксия и т.д.).

Изменения сегмента SТ и зубца Т . При повреждениях миокарда, связанных с гипоксией или другими факторами, в одиночных волокнах миокарда прежде всего снижается уровень плато потенциала действия и лишь затем наступает существенное уменьшение потенциала покоя. На ЭКГ эти изменения проявляются во время фазы реполяризации: зубец Т уплощается или становится отрицательным, а сегмент SТ смещается вверх или вниз от изолинии.

В случае прекращения кровотока в одной из коронарных артерий (инфаркт миокарда) формируется участок омертвевшей ткани, о расположении которого можно судить, анализируя одновременно несколько отведений (в частности, грудных). Следует помнить, что ЭКГ при инфаркте претерпевает значительные изменения во времени. Для ранней стадии инфаркта характерен «монофазный» желудочковый комплекс, обусловленный подъемом сегмента SТ. После того как пораженный участок отграничивается от неповрежденной ткани, монофазный комплекс перестает регистрироваться.

Трепетание и мерцание (фибрилляция) предсердий . Эти аритмии связаны с хаотическим распространением возбуждения по предсердиям, в результате которого происходит функциональная фрагментация этих отделов – одни участки сокращаются, а другие в это время находятся в состоянии расслабления.

При трепетании предсердий на ЭКГ вместо зубца Р регистрируются так называемые волны трепетания, имеющие одинаковую пилообразную конфигурацию и следующие с частотой (220-350)/мин. Это состояние сопровождается неполной атриовентрикулярной блокадой (желудочковая проводящая система, обладающая длительным рефрактерным периодом, не пропускает такие частые импульсы), поэтому на ЭКГ через одинаковые интервалы появляются неизмененные QRS-комплексы.

При мерцании предсердий активность этих отделов регистрируется только в виде высокочастотных – (350 -600)/мин – нерегулярных колебаний. Интервалы между QRS-комплексами при этом различны (абсолютная аритмия), однако, если других нарушений ритма и проводимости нет, конфигурация их не изменена.

Существует ряд промежуточных состояний между трепетанием и мерцанием предсердий. Как правило, гемодинамика при этих нарушениях страдает незначительно, иногда такие больные даже не подозревают о существовании у них аритмии.

Трепетание и фибрилляция желудочков . Трепетание и фибрилляция желудочков чреваты гораздо более серьезными последствиями. При этих аритмиях возбуждение распространяется по желудочкам хаотически, и в результате страдают их наполнение и выброс крови. Это приводит к остановке кровообращения и потере сознания. Если в течение нескольких минут движение крови не восстанавливается, наступает смерть.

При трепетании желудочков на ЭКГ регистрируются высокочастотные крупные волны, а при их фибрилляции – колебания различной формы, величины и частоты. Трепетание и фибрилляция желудочков возникают при разных воздействиях на сердце – гипоксии, закупорке коронарной артерии (инфаркте), чрезмерном растяжении и охлаждении, передозировке лекарств, в том числе вызывающих наркоз, и т. п. Фибрилляция желудочков является самой частой причиной смерти при электротравме.

Уязвимый период . Как в эксперименте, так и в естественных условиях одиночный надпороговый электрический стимул может вызвать трепетание или фибрилляцию желудочков, если он попадает в так называемый уязвимый период. Этот период наблюдается во время фазы реполяризации и приблизительно совпадает с восходящим коленом зубца Т на ЭКГ. В уязвимый период одни клетки сердца находятся в состоянии абсолютной, а другие – относительной рефрактерности. Известно, если на сердце наносить раздражение во время фазы относительной рефрактерности, то следующий рефрактерный период будет короче, и кроме того, в этот период может наблюдаться односторонняя блокада проведения. Благодаря этому создаются условия для обратного распространения возбуждения. Экстрасистолы, возникающие в уязвимый период, могут, подобно электрическому раздражению, привести к фибрилляции желудочков.

Электрическая дефибрилляция . Электрическим током можно не только вызвать трепетание и фибрилляцию, но и при определенных условиях его применения прекратить эти аритмии. Для этого необходимо приложить одиночный короткий импульс тока силой в несколько ампер. При воздействии таким импульсом через широкие электроды, помещенные на неповрежденную поверхность грудной клетки, хаотические сокращения сердца обычно мгновенно прекращаются. Такая электрическая дефибрилляция служит самым надежным способом борьбы с грозными осложнениями -трепетанием и, фибрилляцией желудочков.

Синхронизирующее действие электрического тока, приложенного к обширной поверхности, очевидно, обусловлено тем, что этот ток одновременно возбуждает множество участков миокарда, не пребывающих в состоянии рефрактерности. В результате циркулирующая волна застает эти участки в фазе рефрактерности, и дальнейшее ее проведение блокируется.

ТЕМА: ФИЗИОЛОГИЯ КРОВООБРАЩЕНИЯ

Занятие 3. Физиология сосудистого русла.

Вопросы для самоподготовки

  1. Функциональная структура различных отделов сосудистого русла. Кровеносные сосуды. Закономерности движения крови по сосудам. Основные гемодинамические показатели. Факторы, влияющие на движение крови по сосудам.
  2. Кровяное давление и факторы, влияющие на него. Артериальное давление, измерение, основные показатели, анализ определяющих факторов.
  3. Физиология микроциркуляции
  4. Нервная регуляция гемодинамики. Сосудодвигательный центр и его локализация.

5. Гуморальная регуляция гемодинамики

  1. Лимфа и лимфообращение.

Базовая информация

Типы кровеносных сосудов, особенности их строения.

По современным представлениям, в сосудистой системе различают несколько видов сосудов: магистральные, резистивные, истинные капилляры, емкостные и шунтирующие.

Магистральные сосуды – это наиболее крупные артерии, в которых ритмически пульсирующий, изменчивый кровоток превращается в более равномерный и плавный. Стенки этих сосудов содержат мало гладкомышечных элементов и много эластических волокон. Магистральные сосуды оказывают небольшое сопротивление кровотоку.

Резистивные сосуды (сосуды сопротивления) включают в себя прекапиллярные (мелкие артерии, артериолы, прекапиллярные сфинктеры) и посткапиллярные (венулы и мелкие вены) сосуды сопротивления. Соотношение между тонусом пре- и посткапиллярных сосудов определяет уровень гидростатического давления в капиллярах, величину фильтрационного давления и интенсивность обмена жидкости.

Истинные капилляры (обменные сосуды) важнейший отдел сердечно-сосудистой системы. Через тонкие стенки капилляров происходит обмен между кровью и тканями (транскапиллярный обмен). Стенки капилляров не содержат гладкомышечных элементов.

Емкостные сосуды венозный отдел сердечно-сосудистой системы. Емкостными эти сосуды называют потому, что они вмещают примерно 70-80 % всей крови.

Шунтирующие сосуды артериовенозные анастомозы, обеспечивающие прямую связь между мелкими артериями и венами в обход капиллярного ложа.

Закономерности движения крови по сосудам, значение эластичности сосудистой стенки.

В соответствии с законами гидродинамики движение крови определяется двумя силами: разностью давлений в начале и конце сосуда (способствует продвижению жидкости по сосуду) и гидравлическим сопротивлением , которое препятствует току жидкости. Отношение разности давлений к сопротивлению определяет объемную скорость тока жидкости.

Объемная скорость тока жидкости объем жидкости, протекающей по трубам в единицу времени, выражается простым уравнением:

Q= ————-

где Q – объем жидкости; Р1-Р2 – разность давлений в начале и конце сосуда, по которому течет жидкость; R – сопротивление потоку.

Эта зависимость носит название основного гидродинамического закона , который формулируется так; количество крови, протекающей в единицу времени через кровеносную систему, тем больше, чем больше разность давлений в ее артериальном и венозном концах и чем меньше сопротивление току крови. Основной гидродинамический закон определяет и кровообращение в целом, и течение крови через сосуды отдельных органов.

Время кругооборота крови. Временем кругооборота крови называют время, необходимое для прохождения крови по двум кругам кровообращения. Установлено, что у взрослого здорового человека при 70-80 сокращениях сердца в 1 мин полный кругооборот крови происходит за 20-23 с. Из этого времени ‘/5 приходится на малый круг кровообращения и 4/5 - на большой.

Существует ряд методов, с помощью которых определяют время кругооборота крови. Принцип этих методов состоит в том, что в вену вводят какое-либо вещество, не встречающееся обычно в организме, и определяют,через какой промежуток времени оно появляется в одноименной вене другой стороны или вызывает характерное для него действие.

В настоящее время для определения времени кругооборота крови используют радиоактивный метод. В локтевую вену вводят радиоактивный изотоп, например 24 Na, на другой же руке специальным счетчиком регистрируют его появление в крови.

Время кругооборота крови при нарушениях деятельности сердечно-сосудистой системы может существенно изменяться. У больных с тяжелыми заболеваниями сердца время кругооборота крови может увеличиваться до 1 мин.

Движение крови в различных отделах системы кровообращения характеризуется двумя показателями - объемной.и линейной скоростью кровотока.

Объемная скорость кровотока одинакова в поперечном сечении любого участка сердечно-сосудистой системы. Объемная скорость в аорте равна количеству крови, выбрасываемой сердцем в единицу времени, то есть минутному объему крови. Такое же количество крови поступает к сердцу по полым венам за 1 мин. Одинакова объемная скорость крови, притекающей и оттекающей от органа.

На объемную скорость кровотока оказывают влияние в первую очередь разность давления в артериальной и венозной системах и сопротивление сосудов. Повышение артериального и снижение венозного давления обусловливает увеличение разности давления в артериальной и венозной системах, что приводит к нарастанию скорости кровотока в сосудах. Снижение артериального и повышение венозного давления влечет за собой уменьшение разности давления в артериальной и венозной системах. При этом наблюдается уменьшение скорости кровотока в сосудах.

На величину сопротивления сосудов влияет ряд факторов: радиус сосудов, их длина, вязкость крови.

Линейная скорость кровотока - это путь, пройденный в единицу времени каждой частицей крови. Линейная скорость кровотока в отличие от объемной неодинакова в разных сосудистых областях. Линейная скорость движения крови в венах меньше, чем в артериях. Это связано с тем, что просвет вен больше просвета артериального русла. Линейная скорость кровотока наибольшая в артериях и наименьшая в капиллярах.

Следовательно, линейная скорость кровотока обратно пропорциональна суммарной площади поперечного сечения сосудов.

В потоке крови скорость отдельных частиц различна. В крупных сосудах линейная скорость максимальна для частиц, движущихся по оси сосуда, минимальна - для пристеночных слоев.

В состоянии относительного покоя организма линейная скорость кровотока в аорте составляет 0,5 м/с. В период двигательной активности организма она может достигать 2,5 м/с. По мере разветвления сосудов ток крови в каждой веточке замедляется. В капиллярах он равен 0,5 мм/с, что в 1000 раз меньше, чем в аорте. Замедление кровотока в капиллярах облегчает обмен веществ между тканями и кровью. В крупных венах линейная скорость тока крови увеличивается, так как уменьшается площадь сосудистого сечения. Однако она никогда не достигает скорости тока крови в аорте.

Величина кровотока в отдельных органах различна. Она зависит от кровоснабжения органа и уровня его активности

Депо крови. В условиях относительного покоя в сосудистой системе находится 60 70~/о крови. Это так называемая циркулирующая кровь. Другая часть крови (30 40%) содержится в специальных кровяных депо. Эта кровь получила название депонированной, или резервной. Таким образом, количество крови в сосудистом русле может быть увеличено за счет поступления ее из кровяных депо.

Различают депо крови трех видов. К первому виду относится селезенка, ко второму печень и легкие и к третьему тонкостенные вены, особенно вены брюшной полости, и подсосочковые венозные сплетения кожи. Из всех перечисленных депо крови истинным депо является селезенка. В селезенке вследствие особенностей ее строения действительно содержится часть крови, временно выключенной из общей циркуляции. В сосудах печени, легких, в венах брюшной полости и подсосочковых венозных сплетениях кожи вмещается большое количество крови. При сокращении сосудов указанных органов и сосудистых областей в общую циркуляцию поступает значительное количество крови.

Истинное депо крови . С. П. Боткин одним из первых определил значение селезенки как органа, где происходит депонирование крови. Наблюдая больного с заболеванием крови, С. П. Боткин обратил внимание на то, что при угнетенном состоянии психики у больного значительно увеличивалась в размерах селезенка. Напротив, психическое возбуждение больного сопровождалось существенным уменьшением размеров селезенки. В дальнейшем эти факты подтвердились и при обследовании других больных. Колебания размеров селезенки С. П. Боткин связывал с изменением содержания крови в органе.

Ученик И. М. Сеченова физиолог И. Р. Тарханов в опытах на животных показал, что раздражение электрическим током седалищного нерва или области продолговатого мозга при неповрежденных чревных нервах приводило к сокращению селезенки.

Английский физиолог Баркрофт в опытах на животных с выведенной из брюшиной полости и подшитой к коже селезенкой изучал динамику колебаний размеров и объема органа под влиянием ряда факторов. Баркрофт, в частности, обнаружил, что агрессивное состояние собаки, например при виде кошки, вызывало резкое сокращение селезенки.

У взрослого человека в селезенке содержится примерно 0,5 л крови. При возбуждении симпатической нервной системы происходит сокращение селезенки и кровь поступает в кровоток. При возбуждении блуждающих нервов селезенка, напротив, наполняется кровью.

Депо крови второго вида . Легкие и печень в своих сосудах вмещают большое количество крови.

У взрослого человека в сосудистой системе печени обнаруживается около 0,6 л крови. Сосудистое русло легких содержит от0,5 до 1,2 л крови.

Вены печени имеют «шлюзовой» механизм, представленный гладкой мускулатурой, волокна которой окружают начало печеночных вен. «Шлюзовой» механизм, также как и сосуды печени, иннервируется ветвями симпатических и блуждающих нервов. При возбуждении симпатических нервов, при увеличенном поступлении в кровоток адреналина происходит расслабление печеночных«шлюзов» и сокращение вен, в результате в общий кровоток поступает дополнительное количество крови. При возбуждении блуждающих нервов, при действии продуктов распада белка (пептоны, альбумозы), гистамина«шлюзы» печеночных вен закрываются, тонус вен понижается, просвет их увеличивается и создаются условия для наполнения сосудистой системы печени кровью.

Сосуды легких также иннервируются симпатическими и блуждающими нервами. Однако при возбуждении симпатических нервов сосуды легких расширяются и вмещают в себя большое количество крови. Биологическое значение такого влияния симпатической нервной системы на сосуды легких заключается в следующем. Например, при повышенной физической активности увеличивается потребность организма в кислороде. Расширение сосудов легких и увеличение притока крови к ним в этих условиях способствует лучшему удовлетворению возросших потребностей организма в кислороде и, в частности, скелетных мышц.

Депо крови третьего вида . В подсосочковых венозных сплетениях кожи вмещается до 1 л крови. Значительное количество крови содержится в венах, особенно брюшной полости. Все указанные сосуды иннервируются вегетативной нервной системой и функционируют так же, как сосуды селезенки и печени.

Кровь из депо поступает в общий круг кровообращения при возбуждении симпатической нервной системы (исключение составляют легкие), которое наблюдается при физической активности, эмоциях (гнев, страх), болевых раздражениях, кислородном голодании организма, кровопотерях, лихорадочных состояниях и т. д.

Депо крови наполняются при относительном покое организма, во время сна. В этом случае центральная нервная система оказывает влияние на депо крови через блуждающие нервы.

Перераспределение крови Общее количество крови в сосудистом русле составляет 5 6 л. Этот объем крови не может обеспечить увеличенные потребности органов в крови в период их активности. Вследствие этого перераспределение крови в сосудистом русле является необходимым условием, обеспечивающим выполнение органами и тканями их функций. Перераспределение крови в сосудистом русле приводит к усилению кровоснабжения одних органов и уменьшению других. Перераспределение крови происходит в основном между сосудами мышечной системы и внутренних органов, особенно органов брюшной полости и кожи.

Во время физической работы в скелетных мышцах функционирует больше открытых капилляров и значительно расширяются артериолы, что сопровождается увеличенным притоком крови. Возросшее количество крови в сосудах скелетных мышц обеспечивает их эффективную работу. Одновременно уменьшается кровоснабжение органов системы пищеварения.

Во время процесса пищеварения расширяются сосуды органов системы пищеварения, кровоснабжение их увеличивается, что создает оптимальные условия для осуществления физической и химической обработки содержимого желудочно-кишечного тракта. В этот период суживаются сосуды скелетных мышц и уменьшается их кровоснабжение.

Расширение сосудов кожи и увеличение притока крови к ним при высокой температуре окружающей среды сопровождается уменьшением кровоснабжения других органов, преимущественно системы пищеварения.

Перераспределение крови в сосудистом русле происходит и под действием силы тяжести, например сила тяжести облегчает движение крови по сосудам шеи. Ускорение, возникающее в современных летательных аппаратах (самолеты, космические корабли при взлете и т. д.), также вызывает перераспределение крови в различных сосудистых областях организма человека.

Расширение сосудов в работающих органах и тканях и сужение их в органах, находящихся в состоянии относительного физиологического покоя, является результатом воздействия на тонус сосудов нервных импульсов, идущих от сосудодвигательного центра.

Деятельность сердечно-сосудистой системы при физической работе .

Физическая работа значительно отражается на функции сердца, тонусе кровеносных сосудов, величине артериального давления и других показателях активности системы кровообращения. Возросшие при физической активности потребности организма, в частности в кислороде, удовлетворяются уже в так называемый предрабочий период. В этот период вид спортивного помещения или.производственная обстановка способствует подготовительной перестройке работы сердца и кровеносных сосудов, в основе которой лежат условные рефлексы.

Наблюдается условно-рефлекторное усиление работы сердца, поступление части депонированной крови в общий круг кровообращения, увеличение выброса адреналина из мозгового вещества надпочечников в сосудистое русло, Адреналин в свою очередь стимулирует работу сердца и суживает сосуды внутренних органов. Все это способствует нарастанию кровяного давления, увеличению кровотока через сердце, мозг и легкие.

Адреналин возбуждает симпатическую нервную систему, которая усиливает деятельность сердца, что также способствует повышению кровяною давления.

Во время физической активности кровоснабжение мышц возрастает в несколько раз. Причиной этого является интенсивный обмен веществ в мышцах, что обусловливает увеличение концентрации метаболитов (углекислый газ, молочная кислота и др.), которые расширяют артериолы и способствуют раскрытию капилляров. Однако увеличение просвета сосудов работающих мышц не сопровождается падением кровяного давления. Оно сохраняется на достигнутом высоком уровне, потому что в это время проявляются прессорные рефлексы в результате возбуждения механорецепторов области дуги аорты и каротидных синусов. Вследствие этого сохраняется усиленная деятельность сердца, а сосуды внутренних органов сужены, что и поддерживает артериальное давление на высоком уровне.

Скелетные мышцы при своем сокращении механически сдавливают тонкостенные вены, что способствует увеличенному венозному возврату крови к сердцу. Кроме того, повышение активности нейронов дыхательного центра в результате нарастания количества углекислого газа в организме приводит к увеличению глубины и частоты дыхательных движений. Это же в свою очередь увеличивает отрицательность внутригрудного давления важнейшего механизма, способствующего увеличению венозного возврата крови к сердцу. Таким образом, уже через 3 5 мин после начала физической работы системы кровообращения, дыхания и крови значительно усиливают свою деятельность, приспосабливая ее к новым условиям существования и удовлетворяя повышенные потребности организма в кислороде и кровоснабжении таких органов и тканей, как сердце, мозг, легкие и скелетные мышцы. Обнаружено, что при интенсивной физической работе минутный объем крови может составлять 30 л и более, это в 5 7 раз превышает минутный объем крови в состоянии относительного физиологического покоя. При этом систолический объем крови может быть равен 150 – 200 мл. 3начительно увеличивается частота сердечных сокращений. По некоторым данным, пульс может возрасти до 200 в 1 мин и более. Артериальное давление в плечевой артерии повышается до 26,7 кПа (200 мм рт. ст.). Скорость кругооборота крови может увеличиваться в 4 раза.

Давление крови в различных отделах сосудистого русла.

К р о в я н о е д а в л е н и е – давление крови на стенки кровеносных сосудов измеряется в Паскалях (1 Па = 1 Н/м2). Нормальное кровяное давление необходимо для циркуляции крови и надлежащего снабжения кровью органов и тканей, для образования тканевой жидкости в капиллярах, а также для осуществления процессов секреции и экскреции.

Величина кровяного давления зависит от трех основных факторов: частоты и силы сердечных сокращений; величины периферического сопротивления, т. е. тонуса стенок сосудов, главным образом артериол и капилляров; объема циркулирующей крови,

Различают артериальное, венозное и капиллярное давление крови. Величина артериального давления у здорового человека является довольно постоянной. Однако она всегда подвергается небольшим колебаниям в зависимости от фаз деятельности сердца и дыхания.

Различают систолическое, диастолическое, пульсовое и среднее артериальное давление.

С и с т о л и ч е с к о е (максимальное) давление отражает состояние миокарда левого желудочка сердца. Его величина 13,3 – 16,О кПа (100 – 120 мм рт. ст.) .

Д и а с т о л и ч е с к о е (минимальное) давление характеризует степень тонуса артериальных стенок. Оно равняется 7,8 -0,7 кПа (6О – 80 мм рт. ст.).

П у л ь с о в о е д а в л е н и е это разность между систолическим и диастолическим давлением. Пульсовое давление необходимо для открытия полулунных клапанов во время систолы желудочков. В норме пульсовое давление составляет 4,7 – 7,3 кПа (35 – 55 мм рт. ст.). Если систолическое давление станет равным диастолическому, движение крови будет невозможным и наступит смерть.

С р е д н е е артериальное давление равняется сумме диастолического и 1/3 пульсового давления. Среднее артериальное давление выражает энергию непрерывного движения крови и представляет собой постоянную величину для данного сосуда и организма.

На величину артериального давления оказывают влияние различные факторы: возраст, время суток, состояние организма, центральной нервной системы и т. д. У новорожденных величина максимального артериального давления составляет 5,3 кПа (40 мм рт. ст.), в возрасте 1 месяца – 10,7 кПа (80 мм рт. ст.), 10 – 14 лет – 13,3-14,7 кПа (100 – 110 мы рт. ст.), 20 – 40 лет – 14,7-17,3 кПа (110 — 130 мм рт. ст.). С возрастом максимальное давление увеличивается в большей степени, чем минимальное.

В течение суток наблюдается колебание величины артериального давления: днем оно выше, чем ночью.

Значительное повышение максимального артериального давления может наблюдаться при тяжелой физической нагрузке, во время спортивных состязаний и др. После прекращения работы или окончания соревнований артериальное давление быстро возвращается к исходным показателям, Повышение артериального давления называют гипертонией . Понижение артериального давления получило название гипотонии . Гипотония может наступить в результате отравления наркотиками, при сильных травмах, обширных ожогах, больших кровопотерях.

Методы измерения артериального давления. У животных артериальное давление измеряют бескровным и кровавым способом . В последнем случае обнажают одну из крупных артерий (сонная или бедренная). Делают надрез в стенке артерии, через который вводят стеклянную канюлю (трубочку). Канюлю при помощи лигатур укрепляют в сосуде и соединяют с одним концом ртутного манометра с помощью системы резиновых и стеклянных трубок, заполненных раствором, препятствующим свертыванию крови. На другом конце манометра опускают поплавок с писчиком. Колебания давления передаются через жидкость трубочек ртутному манометру и поплавку, движения которого регистрируются на поверхности барабана кимографа.

У человека артериальное давление определяют аускультативным методом по Короткову. Для этой цели необходимо иметь сфигмоманометр Рива-Роччи или сфигмотонометр (манометр мембранного типа). Сфигмоманометр состоит из ртутного манометра, широкого плоского резинового мешка-манжеты и нагнетательной резиновой груши, соединенных друг с другом резиновыми трубками. Артериальное давление у человека обычно измеряют в плечевой артерии. Резиновую манжету, нерастяжимую благодаря покрышке из парусины, обертывают вокруг плеча и застегивают. Затем с помощью груши в манжету нагнетают воздух. Манжета раздувается и сдавливает ткани плеча и плечевую артерию. Степень этого давления можно измерить по манометру. Воздух нагнетают до тех пор, пока не перестанет прощупываться пульс в плечевой артерии, что происходит при полном ее сжатии. Затем в области локтевого сгиба, т. е. ниже места пережатия, к плечевой артерии прикладывают фонендоскоп и начинают с помощью винта понемногу выпускать воздух из манжеты. Когда давление в манжете понизится настолько, что кровь при систоле оказывается способной его преодолеть, в плечевой артерии прослушиваются характерные звуки – тоны . Эти тоны обусловлены появлением тока крови при систоле и отсутствием его при диастоле. Показания манометра, которые соответствуют появлению тонов, характеризуют максимальное , или систолическое , давление в плечевой артерии. При дальнейшем понижении давления в манжете тоны сначала усиливаются, а затем затихают и перестают прослушиваться. Прекращение звуковых явлений свидетельствует о том, что теперь и во время диастолы кровь способна проходить по сосуду без помех. Прерывистое (турбулентное) течение крови превращается в непрерывное (ламинарное). Движение по сосудам в этом случае не сопровождается звуковыми явлениями, показания манометра, которые соответствуют моменту исчезновения тонов, характеризуют диастолическое, минимальное , давление в плечевой артерии.

Артериальный пульс -это периодические расширения и удлинения стенок артерий, обусловленные поступлением крови в аорту при систоле левого желудочка. Пульс характеризуется рядом качеств, которые определяются путем пальпации чаще всего лучевой артерии в нижней трети предплечья, где она расположена наиболее поверхностно.

Пальпаторно определяют следующие качества пульса: частоту – количество ударов в 1 мин, ритмичность -правильное чередование пульсовых ударов, наполнение -степень изменения объема артерии, устанавливаемая по силе пульсового удара, напряжение -характеризуется силой, которую надо приложить, чтобы сдавить артерию до полного исчезновения пульса.

Пальпацией определяют и состояние стенок артерий: после сдавливания артерии до исчезновения пульса; в случае склеротических изменений сосуда она ощущается как плотный тяж.

Возникшая пульсовая волна распространяется по артериям. По мере продвижения она ослабевает и затухает на уровне капилляров. Скорость распространения пульсовой волны в различных сосудах у одного и того же человека неодинакова, она больше в сосудах мышечного типа и меньше в эластических сосудах. Так, у людей молодого и пожилого возраста скорость распространения пульсовых колебаний в эластических сосудах лежит в пределах от 4,8 до 5,6 м/с, в крупных артериях мышечного типа -от 6,0 до 7,0 -7,5 м/с. Таким образом, скорость распространения пульсовой волны по артериям значительно больше, чем скорость движения крови по ним, которая не превышает 0,5 м/с. С возрастом, когда понижается эластичность сосудов, скорость распространения пульсовой волны увеличивается.

Для более детального изучения пульса производят его запись с помощью сфигмографа. Кривая, полученная при записи пульсовых колебаний, называется сфигмограммой .

На сфигмограмме аорты и крупных артерий различают восходящее колено -анакроту и нисходящее колено -катакроту . Возникновение анакроты объясняется поступлением новой порции крови в аорту в начале систолы левого желудочка. В результате расширяется стенка сосуда, при этом возникает пульсовая волна, которая распространяется по сосудам, и на сфигмограмме фиксируется подъем кривой. В конце систолы желудочка, когда давление в нем снижается, а стенки сосудов возвращаются в исходное состояние, на сфигмограмме появляется катакрота. Во время диастолы желудочков давление в их полости становится ниже, чем в артериальной системе, поэтому создаются условия для возвращения крови в желудочки. В результате этого давление в артериях падает, что отражается на пульсовой кривой в виде глубокой выемки -инцизуры . Однако на своем пути кровь встречает препятствие -полулунные клапаны. Кровь отталкивается от них и обусловливает появление вторичной волны повышения давления Это в свою очередь вызывает вторичное расширение стенок артерий, что фиксируется на сфигмограмме в виде дикротического подъема.

Физиология микроциркуляции

В сердечно-сосудистой системе центральным является микроциркуляторное звено, основной функцией которого является транскапиллярный обмен.

Микроциркуляторное звено сердечно-сосудистой системы представлено мелкими артериями, артериолами, метартериолами, капиллярами, венулами, мелкими венами и артериоловенулярными анастомозами. Артериоловенулярные анастомозы служат для уменьшения сопротивления току крови на уровне капиллярной сети. При открытии анастомозов увеличивается давление в венозном русле и ускоряется движение крови по венам.

Транскапиллярный обмен происходит в капиллярах. Он возможен благодаря особому строению капилляров, стенка которых обладает двусторонней проницаемостью. Проницаемость - активный процесс, который обеспечивает оптимальную среду для нормальной жизнедеятельности клеток организма.

Рассмотрим особенности строения важнейших представителей микроциркулярного русла - капилляров.

Капилляры открыты и изучены итальянским ученым Мальпиги (1861). Общее количество капилляров в системе сосудов большого круга кровообращения составляет около 2 млрд., протяженность их - 8000 км, площадь внутренней поверхности 25 м 2 . Поперечное сечение всего капиллярного русла в 500-600 раз больше поперечного сечения аорты.

Капилляры имеют форму шпильки, срезанной или полной восьмерки. В капилляре различают артериальное и венозное колено, а также вставочную часть. Длина капилляра равна 0,3-0,7 мм, диаметр - 8-10 мкм. Через просвет такого сосуда эритроциты проходят другза другом, несколько деформируясь. Скорость тока крови в капиллярах составляет 0,5-1 мм/с, что в 500-600 раз меньше скорости тока крови в аорте.

Стенка капилляров образована одним слоем эндоте-лиальных клеток, которые снаружи сосуда располагаются на тонкой соединительнотканной базальной мембране.

Существуют закрытые и открытые капилляры. Работающая мышца животного содержит в 30 раз больше капилляров, чем мышца, находящаяся в состоянии покоя.

Форма, размеры и количество капилляров в различных органах неодинаковы. В тканях органов, в которых наиболее интенсивно происходят обменные процессы, количество капилляров на 1 мм 2 поперечного сечения значительно больше, чем в органах, где метаболизм менее выражен. Так, в сердечной мышце на 1 мм 2 поперечного сечения приходится в 5-6 раз больше капилляров, чем в скелетной мышце.

Для выполнения капиллярами их функций (транскапиллярного обмена) имеет значение артериальное давление. В артериальном колене капилляра давление крови составляет 4,3 кПа (32 мм рт. ст.), в венозном - 2,0 кПа (15 мм рт. ст.). В капиллярах почечных клубочков давление достигает 9,3-12,0 кПа (70-90 мм рт. ст.); в капиллярах, оплетающих почечные канальцы,- 1,9- 2,4 кПа (14-18 мм рт. ст.). В капиллярах легких давление равняется 0,8 кПа (6 мм рт. ст.).

Таким образом, величина давления в капиллярах тесно связана с состоянием органа (покой, активность) и его функциями.

Кровообращение в капиллярах можно наблюдать под микроскопом в плавательной перепонке лапки лягушки. В капиллярах кровь движется прерывисто, что связано с изменением просвета артериол и прекапиллярных сфинктеров. Фазы сокращения и расслабления длятся от нескольких секунд до нескольких минут.

Активность микрососудов регулируется нервными и гуморальными механизмами. На артериолы главным образом воздействуют симпатические нервы, на прекапиллярные сфинктеры - гуморальные факторы (гистамин, серотонин и др.).

Особенности кроовотока в венах. Кровь из микроциркуляторного русла (венулы, мелкие вены) поступает в венозную систему. В венах давление крови низкое. Если в начале артериального русла давление крови равно 18,7 кПа (140 мм рт. ст.), то в венулах оно составляет 1,3-2,0 кПа (10-15 мм рт. ст). В конечной части венозного русла давление крови приближается к нулю и даже может быть ниже атмосферного давления.

Движению крови по венам способствует ряд факторов: работа сердца, клапанный аппарат вен, сокращение скелетных мышц, присасывающая функция грудной клетки.

Работа сердца создает разность давления крови в артериальной системе и правом предсердии. Это обеспечивает венозный возврат крови к сердцу. Наличие в венах клапанов способствует движению крови в одном направлении - к сердцу. Чередование сокращений и расслаблений мышц является важным фактором, способствующим движению крови по венам. При сокращении мышц тонкие стенки вен сжимаются, и кровь продвигается по направлению к сердцу. Расслабление скелетных мышц способствует поступлению крови из артериальной системы в вены. Такое нагнетающее действие мышц получило название мышечного насоса, который является помощником основного насоса - сердца. Движение крови по венам облегчается во время ходьбы, когда ритмически работает мышечный насос нижних конечностей.

Отрицательное внутригрудное давление, особенно в фазу вдоха, способствует венозному возврату крови к сердцу. Внутригрудное отрицательное давление вызывает расширение венозных сосудов области шеи и грудной полости, обладающих тонкими и податливыми стенками. Давление в венах понижается, что облегчает движение крови по направлению к сердцу.

Скорость тока крови в периферических венах составляет 5-14 см/с, полых венах - 20 см/с.

Иннервация кровеносных сосудов

Изучение вазомоторной иннервации было начато русским исследователем А. П. Вальтером, учеником Н. И. Пирогова, и французским физиологом Клодом Бернаром.

А. П. Вальтер (1842) изучал влияние раздражения и перерезки симпатических нервов на просвет кровеносных сосудов в плавательной перепонке лягушки. Наблюдая за просветом кровеносных сосудов под микроскопом, он установил, что симпатические нервы обладают способностью суживать сосуды.

Клод Бернар (1852) изучал влияние симпатических нервов на тонус сосудов уха кролика-альбиноса. Он обнаружил, что раздражение электрическим током симпатического нерва на шее у кролика закономерно сопровождается сужением сосудов: ухо животного становилось бледным и холодным. Перерезка симпатического нерва на шее приводила к расширению сосудов уха, которое становилось красным и теплым.

Современные данные также свидетельствуют о том, что симпатические нервы для сосудов являются вазоконстрикторами (суживают сосуды). Установлено, что даже в условиях полного покоя по вазоконстрикторным волокнам к сосудам непрерывно поступают нервные импульсы, которые поддерживают их тонус. Вследствие этого перерезка симпатических волокон сопровождается расширением сосудов.

Вазоконстрикторное влияние симпатических нервов не распространяется на сосуды головного мозга, легких, сердца и работающих мышц. При возбуждении симпатических нервов сосуды указанных органов и тканей расширяются.

Сосудорасширяющие нервы имеют несколько источников. Они входят в состав некоторых парасимпатических нервов, Сосудорасширяющие нервные волокна обнаружены в составе симпатических нервов и задних корешков спинного мозга.

Сосудорасширяющие волокна (вазодилататоры) парасимпатической природы. Впервые Клод Бернар установил наличие сосудорасширяющих нервных волокон в составе VII пары черепных нервов (лицевой нерв). При раздражении нервной веточки (барабанная струна) лицевого нерва он наблюдал расширение сосудов подчелюстной железы. В настоящее время известно, что и в составе других парасимпатических нервов имеются вазодилататорные нервные волокна. Например, сосудорасширяющие нервные волокна обнаружены в языкоглоточном (1Х пара черепных нервов), блуждающем (Х пара черепных нервов) и тазовом нервах.

Сосудорасширяющие волокна симпатической природы. Симпатические вазодилататорные волокна иннервируют сосуды скелетных мышц. Они обеспечивают высокий уровень кровотока в скелетной мускулатуре во время физической нагрузки и не участвуют в рефлекторной регуляции артериального давления.

Сосудорасширяющие волокна корешков спинного мозга. При раздражении периферических концов задних корешков спинного мозга, в состав которых входят чувствительные волокна, можно наблюдать расширение сосудов кожи.

Гуморальная регуляция тонуса сосудов

В регуляции тонуса сосудов участвуют также гуморальные вещества, которые могут воздействовать на сосудистую стенку как непосредственно, так и изменяя нервные влияния, Под действием гуморальных факторов просвет сосудов или увеличивается, или уменьшается, поэтому принято гуморальные факторы, оказывающие действие на тонус сосудов, делить на сосудосуживающие и сосудорасширяющие вещества.

Сосудосуживающие вещества . К этим гуморальным факторам относятся адреналин, норадреналин (гормоны мозгового вещества надпочечников), вазопрессин (гормон задней доли гипофиза), ангиотонин (гипертензин), образующийся из a-глобулина плазмы под влиянием ренина (протеолитический фермент почек), серотонин, биологически активное вещество, носителями которого являются тучные клетки соединительной ткани и тромбоциты.

Указанные гуморальные факторы преимущественно суживают артерии и капилляры.

Сосудорасширяющие вещества. К ним относятся гистамин, ацетилхолин, тканевые гормоны кинины, простагландины.

Гистамин продукт белкового происхождения, образуется в тучных клетках, базофилах, в стенке желудка, кишечника и т. д. Гистамин является активным вазодилататором, он расширяет мельчайшие сосуды артериолы и капилляры,

Ацетилхолин действует местно, расширяет мелкие артерии.

Главным представителем кининов является брадикинин. Он расширяет преимущественно мелкие артериальные сосуды и прекапиллярные сфинктеры, что способствует увеличению кровотока в органах.

Простагландины содержатся во всех органах и тканях человека. Некоторые из простагландинов дают выраженный сосудорасширяющий эффект, который проявляется местно.

Сосудорасширяющие свойства присущи и другим веществам, например молочной кислоте, ионам калия, магния и т. д.

Таким образом, просвет кровеносных сосудов, их тонус регулируется нервной системой и гуморальными факторами, к которым относится большая группа биологически активных веществ с выраженным вазоконстрикторным или вазодилататорным действием.

Сосудодвигательный центр, его локализация и значение

Регуляция тонуса сосудов осуществляется с помощью сложного механизма, который включает в себя нервный и гуморальный компоненты.

В нервной регуляции тонуса сосудов принимают участие спинной, продолговатый, средний и промежуточный мозг, кора головного мозга.

Спинной мозг . Русский исследователь В. Ф. Овсянников (1870 1871) одним из первых указал на роль спинного мозга в регуляции тонуса сосудов.

После отделения у кроликов спинного мозга от продолговатого путем поперечной перерезки на протяжении длительного времени (недели) наблюдалось резкое падение величины артериального давления в результате понижения тонуса сосудов.

Нормализация артериального давления у «спинальных» животных осуществляется за счет нейронов, расположенных в боковых рогах грудных и поясничных сегментов спинного мозга и дающих начало симпатическим нервам, которые связаны с сосудами соответствующих участков тела. Эти нервные клетки выполняют функцию спинальных сосудодвигательных центров и принимают участие в регуляции тонуса сосудов.

Продолговатый мозг . В. Ф. Овсянников на основании результатов опытов с высокой поперечной перерезкой спинного мозга у животных пришел к заключению, что в продолговатом мозге локализуется сосудодвигательный центр. Этот центр регулирует деятельность спинальных сосудодвигательных центров, которые находятся в прямой зависимости от его активности.

Сосудодвигательный центр это парное образование, которое располагается на дне ромбовидной ямки и занимает нижнюю и среднюю ее части. Показано, что он состоит из двух отличных в функциональном отношении областей прессорной и депрессорной. Возбуждение нейронов прессорной области приводит к повышению тонуса сосудов и уменьшению их просвета, возбуждение нейронов депрессорной зоны обусловливает понижение тонуса сосудов и увеличение их просвета.

Такое расположение не строго специфично, кроме того, нейронов, обеспечивающих при своем возбуждении сосудосуживающие реакции больше, чем нейронов, обусловливающих при своей активности расширение сосудов. Наконец, обнаружено, что нейроны сосудодвигательного центра располагаются среди нервных структур ретикулярной формации продолговатого мозга.

Средний мозг и гипоталамическая область . Раздражение нейронов среднего мозга, по данным ранних работ В. Я. Данилевского (1875), сопровождается повышением тонуса сосудов, приводящим к возрастанию артериального давления.

Установлено, что раздражение передних отделов гипоталамической области приводит к понижению тонуса сосудов, увеличению их просвета и падению артериального давления. Стимуляция нейронов задних отделов гипоталамуса, наоборот, сопровождается повышением тонуса сосудов, уменьшением их просвета и увеличением артериального давления.

Влияние гипоталамической области на тонус сосудов осуществляется главным образом через сосудодвигательный центр продолговатого мозга. Однако часть нервных волокон от гипоталамической области идет непосредственно к спинальным нейронам, минуя сосудодвигательный центр продолговатого мозга.

Кора головного мозга. Роль этого отдела центральной нервной системы в регуляции тонуса сосудов была доказана в опытах с прямым раздражением различных зон коры головного мозга, в экспериментах с удалением (экстирпацией) отдельных ее участков и методом условных рефлексов.

Опыты с раздражением нейронов коры головного мозга и с удалением ее различных участков позволили сделать определенные выводы. Кора головного мозга обладает способностью как тормозить, так и усиливать активность нейронов подкорковых образований, имеющих отношение к регуляции тонуса сосудов, а также нервных клеток сосудодвигательного центра продолговатого мозга. Наибольшее значение в регуляции тонуса сосудов имеют передние отделы коры головного мозга: моторная, премоторная и орбитальная.

Условнорефлекторные влилния на тонус сосудов

Классическим приемом, который позволяет судить о кортикальных влияниях на функции организма, является метод условных рефлексов.

В лаборатории И. П, Павлова его учениками (И, С. Цитович) впервые были образованы условные сосудистые рефлексы у человека. В качестве безусловного раздражителя использовали температурный фактор (тепло и холод), болевое воздействие, фармакологические вещества, изменяющие тонус сосудов (адреналин). Условным сигналом являлись звук трубы, вспышка света и т. д.

Изменение тонуса сосудов регистрировали с помощью так называемого плетизмографического метода. Этот метод позволяет фиксировать колебания объема органа (например, верхней конечности), которые связаны со сдвигами в его кровенаполнении и, следовательно, обусловлены изменениями в просвете кровеносных сосудов.

В опытах было установлено, что условные сосудистые рефлексы у человека и животных образуются срявнительно быстро. Сосудосуживающий условный рефлекс может быть получен после 2 3 сочетаний условного сигнала с безусловным раздражителем, сосудорасширяющий после 20 30 и более сочетаний. Условные рефлексы первого вида хорошо сохраняются, второго вида оказались нестойкими и непостоянными по величине.

Таким образом, по своему функциональному значению и механизму действия на тонус сосудов отдельные уровни центральной нервной системы неравнозначны.

Сосудодвигательный центр продолговатого мозга осуществляет регуляцию тонуса сосудов, воздействуя на спинальные сосудодвигательные центры. Кора головного мозга и гипоталамическая область оказывают опосредованное влияние на тонус сосудов, изменяя возбудимость нейронов продолговатого и спинного мозга.

Значение сосудодвигательного центра . Нейроны сосудодвигательного центра за счет своей активности осуществляют регуляцию тонуса сосудов, поддерживают нормальную величину кровяного давления, обеспечивают движение крови по сосудистой системе и ее перераспределение в организме по отдельным областям органам и тканям, влияют на процессы терморегуляции, изменяя просвет сосудов.

Тонус сосудодвигательного центра продолговатого мозга . Нейроны сосудодвигательного центра находятся в состоянии постоянного тонического возбуждения, которое передается на нейроны боковых рогов спинного мозга симпатической нервной системы. Отсюда возбуждение по симпатическим нервам поступает к сосудам и обусловливает их постоянное тоническое напряжение. Тонус сосудодвигательного центра зависит от нервных импульсов, постоянно идущих к нему от рецепторов различных рефлексогенных зон,

В настоящее время установлено наличие многочисленных рецепторов в эндокарде, миокарде, перикарде, Во время работы сердца создаются условия для возбуждения этих рецепторов. Нервные импульсы, возникшие в рецепторах, поступают к нейронам сосудодвигательного центра и поддерживают их тоническое состояние.

Нервные импульсы идут и от рецепторов рефлексогенкых зон сосудистой системы (область дуги аорты, каротидные синусы, коронарные сосуды, рецепторная зона правого предсердия, сосуды малого круга кровообращения, брюшной полости и т. д.), обеспечивая тоническую активность нейронов сосудодвигательного центра.

Возбуждение самых разнообразных экстеро и интерорецепторов различных органов и тканей также способствует поддержанию тонуса сосудодвигательного центра.

Важную роль в сохранении тонуса сосудодвигательного центра играет возбуждение, поступающее от коры больших полушарий и ретикулярной формации ствола мозга. Наконец, постоянный тонус сосудодвигательного центра обеспечивается воздействием различных гуморальных факторов (углекислый газ, адреналин и др.). Регуляция активности нейронов сосудодвигательного центра осуществляется за счет нервных импульсов, идущих от коры головного мозга, гипоталамической области, ретикулярной формации ствола мозга, а также афферентных импульсов, поступающих с различных рецепторов. Особенно вакная роль в регуляции активности нейронов сосудодвигательного центра принадлежит аортальной и каротидной рефлексогенным зонам.

Рецепторная зона дуги аорты представлена чувствительными нервными окончаниями депрессорного нерва, являющегося веточкой блуждающего нерва. Значение депрессорного нерва в регуляции деятельности сосудодвигательного центра впервые была доказана отечественным физиологом И. Ф. Ционом и немецким ученым Людвигом (1866). В области каротидных синусов располагаются механорецепторы, от которых берет начало нерв, изученный и описанный немецкими исследователями Герингом, Геймансом и другими (1919 1924). Этот нерв получил название синусового нерва, или нерва Геринга. Синусовый нерв имеет анатомические связи с языкоглоточным (1Х пара черепных нервов) и симпатическим нервами.

Естестненным (адекватным) раздражителем механорецепторов является их растяжение, которое наблюдается при изменении кровяного давления. Механорецепторы чрезвычайно чувствительны к колебаниям давления. Особенно это относится к рецепторам каротидных синусов, которые возбуждаются при изменении давления на 0,13 0,26 кПа (1 2 мм рт. ст.).

Рефлекторная регуляция активности нейронов сосудодвигательного центра , осуществляемая с дуги аорты и каротидных синусов, однотипна, поэтому ее можно рассмотреть на примере одной из рефлексогснных зон.

При повышении артериального давления в сосудистой системе возбуждаются механорецепторы области дуги аорты. Нервные импульсы от рецепторов по депрессорному нерву и блуждающим нервам направляются в продолговатый мозг к сосудолвигатсльному центру. Под влиянием этих импульсов снижается активность иейронов прессорной зоны сосудодвигательного центра, что приводит к увеличению просвета сосудов и снижению артериального давления. Одновременно увеличивается активность ядер блуждающих нервов и уменьшается возбудимость нейронов дыхательного центра. Ослабление силы и уменьшение частоты сердечных сокращений под влиянием блуждающих нервов, глубины и частоты дыхательных движений в результате уменьшения активности нейронов дыхательного центра также способствует снижению артериального давления.

При уменьшении артериального давления наблюдаются противоположные изменения активности нейронов сосудодвигательного центра, ядер блуждающих нервов, нервных клеток дыхательного центра, приводящие к нормализации артериального давления.

В восходящей части аорты в ее наружном слое располагается аортальное тельце, а в области разветвления сонной артерии каротидное тельце, в которых локализованы рецепторы, чувствительные к изменениям химического состава крови, особенно к сдвигам в количестве углекислого газа и кислорода. Установлено, что при повышении концентрации углекислого газа и понижении содержания кислорода в крови происходит возбуждение этих хеморецепторов, которое обусловливает увеличение активности нейронов прессорной зоны сосудодвигательного центра. Это приводит к уменьшению просвета кровеносных сосудов и повышению артериального давления. Одновременно рефлекторно увеличивается глубина и частота дыхательных движений в результате повышения активности нейронов дыхательного центра.

Рефлекторные изменения давления, возникающие в результате возбуждения рецепторов различных сосудистых областей, получили название с о б с т в е н н ы х р е фл е к с о в с ер де ч н ос осу д ис т ой с ис те мы. К ним, в частности, относятся рассмотренные рефлексы, проявляющиеся при возбуждении рецепторов области дуги аорты и каротидных синусов.

Рефлекторные изменения артериального давления, обусловленные возбуждением рецепторов, не локализованных в сердечнососудистой системе, получили название с о п р я ж е н н ы х р е ф л е к с о в. Эти рефлексы возникают, например, при возбуждении болевых и температурных рецепторов кожи, проприорецепторов мышц при их сокращении и т. д,

Деятельность сосудодвигательного центра за счет регуляторных механизмов (нервных и гуморальных) приспосабливает тонус сосудов и, следовательно, кровоснабжение органов и тканей к условиям существования организма животных и человека. По современным представлениям, центры, регулирующие деятельность сердца и сосудодвигательный центр, функционально объединены в сердечнососудистый центр, который управляет функциями кровообращения.

Лимфа и лимфообращение

Состав и свойства лимфы . Лимфатическая система является составной частью микроциркуляторного русла. Лимфатическая система состоит из капилляров, сосудов, лимфатических узлов, грудного и правого лимфатического протоков, из которых лимфа поступает в венозную систему.

Л и м ф а т и ч е с к и е к а п и л л я р ы являются начальным звеном лимфатической системы. Они входят в состав всех тканей и органов. Лимфатические капилляры имеют ряд особенностей. Они не открываются в межклеточные пространства (оканчиваются слепо), их стенки тоньше, податливее и обладают большей проницаемостью по сравнению с кровеносными капиллярами. Лимфатические капилляры имеют больший просвет, чем кровеносные капилляры. При полном заполнении лимфой лимфатических капилляров диаметр их равен в среднем 15 75 мкм. Длина их может достигать 100 150 мкм. В лимфатических капиллярах имеются клапаны, представляющие собой парные, расположенные друг против друга карманообразные складки внутренней оболочки сосуда. Клапанный аппарат обеспечивает движение лимфы в одном направлении к устью лимфатической системы (грудному и правому лимфатическому протокам). Например, скелетные мышцы при сокращении механически сдавливают стенки капилляров и лимфа продвигается по направлению к венозным сосудам. Обратное ее движение невозможно благодаря наличию клапанного аппарата.

Лимфатические капилляры переходят в лимфатические сосуды, которые заканчиваются правым лимфатическим и грудным протоками. В лимфатических сосудах имеются мышечные элементы, иннервируемые симпатическими и парасимпатическими нервами. Благодаря этому лимфатические сосуды обладают способностью активно сокращаться.

Лимфа из грудного протока поступает в венозную систему в области венозного угла, образуемого левой внутренней яремной и подключичной венами. Из правого лимфатического протока лимфа поступает в венозную систему в области венозного угла, образуемого правой внутренней яремной и подключичной венами. Кроме того, по ходу лимфатических сосудов обнаруживаются лимфовенозные анастомозы, которые также обеспечивают поступление лимфы в венозную кровь. У взрослого человека в условиях относительного покоя из грудного протока в подключичную вену ежеминутно поступает около 1 мл лимфы, в сутки от 1,2 до 1,6 л.

Л и м ф а это жидкость, содержащаяся в лимфатических капиллярах и сосудах. Скорость движения лимфы по лимфатическим сосудам составляет 0,4 0,5 м/с. По химическому составу лимфа и плазма крови очень близки. Основное отличие заключается в том, что в лимфе содержится значительно меньше белка, чем в плазме крови. В лимфе имеются белки протромбин, фибриноген, поэтому она может свертываться. Однако эта способность у лимфы выражена в меньшей степени, чему крови. В 1 мм 3 лимфы обнаруживается 2-20 тыс. лимфоцитов. У взрослого человека за сутки из грудного протока в кровь венозной системы поступает более 35 млрд. лимфоцитарных клеток.

В период пищеварения в лимфе брыжеечных сосудов резко нарастает количество питательных веществ, особенно жира, что придает ей молочно белый цвет. Через 6 ч после приема пищи содержание жира в лимфе грудного протока может возрастать во много раз по сравнению с исходными его величинами. Установлено, что состав лимфы отражает интенсивность обменных процессов, протекающих в органах и тканях. Переход различных веществ из крови в лимфу зависит от их диффузионной способности, скорости поступления в сосудистое русло и особенностей проницаемости стенок кровеносных капилляров. Легко переходят в лимфу яды и токсины, главным образом бактериальные.

Образование лимфы . Источником лимфы является тканевая жидкость, поэтому необходимо рассмотреть факторы, способствующие ее образованию. Тканевая жидкость образуется из крови в мельчайших кровеносных сосудах капиллярах. Она заполняет межклеточные пространства всех тканей. Тканевая жидкость является промежуточной средой между кровью и клетками организма. Через тканевую жидкость клетки получают все необходимые для их жизнедеятельности питательные вещества и кислород и в нее же выделяют продукты обмена веществ, в том числе углекислый газ.

Движение лимфы . На движение лимфы по сосудам лимфатической системы оказывает влияние ряд факторов. Постоянный ток лимфы обеспечивается непрерывным образованием тканевой жидкости и переходом ее из межтканевых пространств в лимфатические сосуды. Существенное значение для движения лимфы имеет активность органов и сократительная способность лимфатических сосудов.

К вспомогательным факторам, способствующим движению лимфы, относятся: сократительная деятельность поперечнополосатых и гладких мышц, отрицательное давление в крупных венах и грудной полости, увеличение объема грудной клетки при вдохе, что обусловливает присасывание лимфы из лимфатических сосудов.

Лимфатические узлы

Лимфа в своем движении от капилляров к центральным сосудам и протокам проходит через один или несколько лимфатических узлов. У взрослого человека имеется 500 1000 лимфатических узлов различных размеров от булавочной головки до мелкого зерна фасоли. Лимфатические узлы в значительных количествах располагаются под углом нижней челюсти, в подмышечной впадине, на локтевом сгибе, в брюшной полости, тазовой области, подколенной ямке и т. д. В лимфатический узел входит несколько лимфатических сосудов, выходит же один, по которому оттекает лимфа от узла.

В лимфатических узлах также обнаружены мышечные элементы, иннервируемые симпатическими и парасимпатическими нервами.

Лимфатические узлы выполняют ряд важных функций: гемопоэтическую, иммунопоэтическую, защитно-фильтрационную, обменную и резервуарную.

Гемопоэтическая функция . В лимфатических узлах образуются малые и средние по величине лимфоциты, которые поступают с током лимфы в правый лимфатический и грудной протоки, а затем в кровь. Доказательством образования лимфоцитов в лимфатических узлах является то, что количество лимфоцитов в лимфе, оттекающей от узла, значительно больше, чем в притекающей.

Иммунопоэтическая функция. В лимфатических узлах образуются клеточные элементы (плазматические клетки, иммуноциты) и белковые вещества глобулиновой природы (антитела), имеющие непосредственное отношение к формированию иммунитета в организме человека. Кроме того, в лимфатических узлах продуцируются клетки гуморального (система В-лимфоцитов) и клеточного(система Т-лимфоцитов) иммуйитета.

Защитно-фильтрационная функция . Лимфатические узлы это своеобразные биологические фильтры, которые задерживают поступление в лимфу и кровь инородных частиц, бактерий, токсинов, чужеродных белков и клеток. Так, например, при пропускании сыворотки, насыщенной стрептококками, через лимфатические узлы подколенной ямки было обнаружено, что 99% микробов задерживалось в узлах. Установлено также, что вирусы в лимфатических узлах связываются лимфоцитами и другими клетками. Выполнение лимфатическими узлами защитно-фильтрационной функции сопровождается усилением образования лимфоцитов.

Обменная функция . Лимфатические узлы принимают активное участие в обмене белков, жиров, витаминов и других питательных веществ, поступающих в организм.

Резервуарная функция. Лимфатические узлы совместно с лимфатическими сосудами являются депо для лимфы. Они также участвуют в перераспределении жидкости между кровью и лимфой.

Таким образом, лимфа и лимфатические узлы выполняют в организме животных и человека ряд важнейших функций. Лимфатическая система в целом обеспечивает отток лимфы от тканей и поступление ее в сосудистое русло. При закупорке или сдавлении лимфатических сосудов нарушается отток лимфы от органов, что приводит к отеку тканей в результате переполнения межтканевых пространств жидкостью.

Система кровообращения - это непрерывное движение крови по замкнутой системе полостей сердца и сети кровеносных сосудов, которые обеспечивают все жизненно важные функции организма.

Сердце представляет собой первичный насос, который придает энергию движения крови. Это сложный пункт пересечения разных потоков крови. В нормальном сердце смешивания этих потоков не происходит. Сердце начинает сокращаться примерно через месяц после зачатия, и с этого момента его работа не прекращается до последнего мгновения жизни.

За время, равное средней продолжительности жизни, сердце осуществляет 2,5 млрд. сокращений, и при этом оно перекачивает 200 млн. литров крови. Это уникальный насос, который имеет размер с мужской кулак, а средний вес у мужчины составляет 300г, а у женщины - 220г. Сердце имеет вид тупого конуса. Длина его составляет 12-13 см, ширина 9-10,5 см, а передне-задний размер равен 6-7см.

Система кровеносных сосудов составляет 2 круга кровообращения.

Большой круг кровообращения начинается в левом желудочке аортой. Аорта обеспечивает доставку артериальной крови к различным органам и тканям. При этом от аорты отходят параллельные сосуды, которые приносят кровь к разным органам: артерии переходят в артериоллы, а артериоллы - в капилляры. Капилляры обеспечивают всю сумму обменных процессов в тканях. Там кровь становится венозной, она оттекает от органов. Она притекает к правому предсердию по нижней и верхней полой венам.

Малый круг кровообращения начинается в правом желудочке лёгочным стволом, который делится на правую и левую легочную артерии. Артерии несут венозную кровь к легким, где будет происходить газообмен. Отток крови из легких осуществляется по легочным венам (2 от каждого лёгкого),которые несут артериальную кровь в левое предсердие. Основная функция малого круга- транспортная, кровь доставляет клеткам кислород, питательные вещества, воду, соль, а из тканей выводит углекислый газ и конечные продукты обмена.

Кровообращение - это самое важное звено в процессах газообмена. С кровью транспортируется тепловая энергия - это теплообмен с окружающей средой. За счет функции кровообращения происходит перенос гормонов и других физиологически активных веществ. Это обеспечивает гуморальную регуляцию деятельности тканей и органов. Современные представления о системе кровообращения были изложены Гарвеем, который в 1628 году опубликовал трактат о движении крови у животных. Он пришел к выводу о замкнутости системы кровообращения. Используя метод пережатия кровеносных сосудов, он установил направленность движения крови . От сердца, кровь движется по артериальным сосудам, по венам, кровь движется к сердцу. Деление строится по направлению течения, а не по содержанию крови. Также были описаны основные фазы сердечного цикла. Технический уровень не позволял в то время обнаружить капилляры. Открытие капилляров было сделано позднее (Мальпиге), который подтвердил предположения Гарвея о замкнутости кровеносной системы. Гастро-васкулярная система- это система каналов, связанных с основной полостью у животных.

Эволюция системы кровообращения.

Кровеносная система в форме сосудистых трубок появляется у червей, но у червей в сосудах циркулирует гемолимфа и эта система еще не замкнута. Обмен осуществляется в лакунах - это межтканевое пространство.

Далее происходит замкнутость и появление двух кругов кровообращения. Сердце в своем развитии проходит стадии - двухкамерного - у рыб (1 предсердие, 1 желудочек). Желудочек выталкивает венозную кровь. В жабрах происходит газообмен. Далее кровь идет в аорту.

У земноводных сердце трёхкамерное (2 предсердия и 1 желудочек); правое предсердие получает венозную кровь и проталкивает кровь в желудочек. Из желудочка выходит аорта, в которой имеется перегородка и она делит кровоток на 2 потока. Первый поток идет в аорту, а второй - в легкие. После газообмена в легких кровь поступает в левое предсердие, а затем в желудочек, где происходит смешивание крови.

У рептилий заканчивается дифференцировка клеток сердца на правую и левую половину, но у них имеется отверстие в межжелудочковой перегородке и кровь смешивается.

У млекопитающих полное разделение сердца на 2 половины. Сердце можно рассматривать как орган, образующий 2 насоса - правый - предсердие и желудочек, левый - желудочек и предсердие. Здесь уже не происходит смешивания протоков крови.

Сердце расположено у человека в грудной полости, в средостении между двумя плевральными полостями. Спереди сердце ограничено грудиной, сзади - позвоночником. В сердце выделяют верхушку, которая направлена влево, вниз. Проекция верхушки сердца находится на 1 см внутрь от левой средней ключичной линии в 5ом межреберье. Основание направленно вверх и вправо. Линия соединяющая верхушку и основание - это анатомическая ось, которая направлена сверху вниз, справа налево и спереди назад. Сердце в грудной полости лежит ассиметрично: 2/3 слева от срединной линии, верхняя граница сердца - верхний край 3го ребра, а правая граница на 1 см кнаружи от правого края грудины. Оно практически лежит на диафрагме.

Сердце - это полый мышечный орган, который имеет 4 камеры - 2 предсердия и 2 желудочка. Между предсердиями и желудочками находятся атрио-вентрикулярные отверстия, в которых будут находится атрио-вентрикулярные клапаны. Атрио-вентрикулярные отверстия образованы фиброзными кольцами. Они отделяют миокард желудочков от предсердий. Место выхода аорты и легочного ствола образованы фиброзными кольцами. Фиброзные кольца - скелет, к которому прикрепляются его оболочки. В отверстиях, в области выхода аорты и легочного ствола имеются полулунные клапаны.

Сердце имеет 3 оболочки.

Наружная оболочка- перикард . Он построен из двух листков - наружного и внутреннего, который срастается со внутренней оболочкой и называется миокард. Между перикардом и эпикардом образуется пространство, заполненное жидкостью. В любом движущемся механизме возникают трения. Для более легкого движения сердца ему необходима эта смазка. Если есть нарушения, то возникают трения, шумы. В этих участках начинают образовываться соли, которые замуровывают сердце в «панцирь». Это уменьшает сократительную способность сердца. В настоящее время хирурги удаляют, скусывая этот панцирь, освобождая сердце, для возможности осуществления сократительной функции.

Средний слой — мышечный или миокард. Он является рабочей оболочкой и составляет основную массу. Именно миокард выполняет сократительную функцию. Миокард относится к исчерченным поперечно полосатым мышцам, состоит из индивидуальных клеток - кардиомиоцитов, которые связаны между собой в трехмерную сеть. Между кардиомиоцитами образуются плотные контакты. Миокард прикрепляется к кольцам фиброзной ткани, фиброзному скелету сердца. Он имеет прикрепление к фиброзным кольцам. Миокард предсердий образует 2 слоя - наружный циркулярный, который окружает оба предсердия и внутренний продольный, который индивидуален для каждого. В области впадения вен - полых и легочных образуются кольцевые мышцы, которые формируют сфинктеры и при сокращении этих кольцевых мышц кровь из предсердия не может поступить обратно в вены. Миокард желудочков образован 3мя слоями - наружным косым, внутренним продольным, и между этими двумя слоями распологается циркулярный слой. Миокард желудочков начинается от фиброзных колец. Наружный конец миокарда идет косо к верхушке. На верхушке этот наружный слой образует завиток(vertex), его и волокна переходят во внутренний слой. Между этими слоями находятся циркулярные мышцы, отдельные для каждого желудочка. Трёхслойное строение обеспечивает укорочение и уменьшение просвета (диаметра). Это и обеспечивает возможность выталкивания крови из желудочков. Внутренняя поверхность желудочков выстлана эндокардом, которая переходит в эндотелий крупных сосудов.

Эндокард — внутренний слой — покрывает клапаны сердца, окружает сухожильные нити. На внутренней поверхности желудочков миокард образует трабекулярную сеть и сосочковые мышц и сосочковые мышцы связаны со створками клапанов(сухожильными нитями). Именно эти нити удерживают створки клапана и не дают выворачиваться им в предсердие. В литературе сухожильные нити называются сухожильными струнами.

Клапанный аппарат сердца.

В сердце принято различать атрио-вентрикулярные клапаны, расположенные между предсердиями и желудочками - в левой половине сердца это двухстворчатый, в правой - трёхстворчатый клапан, состоящий из трёх створок. Клапаны открываются в просвет желудочков и пропускают кровь из предсердий в желудочек. Но при сокращении клапан закрывается и возможность крови поступать обратно в предсердие утрачивается. В левом - величина давления намного больше. Более надежными являются структуры с меньшим числом элементов.

У места выхода крупных сосудов - аорта и легочный ствол — находятся полулунные клапаны, представленные тремя кармашками. При наполнении крови в кармашках, происходит закрытие клапанов, поэтому обратного движения крови не происходит.

Назначением клапанного аппарата сердца является обеспечение одностороннего тока крови. Поражение створок клапана приводит к недостаточности клапана. При этом наблюдается обратный ток крови в результате неплотного соединения клапанов, что нарушает гемодинамику. Границы сердца меняются. Получаются признаки развития недостаточности. Вторая проблема, связанная с областью клапанов, стенозирование клапанов - (стенозируется, например, венозное кольцо) - просвет уменьшается.Когда говорят о стенозе, значит говорят либо об атрио-вентрикулярных клапанах, либо о месте отхождения сосудов. Над полулунными клапанами аорты, из её луковицы, отходят коронарные сосуды. У 50% людей кровоток правой больше чем в левой, у 20% кровоток больше в левой чем в правой, 30 % имеют одинаковый отток как в правой, так и в левой коронарной артерии. Развитие анастомозов между бассейнами коронарных артерий. Нарушение кровотоков коронарных сосудов сопровождается ишемией миокарда, стенокардии, а полная закупорка приводит к омертвлению - инфаркту. Венозный отток крови идет по поверхностной системе вен, так называемый коронарный синус. Имеются также вены, которые непосредственно открываются в просвет желудочка и правого предсердия.

Сердечный цикл.

Сердечный цикл — это период времени, в течении которого происходит полное сокращение и расслабление всех отделов сердца. Сокращение - систола, расслабление - диастола. Продолжительность цикла будет зависеть от частоты сердечных сокращений. В норме частота сокращений колеблется от 60 до 100 ударов в минуту, но средняя частота составляет 75 ударов в минуту. Чтобы определить длительность цикла делим 60с на частоту.(60с / 75 с=0,8с).

Сердечный цикл состоит из 3х фаз:

Систола предсердий - 0,1 с

Систола желудочка - 0,3 с

Общая пауза 0,4 с

Состояние сердца в конце общей паузы : створчатые клапаны находятся в открытом состоянии, полулунные клапаны закрыты и кровь поступает из предсердий в желудочки. К концу общей паузы желудочки наполнены на 70-80% кровью. Сердечный цикл начинается с

систолы предсердий . В это время происходит сокращение предсердий, что необходимо для завершения наполнения желудочков кровью. Именно сокращение миокарда предсердий и повышение давления крови в предсердиях - в правом до 4-6 мм рт ст, а в левом до 8-12 мм рт ст. обеспечивает нагнетание дополнительной крови в желудочки и систола предсердий завершает наполнение желудочков кровью. Кровь обратно поступать не может, так как сокращаются кольцевые мышцы. В желудочках будет находится конечный диастолический объем крови . В среднем он составляет 120-130 мл, но у людей занимающихся физической нагрузкой до 150-180 мл, что обеспечивает более эффективную работу, этот отдел переходит в состояние диастолы. Далее идет систола желудочков.

Систола желудочков - наиболее сложная фаза сердечного цикла, продолжительностью 0,3 с. В систоле выделяют период напряжения , он длится 0,08 с и период изгнания . Каждый период подразделяется на 2 фазы -

период напряжения

1. фаза асинхронного сокращения - 0,05 с

2. фазы изометрического сокращения - 0,03 с. Это фаза изовалюмического сокращения.

период изгнания

1. фаза быстрого изгнания 0,12с

2. фаза медленного 0,13 с.

Систола желудочков начинается с фазы асинхронного сокращения. Часть кардиомиоцитов оказываются возбужденными и вовлекаются в процесс возбуждения. Но возникающее напряжение в миокарде желудочков обеспечивает повышение давления в нем. Эта фаза заканчивается закрытием створчатых клапанов и полость желудочков оказывается замкнутой. Желудочки наполнены кровью и полость их замкнута, а кардиомиоциты продолжают развивать состояние напряжения. Длина кардиомиоцита не может изменится. Это связано со свойствами жидкости. Жидкости не сжимают. При замкнутом пространстве, когда происходит напряжение кардиомиоциттов сжать жидкость невозможно. Длина кардиомиоцитов не меняется. Фаза изометрического сокращения. Сокращение при низменной длине. Эту фазу называют изовалюмической фазой. В эту фазу не меняется объем крови. Пространство желудочков замкнуто, повышается давление, в правом до 5-12 мм рт.ст. в левом 65-75 мм.рт.ст, при этом давление желудочков станет больше диастолического давления в аорте и легочном стволе и превышение давления в желудочках над давлением крови в сосудах приводит к открытию полулунных клапанов. Полулунные клапаны открываются и кровь начинает поступать в аорту и легочный ствол.

Наступает фаза изгнания , при сокращении желудочков кровь выталкивается в аорту, в легочный ствол, изменяется длина кардиомиоцитов, давлении повышает и на высоте систолы в левом желудочке 115-125 мм, в правом 25-30мм. Вначале фаза быстрого изгнания, а затем изгнание становится более медленным. За время систолы желудочков выталкивается 60 - 70 мл крови и вот это количество крови - систолический объем. Систолический объем крови =120-130 мл, т.е. в желудочках в конце систолы остается еще достаточный объем крови - конечный систолический объем и это своеобразный резерв, чтобы если потребуется - увеличить систолический выброс. Желудочки завершают систолу и в них начинается расслабление. Давление в желудочках начинает падать и кровь, которая выброшена в аорту, легочный ствол устремляется обратно в желудочек, но на своем пути она встречает кармашки полулунного клапана, которые наполняюсь закрывают клапан. Этот период получил название протодиастолический период - 0,04с. Когда полулунные клапаны закрылись, створчатые клапаны тоже закрыты, начинается период изометрического расслабления желудочков. Он длится 0,08с. Здесь происходит спад напряжения без изменения длины. Это вызывает понижение давления. В желудочках скопилась кровь. Кровь начинает давить на атрио-вентрикялрыне клапаны. Происходит их открытие в начале диастолы желудочков. Наступает период наполнения крови кровью - 0,25 с, при этом выделяют фазу быстрого наполнения - 0,08 и фазу медленного наполнения - 0,17 с. Кровь свободно из предсердий поступает в желудочек. Это пассивный процесс. Желудочки на 70-80% будут наполняться кровью и завершится наполнение желудочков уже следующей систолой.

Строение сердечной мышцы.

Сердечная мышца имеет клеточное строение и клеточное строение миокарда было установлено еще в 1850 году Келликером, но длительное время считалось, что миокард представляет собой сеть - сенцидий. И только электронная микроскопия подтвердила, что каждый кардиомиоцит имеет свою собственную мембрану и отделен от других кардиомиоцитов. Область контактов кардиомиоцитов - это вставочные диски. В настоящее время клетки сердечной мышцы подразделяют на клетки рабочего миокарда - кардиомиоциты рабочего миокрада предсердий и желудочков и на клетки проводящей системы сердца. Выделяют:

- P клетки - пейсмейкерные

-переходные клетки

-клетки Пуркинье

Клетки рабочего миокарда принадлежат исчерченным мышечным клеткам и кардиомиоциты имеют вытянутую форму, длин достигает 50мкм, диаметр - 10-15 мкм. Волокна состоят из миофибрилл, наименьшей рабочей структурой которых является саркомер. Последний имеет толстые - миозиновые и тонкие - актиновые ветви. На тонких нитях имеются регуляторные белки - тропанин и тропомиозин. В кардииомиоцитах имеются также продольная система L трубочек и поперечные T трубочки. Однако Т трубочки, в отличии от Т-трубочек скелетных мышц, отходят на уровне мембран Z (в скелетных - на границе диска A и I). Соседние кардиомиоциты соединяются с помощью вставочного диска- область контакта мембран. При этом структура вставочного диска неоднородная. ВО вставочном диске можно выделить область щели(10-15Нм). Вторая зона плотного контакта - десмосомы. В области десмосом наблюдается утолщение мембраны, здесь же проходят тонофибриллы(нити связывающие соседние мембраны). Десмосомы имеют протяженность 400нм. Есть плотные контакты, они получили название нексусов, при котором происходит слияние наружных слоев соседних мембран, сейчас обнаружены - конексоны - скрепление за счет специальных белко - конексинов. Нексусы - 10-13%, эта область имеет очень низкое электрическое сопротивление 1,4 Ома на кВ.см. Это обеспечивает возможность передачи электрического сигнала с одной клетки на др. и поэтому кардиомиоциты включаются одновременно в процесс возбуждения. Миокард - функциональный сенсидий.

Физиологические свойства сердечной мышцы .

Кардиомиоциты изолированы друг от друга и контактируют в области вставочных дисков, где соприкасаются мембраны соседних кардиомиоциов.

Коннесксоны- это соединение в мембране соседних клеток. Образуются эти структуры за счет белков коннексинов. Коннексон окружают 6 таких белков, внутри коннексона образуется канал, который позволяет проходит ионам, таким таким образом электрический ток распространяется от одной клетки к другой. “f область имеет сопротивление 1,4 ом на см2(низкое). Возбуждение охватывает кардиомиоциты одновременно. Они функционирую как функциональный сенсициы. Нексусы очень чувствительны к недостатку кислорода, к действию катехоламинов, к стрессовым ситуациям, к физической нагрузке. Это может вызывать нарушение проведения возбуждения в миокарде. В экспериментальных условиях нарушение плотных контактов можно получить при помещении кусочков миокарда в гипертонический раствор сахарозы. Для ритмической деятельности сердца важна проводящая система сердца - эта система состоит из комплекса мышечных клеток, образующих пучки и узлы и клетки проводящей системы отличаются от клеток рабочего миокарда - они бедны миофибриллами, богаты саркоплазмой и содержат высокое содержание гликогена. Эти особенности при световой микроскопии делают их более светлыми с малой поперечной исчерченностью и они были названы атипическими клетками.

В состав проводящей системы входят:

1. Синоатриальный узел (или узел Кейт-Фляка), расположенный в правом предсердии у места впадения верхней полой вены

2. Атриовентрикулярный узел(или узел Ашоф-Тавара), который лежит в правом предсердии на границе с желудочком — это задняя стенка правого предсердия

Эти два узла связаны внутрипредсердными трактами.

3. Предсердные тракты

Передний - с ветвью Бахмена (к левому предсердию)

Средний тракт (Венкебаха)

Задний тракт (Тореля)

4. Пучок Гисса (отходит от атриовентрикулярного узла. Проходит через фиброзную ткань и обеспечивает связь миокарда предсердия с миокардом желудочка. Проходит в межжелудочковую перегородку, где разделяется на правую и илевую ножку пучка Гисса)

5. Правая и левая ножки пучка Гисса (они идут вдоль межжелудочковой перегородки. Левая ножка имеет две ветви - переднюю и заднюю. Конечными разветвлениями будут являться волокна Пуркинье).

6. Волокна Пуркинье

В проводящей системе сердца, которая образована видоизмененными типами мышечных клеток, имеются три вида клеток: пейсмейкерные (P), переходные клетки и клетки Пуркинье.

1. P -клетки . Находятся в сино-артриальном узле, меньше в атриовентрикулярном ядре. Это самые мелкие клетки, в них мало т - фибрилл и митохондрий, т-система отсутствует, l. система развита слабо. Основной функцией этих клеток является генерация потенциала действия за счет врожденного свойства медленной диастолической деполяризации. В них происходит периодическое снижение мембранного потенциала, которое приводит их к самовозбуждению.

2. Переходные клетки осуществляют передачу возбуждения в области атривентрикуярного ядра. Они обнаруживаются между P клетками и клетками Пуркинье. Эти клетки вытянутой формы, у них отсутствует саркоплазматический ретикулум. Эти клетки облают замедленной скоростью проведения.

3. Клетки Пуркинье широкие и короткие, в них больше миофибрилл, лучше развит саркоплазматический ретикулум, T-система отсутствует.

Электрические свойства клеток миокарда.

Клетки миокарда, как рабочего, так и проводящей системы, обладают мембранным потенциалам покоя и снаружи мембрана кардиомиоцита заряжена «+», а внутри «-». Это обусловлено ионной ассиметрией - внутри клеток в 30 раз больше ионов калия, а снаружи в 20-25 раз больше ионов натрия. Это обеспечивается постоянной работой натрий-калиевым насосом. Измерение мембранного потенциала показывает, что клетки рабочего миокарда имеют потенциал - 80-90 мВольт. В клетках проводящей системы - 50-70 мВольт. При возбуждении клеток рабочего миокарда возникает потенциал действия (5 фаз) : 0 - деполяризация, 1 — медленная реполяризация, 2 -плато, 3 — быстрая реполяризация, 4 — потенциал покоя.

0. При возбуждении возникает процесс деполяризации кардиомиоцитов, что связано с открытием натриевых каналов и повышение проницаемости для ионов натрия, которые устремляются внутрь кардиомиоцитов. При снижении мембранного потенциала о 30-40 милиВольт происходить открытие медленных натриево-кальцевых каналов. Через них могут входить натрий и дополнительно кальций. Это обеспечивает процесс деполяризации или овершут(реверсия) 120 мВольт.

1. Начальная фаза реполяризации. Происходит закрытие натриевых каналов и некоторое повышение проницаемости к ионам хлора.

2. Фаза Плато. Процесс деполяризации затормаживается. Связана с усилением выхода кальция внутрь. Он задерживает восстановление заряда на мембране. При возбуждении снижается калиевая проницаемость(в 5 раз). Калий не может выходить из кардиомиоцитов.

3. Когда кальцевые каналы закрываются происходит фаза быстрой реполяризации. За счет восстановления поляризации к ионам калия и мембранный потенциал возвращается к исходному уровню и наступает диастолический потенциал

4. Диастолический потенциал постоянно стабилен.

В клетках проводящей системы есть отличительные особенности потенциала.

1. Сниженный мембранный потенциал в диастолический период(50-70мВ).

2. Четвертая фаза не является стабильной. Отмечается постепенное снижение мембранного потенциала к пороговому критическому уровню деполяризации и постепенно медленно продолжает снижаться в диастолу, достигая критического уровня деполяризации, при котором происходит самовозбуждение П-клеток. В P-клетках происходит усиление проникновения ионов натрия и снижение выхода ионов калия. Повышается проницаемость ионов кальция. Эти сдвиги в ионном составе приводят к тому, что мембранный потенциал в P-клетках снижается до порогового уровня и p-клетка самовозбуждается обеспечивая возникновение потенциала действия. Плохо выражена фаза Плато. Фаза ноль плавно переходи ТВ процесс реполяризации, который восстанавливает диастолический мембранный потенциал, а дальше цикл повторяется вновь и P-клетки переходят в состояние возбуждения. Наибольшей возбудимостью обладают клетки сино-атриального узла. Потенциал в нем особо низок и скорость диастолической деполяризации наиболее высок.. Это будет влиять на частоту возбуждения. P-клетки синусного узла генерируют частоту до 100 ударов в мин. Нервная система(симпатическая система) подавляют действие узла(70 ударов). Симпатическая система может повышать автоматию. Гуморальные факторы- адреналин, норадреналин. Физические факторы - механический фактор - растяжение, стимулируют автоматию, согревание, тоже увеличивает автоматию. Все это применяется в медицине. На этом основано мероприятие прямого и непрямого массажа сердца. Область атриовентрикулярного узла тоже обладает автоматией. Степень автоматии атриовентрикулярного узла выражена значительно меньше и как правило она в 2 раза меньше, чем в синусном узле - 35-40. В проводящей системе желудочков импульсы тоже могут возникать(20-30 в минуту). ПО ходу проводящей системы возникает постипенное снижение уровня автоматии, что получило название градиента автоматии. Синусный узел - центр автоматии первого порядка.

Станеус - ученый . Наложение лигатур на сердце лягушки(трёхкамерное). У правого предсердия имеется венозный синус, где лежит аналог синусного узла человека. Станеус накладывал первуюлигатуру между венозным синусом и предсердием. Когда лигатура затягивалась сердце прекращала свою работу. Вторая лигатура накладывалась Станеусом между предсердиями и желудочком. В этой зоне находится аналог атрии-вентрикулярного узла, но 2ая лигатура имеет задачу не отделения узла, а его механическое возбуждение. Ее накладывают постепенно, возбуждая атриовентрикулярный узел и при этом возникает сокраение сердца. Желудочки получают вновь сокращаться под действием атрии-вентрикулярного узла. С частотой в 2 раза меньше. Если наложить третью лигатуру, которая отделяет атриовентрикулярный узел, то возникает остановка сердца. Все это дает нам возможность показать, что синусный узел является главным водителем ритма, атриовентрикулярный узел обладает меньшей автоматией. В проводящей системе существует убывающий градиент автоматии.

Физиологические свойства сердечной мышцы.

К физиологическим свойствам сердечной мышцы относятся возбудимость, проводимость и сократимость.

Под возбудимостью сердечной мышцы понимается ее свойство отвечать на действие раздражителей пороговой или над пороговой силы процессом возбуждения. Возбуждение миокарда можно получить на действие химических, механических, температурных раздражений. Эта способность отвечать на действие разных раздражителей используется при массаже сердца (механическое воздействие), введение адреналина, кардиостимуляторы. Особенностью реакции сердца на действие раздражителя, играет то что действует по принципу «Все или ничего». Сердце отвечает максимальным импульсом уже на пороговый раздражитель. Продолжительность сокращения миокарда в желудочках составляет 0,3с. Это обусловлено длительным потенциалом действия, который тоже длится до 300мс. Возбудимость сердечной мышцы может падать до 0 - абсолютно рефрактерная фаза. Никакие раздражители не могут вызвать повторного возбуждения(0,25-0,27с). Сердечная мышца абсолютно невозбудима. В момент расслабления(диастолы)абсолютная рефрактерная переходит в относительную рефрактерную 0,03-0,05с. В этот момент можно получить повторное раздражение на над пороговые раздражители. Рефрактерный период сердечной мышцы длится и совпадает по времени столько, сколько длится сокращение. Вслед за относительной рефрактерностью имеется небольшой период повышенной возбудимости - возбудимость становится выше исходного уровня - супер нормальная возбудимость. В эту фазу сердце особо чувствительно к воздействию других раздражителей(смогут возникать др. раздражители или экстрасистолы- внеочередные систолы). Наличие длительного рефрактерного периода должно оградить сердце от повторных возбуждений. Сердце выполняет насосную функцию. Промежуток между нормальным и внеочередным сокращением укорачивается. Пауза может быть нормальной или удлиненной. Удлиненную паузу называют компенсаторной. Причина экстрасистолов - возникновение других очагов возбуждения - атриовентрикулярный узел, элементы желудочковой части проводящей системы, клетки рабочего миокарда, Это может быть связано с нарушением кровоснабжением, нарушением проведения в сердечной мышцей, но все дополнительные очаги - эктопические очаги возбуждения. В зависимости от локализации - разные экстрасистолы - синусные, предсредные, атриовентрикулярные. Экстрасистолы желудочка сопровождаются удлиненной компенсаторнйо фазой. 3 дополнительное раздражение - причина внеочередного сокращения. Вовремя экстрасистола сердце утрачивает возбудимость. К ним приходит очередной импульс из синусного узла. Пауза нужна для восстановления нормального ритма. Когда в сердце происходит сбой сердце пропускает одно нормальное сокращение и дальше возвращается к нормальному ритму.

Проводимость - способность проводить возбуждение. Скорость проведения возбуждения в разных отделах неодинакова. В миокарде предсердий - 1 м/c и время проведения возбуждения занимает 0,035 с

Скорость проведения возбуждения

Миокард - 1 м/c 0,035

Aтриовентрикулярный узел 0,02 - 0-05 м/с. 0,04 с

Проведение система желудочков - 2-4,2 м/с. 0,32

В сумме от синусного узла до миокарда желудочка - 0,107 с

Миокард желудочка - 0,8-0,9 м/с

Нарушение проведения сердца приводит к развитию блокад - синусной, атривентрикулярной, пучка Гисса и его ножек. Синусный узел может выключится.. Включится ли атривентрикулярный узел как водитель ритма? Синусные блокады встречаются редко. Больше в атриовентрикулярных узлах. Удлинение задержки(больше 0,21с) возбуждение доходит до желудочка, хоть и замедленно. Выпадение отдельных возбуждений, которые возникают в синусном узле (Например, из трёх доходит только два - это вторая степень блокады. Третья степень блокады, когда предсердия и желудочки работают несогласованно. Блокада ножек и пучка - это блокада желудочков. Чаще встречаются блокады ножек пучка Гисса и соответственно один желудочек запаздывает за другим).

Сократимость. Кардиомиоциты включают фибриллы, а структурной единицей саркомеры. Есть продольные трубочки и Т трубочки наружной мембраны, котоыре входят внутрь на уровне мембраны я. Они широкие. Сократительная функция кардиомиоцитов связана с белками миозином и актином. На тонких актиновых белках - система тропонин и тропомиозин. Это не дает головкам миозин сцепляется с головками миозина. Снятие блокировки - ионами кальция. По т трубочкам открываются кальцевые каналы. Повышение кальция в саркоплазме снимает тормозной эффект актина и миозина. Мостики миозина перемещают тонике нити к центру. Миокард подчиняется в сократительной функции 2м законам - все или ничего. Сила сокращения зависит от исходной длины кардиомиоцитов - Франк Старалинг. Если кардиомиоциты предварительно растянуты, то они отвечают большей силой сокращения. Растяжение зависит от наполнения кровью. Чем больше- тем сильней. Этот закон формулируется как «систола - есть функция диастолы». Это важный приспособительный механизм, который синхронизирует работу правого и левого желудочка.

Особенности системы кровообращения:

1)замкнутость сосудистого русла, в который включен насосный орган сердце;

2)эластичность сосудистой стенки (эластичность артерий больше эластичности вен, однако емкость вен превышает емкость артерий);

3)разветвленность кровеносных сосудов (отличие от других гидродинамических систем);

4)разнообразие диаметра сосудов (диаметр аорты равен 1,5 см, а капилляров 8-10 мкм);

5)в сосудистой системе циркулирует жидкость-кровь, вязкость которой в 5 раз выше вязкости воды.

Типы кровеносных сосудов:

1)магистральные сосуды эластического типа: аорта, крупные артерии, отходящие от нее; в стенке много эластических и мало мышечных элементов, вследствие этого данные сосуды обладают эластичностью и растяжимостью; задача данных сосудов состоит в преобразовании пульсирующего кровотока в плавный и непрерывный;

2)сосуды сопротивления или резистивные сосуды- сосуды мышечного типа, в стенке высокое содержание гладкомышечных элементов, сопротивление которых меняет просвет сосудов, а следовательно и сопротивление кровотоку;

3)обменные сосуды или «обменные герои» представлены капиллярами, которые обеспечивают протекание процесса обмена веществ, выполнение дыхательной функции между кровью и клетками; количество функционирующих капилляров зависит от функциональной и метаболической активности в тканях;

4)сосуды шунта или артериовенулярные анастомозы напрямую связывают артериоллы и венулы; если данные шунты открыты, то кровь сбрасывается из артериолл в венулы, минуя капилляры, если же закрыты, то кровь идет из артериолл в венулы через капилляры;

5)емкостные сосуды представлены венами, для которых характерна большая растяжимость, но малая эластичность, данные сосуды вмещают до 70 % всей крови, существенно влияют на величину венозного возврата крови к сердцу.

Кровоток.

Движение крови подчиняется законам гидродинамики, а именно происходит из области большего давления в область меньшего.

Количество крови, протекающей через сосуд прямо пропорционально разнице давлений и обратно пропорционально сопротивлению:

Q=(p1—p2) /R= ∆p/R,

где Q-кровоток, p-давление, R-сопротивление;

Аналог закона Ома для участка электрической цепи:

где I-сила тока, E-напряжение, R-сопротивление.

Сопротивление связано с трением частиц крови о стенки сосудов, что обозначается как внешнее трение, также существует и трение между частицами- внутреннее трение или вязкость.

Закон Гагена Пуазеля:

где η- вязкость, l- длина сосуда, r- радиус сосуда.

Q=∆pπr 4 /8ηl.

Этими параметрами определяется количество протекающей крови через поперечное сечение сосудистого русла.

Для движения крови имеет значение не абсолютные величины давлений, а разница давлений:

р1=100 мм рт ст, р2=10 мм рт ст, Q =10 мл/с;

р1=500 мм рт ст, р2=410 мм РТ ст, Q=10 мл/с.

Физическая величина сопротивления кровотока выражается в [Дин*с/см 5 ]. Были введены относительные единицы сопротивления:

Если р= 90 мм рт ст, Q= 90 мл/с, то R= 1 - единица сопротивления.

Величина сопротивления в сосудистом русле зависит от расположения элементов сосудов.

Если рассматриваются величины сопротивлений, возникающих в последовательно соединенных сосудах, то общее сопротивление будет равно сумме сосудов в отдельных сосудах:

В сосудистой системе кровоснабжение осуществляется за счет ветвей, отходящих от аорты и идущих параллельно:

R=1/R1 + 1/R2+…+ 1/Rn,

то есть общее сопротивление равно сумме величин обратных сопротивлению в каждом элементе.

Физиологические процессы подчиняются общим физическим законам.

Сердечный выброс.

Сердечный выброс- это количество крови, выталкиваемое сердцем в единицу времени. Различают:

Систолический (за время 1 систолы);

Минутный объем крови (или МОК) - определяется двумя параметрами, а именно систолическим объемом и частотой сердечных сокращений.

Величина систолического объема в покое составляет 65-70 мл, и является одинаковой для правого и левого желудочков. В покое желудочки выталкивают 70 % конечного диастолического объема, и к концу систолы в желудочках остается 60-70 мл крови.

V сист ср.=70мл, ν ср=70 уд/мин,

V мин=V сист * ν= 4900 мл в мин ~ 5 л/мин.

Непосредственно определить V мин трудно, для этого используется инвазивный метод.

Был предложен косвенный метод на основе газообмена.

Метод Фика (метод определения МОК).

МОК= О2 мл/мин / А - V(О2) мл/л крови.

  1. Потребление О2 за минуту составляет 300 мл;
  2. Содержание О2 в артериальной крови = 20 об %;
  3. Содержание О2 в венозной крови = 14 об %;
  4. Артерио-венозная разница по кислороду = 6 об % или 60 мл крови.

МОК= 300 мл/60мл/л = 5л.

Величина систолического объема может быть определена как V мин/ν. Систолический объем зависит от силы сокращений миокарда желудочков, от величины наполнения кровью желудочков в диастолу.

Закон Франка-Старлинга устанавливает, что систола - функция диастолы.

Величина минутного объема определяется изменением ν и систолическим объемом.

При физической нагрузке величина минутного объема может возрастать до 25-30 л, систолический объем возрастает до 150 мл, ν достигает 180-200 ударов в минуту.

Реакции физически тренированных людей касаются прежде всего изменения систолического объема, нетренированных - частоты, у детей лишь за счет частоты.

Распределение МОК.

Аорта и крупные артерии

Мелкие артерии

Артериоллы

Капилляры

Итого - 20 %

Мелкие вены

Крупные вены

Итого - 64%

Малый круг

Механическая работа сердца.

1.потенциальный компонент направлен на преодоление сопротивления движению крови;

2.кинетический компонент направлен на придание скорости движению крови.

Величина А сопротивления определяется массой груза, перемещенного на определенное расстояние, определена Генцом:

1.потенциальный компонент Wn=P*h, h-высота, P= 5 кг:

Среднее давление в аорте равно 100 мл рт ст= 0,1 м * 13,6(удельный вес)=1,36,

Wn лев жел = 5* 1,36 = 6,8 кг*м;

Среднее давление в легочной артерии составляет 20 мм рт ст = 0,02 м * 13,6(удельный вес) = 0,272 м, Wn пр жел = 5 * 0,272 = 1,36 ~ 1,4 кг*м.

2.кинетический компонент Wk == m * V 2 / 2 , m = P / g , Wk = P * V 2 / 2 *g, где V - линейная скорость кровотока, Р = 5 кг, g = 9,8 м /с 2 , V = 0,5 м /с; Wk = 5*0,5 2 / 2*9,8 = 5*0,25 / 19,6 = 1,25 / 19,6 = 0,064 кг / м*с.

30 тонн на 8848 м поднимает сердце за всю жизнь, за сутки ~ 12000 кг / м.

Непрерывность движения крови определяется:

1.работой сердца, постоянством движения крови;

2.эластичностью магистральных сосудов: в систолу аорта растягивается за счет наличия в стенке большого количества эластических компонентов, в них происходит накопление энергии, которая аккумулируется сердцем во время систолы, по прекращении выталкивания крови сердцем эластические волокна стремятся вернуться в прежнее состояние, передавая энергию крови, в результате чего создается плавный непрерывный поток;

3.в результате сокращения скелетных мышц происходит сдавливание вен, давление в которых при этом повышается, что приводит к проталкиванию крови по направлению к сердцу, клапаны вен препятствуют при этом обратному току крови; если долго стоим, то кровь не оттекает, так как нет движения, в результате нарушается приток крови к сердцу, как следствие возникает обморок;

4.когда кровь приходит в нижнюю полую вену, то вступает в действие фактор наличия «-» межплеврального давления, что обозначается как присасывающий фактор, при этом чем более «-» давление, тем лучше осуществляется приток крови к сердцу;

5.сила напора сзади VIS a tergo, т.е. проталкивание новой порции впереди лежащей.

Движение крови оценивается определением объемной и линейной скорости кровотока.

Объемная скорость - количество крови, проходящей через поперечное сечение сосудистого русла в единицу времени: Q = ∆p / R , Q = Vπr 4 . В покое МОК = 5 л / мин, объемная скорость кровотока на каждом сечении сосудистого русла будет постоянна (через все сосуды в мин проходи 5 л), однако каждый орган получает разное количество крови, вследствие этого Q распределяется в % соотношении, для отдельного органа необходимо знать давление в артерии, вене, по которым осуществляется кровоснабжение, а также давление внутри самого органа.

Линейная скорость - скорость движения частиц вдоль стенки сосуда: V = Q / πr 4

По направлению от аорты суммарная площадь сечения возрастает, достигает максимума на уровне капилляров, суммарный просвет которых в 800 раз больше просвета аорты; суммарный просвет вен в 2 раза больше суммарного просвета артерий, так как каждую артерию сопровождают две вены, поэтому линейная скорость больше.

Кровоток в сосудистой системе ламинарный, каждый слой движется параллельно другому слою, не смешиваясь. Пристеночные слои испытывают большое трение, в результате скорость стремится к 0, по направлению к центру сосуда скорость возрастает, достигая в осевой части максимального значения. Ламинарный кровоток бесшумный. Звуковые явления возникают в том случае, когда ламинарный кровоток переходит в турбулентный (возникают завихрения) : Vc = R * η / ρ * r, где R - число Рейнольдса, R = V * ρ * r / η. Если R > 2000 , то поток переходит в турбулентный, что наблюдается при сужении сосудов, при возрастании скорость в местах разветвления сосудов или возникновении препятствий на пути. Турбулентный кровоток имеет шумы.

Время кругооборота крови - время, за которое кровь проходит полный круг (и малый, и большой).Составляет 25 с, что приходится на 27 систол (1/5 на малый - 5с, 4/5 на большой - 20с). В норме циркулирует 2,5 л крови, гругооборот25с, что достаточно для обеспечения МОК.

Кровяное давление.

Кровяное давление- давление крови на стенки сосудов и камер сердца, является важным энергетическим параметром, ибо это фактор, обеспечивающий движение крови.

Источник энергии - сокращение мускулатуры сердца, выполняющего насосную функцию.

Различают:

Артериальное давление;

Венозное давление;

Внутрисердечное давление;

Капиллярное давление.

Величина давления крови отражает ту величину энергии, которая отражает энергию движущегося потока. Эта энергия складывается из потенциальной, кинетической энергии и потенциальной энергии тяжести:

E = P+ ρV 2 /2 + ρgh,

где P - потенциальная энергия, ρV 2 /2 - кинетическая энергия, ρgh - энергия столба крови или потенциальная энергия тяжести.

Наиболее важным является показатель артериального давления, отражающий взаимодействие многих факторов, тем самым являющийся интегрированным показателем, отражающим взаимодействие следующих факторов:

Систолический объем крови;

Частота и ритм сокращений сердца;

Эластичность стенок артерий;

Сопротивление резистивных сосудов;

Скорость крови в емкостных сосудах;

Скорость циркулирующей крови;

Вязкость крови;

Гидростатическое давление столба крови: P = Q * R.

В артериальном давлении различают боковое и конечное давление. Боковое давление - давление крови на стенки сосудов, отражает потенциальную энергию движения крови. Конечное давление - давление, отражающее сумму потенциальной и кинетической энергии движения крови.

По мере движения крови происходит снижение обоих видов давлений, так как энергия потока тратится на преодоление сопротивления, при этом максимальное снижение происходит там, где суживается сосудистое русло, где необходимо преодолеть наибольшее сопротивление.

Конечное давление больше бокового на 10-20 мм рт ст. Разность называют ударным или пульсовым давлением .

Артериальное давление не является стабильным показателем, в естественных условиях меняется во время сердечного цикла, в артериальном давлении различают:

Систолическое или максимальное давление (давление, устанавливающееся в период систолы желудочков);

Диастолическое или минимальное давление, которое возникает в конце диастолы;

Разность между величиной систолического и диастолического давлений - пульсовое давление;

Среднее артериальное давление, отражающее движение крови, если бы пульсовые колебания отсутствовали.

В разных отделах давление будет принимать различные значения. В левом предсердии систолическое давление равно 8-12 мм рт ст, диастолическое равно 0, в левом желудочке сист = 130 , диаст = 4, в аорте сист =110-125 мм рт ст, диаст = 80-85, в плечевой артерии сист = 110-120, диаст = 70-80, на артериальном конце капилляров сист 30-50, но здесь отсутствуют колебания, на венозном конце капилляров сист = 15-25, мелких венах сист = 78-10 (в среднем 7,1), в полых венах сист = 2-4, в правом предсердии сист = 3-6 (в среднем 4,6), диаст = 0 или «-», в правом желудочке сист = 25-30, диаст = 0-2, в легочном стволе сист = 16-30, диаст = 5-14, в легочных венах сист = 4-8.

В большом и малом круге происходит постепенное снижение давления, которое отражает расход энергии, идущей на преодоление сопротивления. Среднее давление не является средним арифметическим, например, 120 на 80, среднее 100 - неверное данное, так как продолжительность систолы и диастолы желудочков различна по времени. Для расчета среднего давления были предложены две математические формулы:

Ср р = (р сист + 2*р дисат)/3, (например, (120 + 2*80)/3 = 250/3 = 93 мм рт ст), смещено в сторону диастолического или минимального.

Ср р = р диаст + 1/3 * р пульсовое, (например, 80 + 13 = 93 мм рт ст.)

Методы измерения артериального давления.

Используются два подхода:

Прямой метод;

Косвенный метод.

Прямой метод связан с введением в артерию иглы или канюли, соединенной трубкой, заполненной противосвертывающимся веществом, с монометром, колебания давления регистрируются писчиком, результат - запись кривой артериального давления. Данный метод дает точные измерения, но связан с трамвированием артерии, используется в экспериментальной практике, либо в хирургических операциях.

На кривой происходит отражение колебания давления, выявляются волны трех порядков:

Первого - отражает колебания во время сердечного цикла (систолический подъем и диастолическое снижение);

Второго - включает несколько волн первого порядка, связаны с дыханием, так как дыхание влияет на величину артериального давления (во время вдоха крови к сердцу притекает больше за счет «присасывающего» действия отрицательного межплеврального давления, по закону Старлинга возрастает и выброс крови, что приводит к увеличению артериального давления). Максимальное повышение давления придется на начало выдоха, однако причина - фаза вдоха;

Третьего - включает несколько дыхательных волн, медленные колебания связаны с тонусом сосудодвигательного центра (увеличение тонуса приводит к возрастанию давления и наоборот), отчетливо выявляются при кислородной недостаточности, при трамватических воздействиях на ЦНС, причина медленных колебаний - давление крови в печени.

В 1896 году Рива-Роччи предложил испытать манжетный ртутный сфигноманометр, который связан с ртутным столбиком, трубкой с манжетой, куда нагнетается воздух, манжета накладывается на плечо, нагнетая воздух, увеличивается давление в манжете, которое становится больше систолического. Этот косвенный метод - пальпаторный, измерение осуществляется на основе пульсации плечевой артерии, но нельзя измерить диастолическое давление.

Коротковым был предложен аускультативный метод определения артериального давления. При этом манжета накладывается на плечо, создается давление выше систолического, выпускают воздух и слушают появление звуков на локтевой артерии в локтевом сгибе. При пережатии плечевой артерии ничего не слышим, так как кровоток отсутствует, но когда давление в манжете станет равным систолическому давлению, на высоте систолы начинает существовать пульсовая волна, будет проходить первая порция крови, следовательно услышим первый звук (тон), появление первого звука - показатель систолического давления. Вслед за первым тоном идет фаза шума, так как движение переходит из ламинарного в турбулентное. Когда давление в манжете будет близким или равным диастолическому давлению, то произойдет расправление артерии и прекращение звуков, что соответствует диастолическому давлению. Таким образом метод позволяет определять систолическое и диастолическое давление, рассчитать пульсовое и среднее давление.

Влияние различных факторов на величину артериального давления .

1. Работа сердца. Изменение систолического объема. Повышение систолического объема увеличивает максимальное и пульсовое давление. Уменьшение будет приводить к снижению и уменьшению пульсового давления.

2. Частота сокращений сердца. При более частом сокращении давление прекращается. При этом начинает возрастать минимальное диастолическое.

3. Сократительная функция миокарда. Ослабление сокращения сердечной мышцы приводит к снижению давления.

Состояние кровеносных сосудов.

1. Эластичность. Потеря эластичности приводит к возрастанию максимального давления и увеличения пульсового.

2. Просвет сосудов. Особенно у сосудов мышечного типа. Повышение тонуса приводит к увеличению артериального давления, что является причиной гипертонии. При увеличении сопротивления растет как максимальное, так и минимальное давление.

3. Вязкость крови и количество циркулирующей крови. Уменьшение количества циркулирующей крови приводит к уменьшению давления. Увеличение объема приводит к увеличению давления. При увеличении вязкости приводит к увеличению трения и увеличению давления.

Физиологические составляющие

4. Давление у мужчин выше, чем у женщин. Но после 40 лет давление у женщин становится выше, чем у мужчин

5. Повышение давления с возрастом. Повышение давления у мужчин идет равномерно. У женщин скачок появляется после 40 лет.

6. Давление во время сна понижается, а утром ниже, чем вечером.

7. Физическая работа повышает систолическое давление.

8. Курение повышает давление на 10-20 мм.

9. Давление повышается при кашле

10. Половое возбуждение повышает давление до 180-200 мм.

Система микроциркуляции крови.

Представлена артериоллами, прекапиллярами, капиллярами, посткапиллярами, венулами, артериоло-венулярными анастомозами и лимфатические капилляры.

Артериоллы представляют собой кровеносные сосуды, в которых гладкомышечные клетки располагаются в один ряд.

Прекапилляры - отдельные гладкомышечные клетки, которые не образуют сплошного слоя.

Длинна капилляра составляет 0,3-0,8 мм. А толщина от 4 до 10 мкм.

На открытие капилляров оказывает влияние состояние давления в артериолах и прекапиллярах.

Микроциркуляторное русло выполняет две функции: транспортную и обменную. Благодаря микроциркуляции происходит обмен веществ, ионов, воды. Так же происходит обмен тепла и интенсивность микроциркуляции будет определяться количеством функционирующих капилляров, линейной скорость кровотока и величиной внутрикапиллярного давления.

Обменные процессы происходят за счет фильтрации и диффузии. Фильтрация капилляров зависит от взаимодействия гидростатического давления капилляров и коллоидно-осмотического давления. Процессы транскапиллярного обмена были изучены Старлингом .

Процесс фильтрации идет в сторону меньшего гидростатического давления, а коллойдно-осматическое давление обеспечивает переход жидкости из меньшего в большее. Коллоидно-осмотическое давление плазмы крови обусловлено наличием белков. Они не могут проходить через стенку капилляра и остаются в плазме. Они создают давление 25-30 мм рт. ст.

Вместе с жидкостью осуществляется перенос веществ. Это происходит путем диффузии. Скорость переноса вещества будет определяться скоростью кровотока и концентрацией вещества, выраженной в массе на объем. Вещества, которые переходят из крови поглощаются в тканях.

Пути переноса веществ .

1. Трансмембранный перенос (через поры, которые имеются в мембране и путем растворения в липидах мембран)

2. Пиноцитоз.

Объем внеклеточной жидкости будет определяться балансом между капиллярной фильтрацией и обратной реорбсорбцией жидкости. Движение крови в сосудах вызывает изменение состояние эндотелия сосудов. Установлено, что в эндотелии сосудов вырабатываются активные вещества, которые влияют на состояние гладкомышечных клеток и паренхиматозных клеток. Они могут быть как сосудорасширяющими, так и сосудосуживающими. В результате процессов микроциркуляции и обмена в тканях формируется венозная кровь, которая будет возвращаться к сердцу. На движение крови в венах опять будет оказывать фактор давления в венах.

Давление в полых венах называется центральным давление .

Артериальным пульсом называется колебание стенок артериальных сосудов . Пульсовая волна движется со скорость 5-10 м/с. А в периферических артериях от 6 до 7 м/с.

Венный пульс наблюдается только в венах, прилегающих к сердцу. Он связан с изменением давления крови в венах в связи с сокращением предсердий. Запись венозного пульса называется флебограмма.

Рефлекторная регуляция сердечно - сосудистой системы.

Регуляция делится на краткосрочную (направлена на изменение минутного объема крови, общего периферического сопротивления сосудов и поддержания уровня артериального давления. Эти параметры могут изменяться в течении нескольких секунд) и долгосрочную. При физической нагрузке эти параметры должны быстро изменится. Они быстро меняются если возникает кровотечении и организм теряет часть крови. Долгосрочная регуляция направлена на поддержание величины объема крови и нормального распределения воды между кровью и тканевой жидкостью. Эти показатели не могут возникнуть и измениться в течении минут и секунд.

Спинной мозг является сегментарным центром . Из него выходят симпатические нервы иннервирующие сердце(верхние 5 сегментов). Остальные сегменты принимают участи в иннервации кровеносных сосудов. Спинальные центры не в состоянии обеспечить адекватное регуляцию. Происходит снижение давления со 120 до 70 мм. рт. столба. Эти симпатические центры нуждаются в постоянном притоке из центров головного мозга, чтобы обеспечить нормальную регуляцию сердца и сосудов.

В естественных условиях - реакция на болевые, температурные раздражения, которые замыкаются на уровне спинного мозга.

Сосудодвигательный центр.

Главным центром регуляции будет являться сосудодвигательный центр, который лежит в продолговатом мозге и открытие этого центра было связано с именем советского физиолога - Овсянникова . Он проводил перерезки ствола мозга у животных и обнаружил, что как только разрезы мозга проходили ниже нижних бугров четверохолмия происходило снижение давления. Овсянников обнаружил, что в одних центрах происходило сужение, а других - расширение сосудов.

Сосудодвигательный центр включает:

- сосудосуживающую зона - депрессорная - кпереди и латерально(сейчас ее обозначают как группу нейронов С1).

Кзади и медиальнее располагается вторая сосудорасширяющая зона .

Сосудодвигательный центр лежит в ретикулярной формации . Нейроны сосудосуживающей зоны находятся в постоянном тоническом возбуждении. Эта зона связана нисходящими путями с боковыми рогами серого вещества спинного мозга. Возбуждение передается с помощью медиатора глутамата. Глутамат передает возбуждение на нейроны боковых рогов. Дальше импульсы идут к сердцу и сосудам. Возбуждается периодически если к ней приходят импульсы. Импульсы приходят в чувствительное ядро одиночного тракта и оттуда к нейронам сосудорасширяющей зоны и она возбуждается. Было показано, что сосудорасширяющая зона находится в антагонистических отношениях с сосудосуживающей.

Сосудорасширяющая зона включает в себя также ядра блуждающего нерва - двойное и дорсальное ядро от которых начинаются эфферентные пути к сердцу. Ядра шва - в них вырабатывается серотонин. Эти ядра оказывают тормозящие влияние на симпатические центры спинного мозга. Считают что ядра шва участвуют в рефлекторных реакциях, вовлекаются в процессы возбуждения, связанные со стрессовыми реакциями эмоционального плана.

Мозжечок влияет на регуляцию середечно-сосудистой системы при нагрузке(мышечной). Сигналы идут к ядрам шатра и коре червя мозжечка от мышц и сухожилий. Мозжечок повышает тонус сосудосуживающей области . Рецепторы сердечно-сосудистой системы - дуга аорты каротидные синусы, полые вены, сердце, сосуды малого круга.

Рецепторы, которые здесь располагаются подразделяются на барорецепторы. Они лежат непосредственно в стенке сосудов, в дуге аорты, в области каротидного синуса. Эти рецепторы воспринимают изменение давления, предназначенных для слежения за уровнем давления. Кроме барорецепторов есть хеморецепторы, которые лежат в клубочках на сонной артерии, дуге аорты и эти рецепторы реагирует на изменение содержания кислорода в крови, ph. Рецепторы располагаются на наружной поверхности сосудов. Есть рецепторы, которые воспринимают изменение объема крови. - волюморецепторы - воспринимают изменение объем.

Рефлексы, делятся на депрессорные - понижающие давление и прессорные - повышающи е, ускоряющие, замедляющие, интероцептивные, экстероцептивные, безусловные, условные, собственные, сопряженные.

Главным рефлексом является рефлекс поддержания уровня давления. Т.е. рефлексы направленные на поддержание уровня давления с барорецепторов. Барорецепторы аорты, каротидного синуса воспринимают уровень давления. Воспринимают величину колебания давления при систоле и диастоле + среднего давления.

В ответ на повышение давления барорецепторы стимулируют активность сосудорасширяющей зоны. Одновременно они повышают тонус ядер блуждающего нерва. В ответ развиваются рефлекторные реакции, происходят рефлекторные изменения. Сосудорасширяющая зона подавляет тонус сосудосуживающей. Происходит расширение сосудов и снижается тонус вен. Сосуды артериальные расширены(артериолы) и расширятся вены, давление снизится. Понижается симпатическое влияние, блуждающих повышается, снижается частота ритма. Повышенное давление возвращается нормальному. Расширение артериол увеличивает кровоток в капиллярах. Часть жидкости будет переходить в ткани - будет уменьшаться объем крови, что приведет к уменьшению давления.

С хемореепторов возникают прессорные рефлексы. Увеличение активности сосудосуживающей зоны по нисходящим путям стимулирует симпатическую систему, при этом сосуды суживаются. Давление повышается через симпатические центры сердца произойдет учащение работы сердца. Симпатическая система регулирует выброс гормонов мозговым веществом надпочечников. Усилится кровоток в малом круге кровообращения. Дыхательная система реагирует учащение дыхания - освобождение крови от углекислого газа. Фактор, который вызвал прессорный рефлекс приводит к нормализации состава крови. В этом прессорном рефлексе иногда наблюдается вторичный рефлекс на изменение работы сердца. На фоне повышения давления наблюдается уряжение работы сердца. Это изменение работы сердце носит характер вторичного рефлекса.

Механизмы рефлекторной регуляции сердечно-сосудистой системы.

К числу рефлексогенных зон сердечно-сосудистой системы мы отнесли устья полых вен.

Бейнбридж вводил в венозную часть устья 20 мл физ. Раствора или такой же объем крови. После этого происходило рефлекторное учащение работы сердца, с последующим повышением артериального давления. Главным компонентом в этом рефлексе является увеличение частоты сокращений, а давление поднимается лишь вторично. Этот рефлекс возникает при увеличение притока крови к сердцу. Когда приток крови, больше чем отток. В области устья половых вен - чувствительные рецепторы, которые реагируют на повышение венозного давления. Эти чувствительные рецепторы являются окончаниями афферентных волокон блуждающего нерва, а также афферентных волокон задних спинно-мозговых корешков. Возбуждение этих рецепторов приводит к тому, что импульсы достигают ядер блуждающего нерва и вызывают понижение тонуса ядер блуждающего нерва, одновременно увеличивается тонус симпатических центров. Происходит учащение работы сердца и кровь из венозной части начинает перекачиваться в артериальную. Давление в полых венах будет понижаться. В физиологических условиях такое состояние может увеличиваться при физических нагрузках, когда приток крови увеличивается и при пороках сердца, тоже наблюдается застой крови, что приводит к учащению работы сердца.

Важной рефлексогенной зоной будет зона сосудов малого круга кровообращения. В сосудах малого круга кровообращения располагаются в рецепторы, которые реагируют на повышение давления в малом круге. При повышение давления в малом круге кровообращения возникает рефлекс, который вызывает расширение сосудов большого круга, одновременно происходит уряжение работы сердца и наблюдается увеличение объема селезенки. Таким образом с малого круга кровообращения возникает такой своеобразный разгрузочный рефлекс. Этот рефлекс был обнаружен В.В. Париным. Он очень много работал в плане развития и исследований космической физиологии, возглавлял институт медико-биологических исследований. Повышение давления в малом круге кровообращении - очень опасное состояние, ибо оно может вызвать отек легкого. Так как увеличивается гидростатическое давление крови, которое способствует фильтрации плазмы крови и благодаря такому состоянию жидкость попадает в альвеолы.

Само сердце является очень важной рефлексогенной зоной в системе кровообращения. В 1897 году ученым Доггелем было установлено, что в сердце имеются чувствительные окончания, которые в основном сосредоточены в предсердиях и в меньшей степени в желудочках. Дальнейшие исследования показали, что эти окончания формируются чувствительными волокнами блуждающего нерва и волокнами задних спинно-мозговых корешков в верхних 5 грудных сегментов.

Чувствительные рецепторы в сердце обнаружены в перикарде и отмечено, что повышение давления жидкости в полости перикарда или попадание крови в перикард при ранении, рефлекторно замедляет сердечный ритм.

Замедление сокращения сердца наблюдается и при хирургических вмешательствах, когда хирург потягивает перикард. Раздражение рецепторов перикарда - замедление сердца, а при более сильных раздражениях возможна временная остановка сердца. Выключение чувствительных окончаний в перикарде вызывало учащение в работе сердца и увеличение давления.

Повышение давления в левом желудочке вызывает типичный депрессорный рефлекс, т.е. происходит рефлекторное расширение сосудов и снижение периферического кровотока и одновременно уряжение работы сердца. Большое количество чувствительных окончаний расположено в предсердии и именно предсердие со содержаться рецепторы растяжения, которые относятся к чувствительным волокнам блуждающих нервов. Полые вены и предсердия относятся к зоне низкого давления, потому что давление в предсердиях не превышает 6-8 мм. рт. Ст. Т.к. стенка предсердий легко растягивается то повышение давления в предсердиях не происходит и рецепторы предсердия реагируют на увеличение объема крови. Исследования электрической активности рецепторов предсердий показало что эти рецепторы делятся на 2 группы -

- Типа А. В рецепторах типа А, возбуждение возникает в момент сокращения.

-Типа B . Они возбуждаются при наполнении предсердий кровью и при растяжение предсердий.

С рецепторов предсердий возникают рефлекторные реакции, которые сопровождаются изменение выделения гормонов и с этих рецепторов регулируются объем циркулирующей крови. Поэтому предсердные рецепторы называют Валюм рецепторы(реагирующие на изменение объема крови). Было показано, что при уменьшении возбуждения предсердных рецепторов, при снижении объема, рефлекторно уменьшалось парасимпатическая активность, т. е. тонус парасимпатических центров уменьшается и наоборот увеличивается возбуждение симпатических центров. Возбуждение симпатических центров оказывает сосудосуживающее влияние и особенно на артериоллы почек. Что вызывает снижение почечного кровотока. Снижение почечного кровотока сопровождается снижением почковой фильтрации, уменьшается экскреция натрия. И возрастает образование ренина, в юкстагломерулярном аппарате. Ренин стимулирует образование антгиотенизна 2 из ангиотензиногена. Это вызывает сужение сосудов. Далее ангиотензин-2 стимулирует образование альдострона.

Ангиотензин-2 также усиливает жажду и повышает выделение антидиуретического гормона, который будет способствовать реабсорбции воды в почках. Таким образом будет происходить увеличение объема жидкости в крови и устраняться вот это снижение раздражения рецепторов.

Если объем крови увеличен и рецепторы предсердия возбуждаются при этом, то рефлекторно возникает торможение и выделения антидиуретического гормона. Следовательно меньшее количество воды будет всасываться в почках, диурез уменьшится, объем затем нормализуется. Гормональные сдвиги в организмах возникают и развиваются в течении нескольких часов, поэтому регуляция объема циркулирующей крови относится к механизмам долгосрочной регуляции.

Рефлекторные реакции в сердце могут возникать при спазме коронарных сосудов. Это вызывает болевые ощущения области сердца, причем боль ощущается позади грудины, строго по средней линии. Боли очень тяжелые и сопровождаются криками смерти. Эти боли отличаются от болей в виде покалывания. Одновременно болевые ощущения распространяются в левую руку и лопатку. По зоне распространения чувствительных волокон верхних грудных сегментов. Таким образом рефлексы сердца участвуют в механизмах саморегуляции системы кровообращения и они направлены на изменение частоты сокращений сердца, изменения объема циркулирующей крови.

Кроме рефлексов, которые возникают с рефлексов сердечнососудистой системы, могут возникать рефлексы, которые возникают при раздражении с других органов называются сопряженными рефлексами в эксперименте на верхушках ученый Гольц обнаружил, что потягивание желудка, кишечника или легкое поколачивание кишечника у лягушки сопровождается замедлением работы сердца, вплоть до полной остановки. Это связано с тем, что с рецепторов импульсы поступают к ядрам блуждающих нервов. Тонус их повышается и тормозится работа сердце или даже его остановка.

В мышцах есть и хеморецепторы, которые возбуждаются при увеличении ионов калия, протонов водорода, что приводит к увеличению минутного объема крови, сужению сосудов других органов, повышение среднего давления и учащению работы сердца и дыхания. Местно эти вещества способствуют расширению сосудов самих скелетных мышц.

Поверхностные болевые рецепторы учащают сердечный ритм, суживают сосуды и повышают среднее давление.

Возбуждение глубоких болевых рецепторов, висцеральных и мышечных болевых рецепторов приводит к брадикардии, к расширению сосудов и снижению давления. В регуляции сердечнососудистой системы большое значение имеет гипоталамус , который связан нисходящими путями с сосудодвигательным центром продолговатого мозга. Через гипоталамус при защитных оборонительных реакциях, при половой активности, при пищевых, питьевых реакциях и при радости, сердце учащено забилось. Задние ядра гипоталамуса приводят к тахикардии, сужение сосудов, повышение артериального давления и увеличение в крови адреналина и норадреналина. При возбуждении передних ядер замедляется работа сердца, сосуды расширяются, давление падает и передние ядра влияю на центры парасимпатической системы. При повышение температуры окружающей среды, увеличивается минутный объем сживаются кровеносные сосуды во всех органах, кроме сердца и расширяются сосуды кожи. Увеличение кровотока через кожу - большая отдача тепла и поддержание температуры тела. Через гипоталамические ядра осуществляются влияние лимбической системы на кровообращение, особенно при эмоциональных реакциях, причем эмоциональные реакции, реализуется через ядра Шва, которые вырабатывают серотонин. От ядер Шва идут пути к серому веществу спинного мозга. Кора больших полушарий тоже принимает участие в регуляции системы кровообращения и кора связана с центрами промежуточного мозга, т.е. гипоталамуса, с центрами среднего мозга и было показано что раздражение моторной и прематорной зон коры, приводило к сужению кожных, чревных и почечных сосудов.. Это вызывала расширение сосудов скелетных мышц, при этом расширение сосудов скелетных мышц реализуется через нисходящее влияние на симпатические, холинергические волокна. Полагают что именно моторные зоны коры, которые запускают сокращение скелетных мышц, одновременно включают и сосудорасширяющие механизмы, способствующие большому сокращению мышц. Участие коры в регуляции сердца и сосудов доказывается выработкой условных рефлексов. При этом можно выработать рефлексы на изменение состояния сосудов и на изменение частоты сердца. Например сочетание звукового сигнала звонка с температурными раздражителями - температурным или холодовым, приводит к расширению сосудов или сужению сосудов - прикладываем холод. Предварительно дается звук звонка. Такое сочетание индифферентного звука звонка с тепловым раздражением или холода, приводит к развитию условного рефлекса, которое вызывало либо расширение сосудов либо сужение. Можно выработать условный глазо-сердечный рефлекс. Сердце уряжает работу. Были попытки выработать рефлекс на остановку сердца. Включали звонок и раздражали блуждающий нерв. В жизни нам не нужна остановка сердца. На такие провокации организм реагирует отрицательно. Условные рефлексы вырабатываются если они несут приспособительный характер. В качестве условно-рефлекторной реакции можно взять - предстартовое состояние спортсмена. У него учащается работа сердца, повышается давление, суживаются сосуды. Сигналом для такой реакции будет сама обстановка. Организм уже готовится заранее и включаются механизмы, усиливающие кровоснабжение мышц, объема крови. Во время гипноза можно добиться изменения в работе сердца и тонуса сосудов, если внушать, что человек выполняет тяжелую физическую работу. При этом сердце и сосуды реагирует также, как если бы это было в действительности. При воздействии на центры коры, реализуются корковые влияния на сердце, сосуды.

Регуляция регионарного кровообращения.

Сердце получает кров из правой и левой коронарных артерий, которые отходят от аорты, на уровне верхних краев полулунных клапанов. Левая коронарная артерия делится на переднюю нисходящую и огибающую артерию. Коронарные артерии функционируют обычно как кольцевые артерии. И между правой и левой коронарными артериями анастомозы развиты очень слабо. Но если происходит медленное закрытие одной артерии, то начинается развитие анастомозов между сосудами и которые могут пропускать от 3 до 5 % из одной артерии в другую. Это при медленном закрытии коронарных артерий. Быстрое перекрытие приводит к инфаркту и из других источников не компенсируется. Левая коронарная арерия снабжает левый желудочек, переднюю половину межжелудочковой перегородки, левое и частично правое предсердие. Правая коронарная артерия питает правый желудочек, правое предсердие и задняя половина межжелудочковой перегородки. В кровоснабжении проводящей системы сердца участвуют обе коронарные артерии, но у человека больше правая. Отток венозной крови происходит по венам, которые идут параллельно артериям и эти вены впадают в коронарный синус, который открывается в правое предсердие. Через этот путь оттекает от 80 до 90 % венозной крови. Венозная кровь из правого желудочка в межпредсердной перегородке оттекает по мельчайшим венам в правый желудочек и эти вены получили название вен тибезия , которые прямо выводят венозную кровь в правый желудочек.

Через коронарные сосуды сердца протекает 200-250 мл. крови в минуту, т.е. это составляет 5 % минутного объема. На 100 г. Миокарда, в минуту протекает от 60 до 80 мл. Сердце извлекает из артериальной крови 70 -75 % кислорода, поэтому в сердце очень большая артерио-венозная разница(15%) В других органах и тканях - 6-8 %. В миокарде капилляры густо оплетают каждый кардиомиоцит, что и создает лучшее условие для максимального извлечения крови. Изучение коронарного кровотока представляет собой большие трудности, т.к. он меняется от сердечного цикла.

Увеличивается коронарный кровоток в диастолу, в систолу, уменьшение кровотока, из-за сжатия кровеносных сосудов. На диастолу - 70-90% коронарного кровотока. Регуляция коронарного кровотока прежде всего регулируется местными анаболическими механизмами, быстро реагирует на снижение кислорода. Понижение уровня кислорода в миокарде - очень мощный сигнал, ля расширения сосудов. Уменьшение содержания кислорода приводит к тому что кардиомиоциты выделяют аденозин, а аденозин - мощный сосудорасширяющий фактор. Очень трудно оценить влияние симпатической и парасимпатической системы на кровоток. И вагус и симпатикус меняют работу сердца. Установлено, что раздражение блуждающих нервов, вызывает замедление работы сердца, увеличивает продолжение диастолы, ну и непосредственное выделение ацетилхолина, тоже будет вызывать расширение сосудов. Симпатические влияния способствуют освобождению норадреналиа.

В коронарных сосудах сердца имеются 2 типа адренорецепторов - альфа, и бета адрено рецепторы. У большинства людей преобладающим типом является бетта-адренорецепторы, но у части есть преобладание альфа рецепторов. Такие люди будут при волнении чувствовать снижение кровотока. Адреналин вызывает увеличение коронарного кровотока, благодаря усилению окислительных процессов в миокарде и увеличение потребления кислорода и за счет влиянии на бета адрено рецепторы. Расширяющим действием на коронарные сосуды облают тироксин, простогландины А и Е, вазопрессин суживает коронарные сосуды и уменьшает коронарный кровоток.

Мозговое кровообращение.

Имеет много общих черт с коронарным, ибо мозг, характеризуется высокой активностью метаболических процессов, повышенным потреблением кислорода, у мозга имеется ограниченная способность использовать анаэробный гликолиз и мозговые сосуды слабо реагируют на симпатические влияния. Мозговой кровоток сохраняется нормальным при широких диапазонах изменения артериального давления. От 50-60 минимального, до 150-180 максимального. Особенно хорошо выражена регуляция центров мозгового ствола. Кровь, поступает в мозг из 2х бассейнов - от внутренних сонных артерий, позвоночных артерии, которые затем на основании мозга образуют велизиев круг , а от него отходят 6 артерий кровоснобжающие мозг. За 1 минуту мозг получает 750 мл крови, что составляет 13-15 % минутного объема крови и мозговой кровоток зависит от мозгового перфузионного давления(разница между средним артериальным давлением и внутричерепным давлением) и диаметра сосудистого русла. Нормальное давление спинномозговой жидкости - 130 мл. водного столба(10 мл. рт. столба), хотя у человека оно может колебаться от 65-до 185.

Для нормального кровотока перфузионного давления должно быть выше 60 мл. Иначе возможна ишемия. Саморегуляция кровотока связана с накоплением углекислого газа. Если в миокарде это кислород. При парциальном давление углекислого газа выше 40 мм рт ст. Также расширяют мозговые сосуды накопление ионов водорода, адреналина, и на увеличение ионов калия, в меньшей степени сосуды реагируют на снижение кислорода в крови и реакция наблюдается снижение кислорода ниже 60 мм. рт ст. В зависимости от работы разных отелов мозга местный кровоток может увеличиваться на 10-30 %. Мозговое кровообращение не реагирует на гуморальные вещества из-за наличия гемато-энцефалического барьера. Симпатические нервы не вызывают сужение сосудов, но оказывают влияние на гладкие мышцы и эндотелий кровеносных сосудов. Гиперкапния - снижение углекислого газа. Эти факторы вызывают расширение кровеносных сосудов по механизму само регуляции, а также рефлекторно увеличивают среднее давление, с последующим замедлением работы сердца, через возбуждение барорецепторов. Эти изменения системного кровообращения - рефлекс Кушинга.

Простагландины - образуются из арахидоновой кислоты и в результате ферментативных превращений образуются 2 активных вещества - простациклин (вырабатывается в эндотелиальных клетках) и тромбоксан А2 , при участи фермента циклооксигеназы.

Простациклин - тормозит агрегацию кровяных пластинок и вызывает расширение сосудов, а тромбоксан А2 образуется в самих тромбоцитах и способствует их свертыванию.

Лекарственное вещество аспирин вызывает торможение угнетение фермента циклоосксигеназы и приводит к уменьшению образования тромбоксана А2 и простациклина . Эндотелиальные клетки способны синтезировать циклооксигеназу, а тромбоциты этого делать не могут. Поэтому происходит более выраженное угнетение образования тромбоксана А2, а простациклин продолжает вырабатываться эндотелием.

Под действием аспирина уменьшается тромбообразование и предупреждается развитие инфаркта, инсульта, стенокардия.

Предсердный Натрийуретический пептид вырабатывается секреторными клетками предсердия при растяжения. Он оказывает сосудорасширяющее действие на артериолы. В почках - расширение приносящих артериол в клубочках и таким образом это приводит к увеличению клубочковой фильтрации , вместе с этим фильтруется и натрий, увеличение диуреза и натрийуреза. Снижение содержания натрия способствует понижению давления . Этот пептид также тормозит выделение АДГ задней доли гипофиза и это способствует удалению воды из организма. Также оказывает тормозящее действие на систему ренин - альдостерон.

Вазоинтестинальный пептид(ВИП) - он выделяется в нервных окончаниях вместе с ацетилхолином и этот пептид облает сосудорасширяющим действием на артериолы.

Ряд гуморальных веществ обладают сосудо-суживающим действием . К ним относится вазопрессин (антидиуретический гормон), влияет на сужение артериол в гладких мышцах. Влияет в основном на диурез, а не на сужение сосудов. Некоторые формы гипертоний связаны с образованием вазопрессина.

Сосудосуживающие - норадреналин и адреналин , благодаря их воздействию на альфа1 адрено рецепторы в сосудах и вызывают сужение сосудов. При взаимодействии с бета 2, сосудорасширяющие действие в сосудах головного мозга, скелетных мышц. Стрессовые ситуации не затрагивают работу жизненно важных органов.

Ангиотензин 2 вырабатывается в почках. Он превращается в ангиотензин 1 под действием вещества ренина. Ренин образуется специализированными клетками эпителиолидными, которые окружают клубочки и обладают внутрисекреторной функцией. При условиях - уменьшение кровотока, потеря организмов ионов натрия.

Симпатическая система тоже стимулирует выработку ренина. Под действие ангиотензин превращающий фермента в легких переходит в ангиотензин 2 - сужение сосудов, повышение давления . Влияние на кору надпочечников и усиление образования альдостерона.

Влияние нервных факторов на состояние сосудов.

Все кровеносные сосуды кроме капилляров и венул содержат в стенках гладкомышечные клетки и гладкие мышцы кровеносных сосудов получают симпатическую иннервацию, причем симпатические нервы - вазаконстрикторы - сосудосуживающие.

1842г. Вальтер - перерезал у лягушки седалищный нерв и смотрел на сосуды перепонки, это приводило к расширению сосудов.

1852г. Клод Бернар. На белом кролике перерезал шейный симпатический ствол и наблюдал за сосудами уха. Сосуды расширялись, ухо краснело, температура уха повышалась, объем увеличивался.

Центры симпатических нервов в тораколюмбальном отделе. Здесь лежат преганглионарные нейроны . Аксоны этих нейронов покидают спинной мозг в передних корешках и направляются к позвоночным ганглиям. Постганглионары доходят до гладких мышц кровеносных сосудов. На нервных волокнах образуются расширения - варикозы . Постганлионары выделяют норадренолин, может вызывать расширение и сужение сосудов в зависимости от рецепторов. Выделавшийся норадреналин подвергается процессам обратной реабсорбции, либо разрушается 2мя ферментами - МАО и КОМТ - катехолометилтрансфераза .

Симпатические нервы находятся в постоянном количественном возбуждении. Они посылают к сосудам 1, 2 импульса. Сосуды находятся в несколько суженном состоянии. Десимпотизация снимает этот эффект . Если симпатический центр получают возбуждающее влияние то количество импульсов возрастает и происходит еще большее сужение сосудов.

Сосудорасширяющие нервы - вазодилататоры, они не универсальны, наблюдаются в отдельных областях. Часть парасимпатических нервов при своем возбуждении вызывают расширение сосудов, в барабанной струне и язычного нерва и увеличивают секрецию слюны. Таким же расширяющим действием обладает фазовый нерв. В который вступают волокна крестцового отдела. Они вызывают расширение сосудов наружных половых органов и малого таза при сексуальном возбуждении. Усиливается секреторная функция желез слизистой оболочки.

Симпатические холинергические нервы (выделяют ацетилхолин.) К потовым железам, к сосудам слюнных желез. Если симпатические волокна влияют на бетта2 адренорецепторы, то вызывают расширение сосудов и афферентные волокна задних корешков спинного мозга, они принимают участи в аксон-рефлекс. Если раздражать рецепторы кожи, то возбуждение может передаваться на кровеносные сосуды - в которые выделяется вещество P, которое вызывает расширение сосудов.

В отличии от пассивного расширения сосудов - здесь - активный характер. Очень важным является интегративный механизмы регуляции сердечно сосудистой системы, которые обеспечиваются взаимодействием нервных центров и нервные центры осуществляют совокупность рефлекторных механизмов регуляции. Т.к. система кровообращения жизненно-важная они располагаются в разных отдела - кора больших полушарий, гипоталамус, сосудодвигательный центр продолговатого мозга, лимбическая система, мозжечок. В спинном мозге это будут центры боковых рогов торако-люмбального отдела, где лежат симпатические преганлглионарыне нейроны. Эта система обеспечивает адекватное кровоснабжение органов в данный момент. Эта регуляция также обеспечивает регуляцию деятельности сердца которая в итоге выдает нам величину минутного объема крови. Из этого количества крови можно взять свой кусочек, но на кровоток очень важным фактором будет периферическое сопротивление - просвет сосудов. Изменение радиуса сосудов очень влияет на сопротивление. Изменив радиус в 2 раза, мы изменим кровоток в 16 раз.