Транспортная функция крови заключается в переносе всех необходимых для жизнедеятельности организма веществ (пита­тельных веществ, газов, гормонов, ферментов, метаболитов).

Дыхательная функция состоит в доставке кислорода от легких к тканям и углекислого газа от тканей к легким.

Транспорт газов кровью – в организме кислород и углекислый газ транспортируются кровью. Кислород, поступающий из альвеолярного воздуха в кровь, связывается с гемоглобином эритроцитов, образуя так называемый оксигемоглобин , и в таком виде доставляется к тканям.

Кислород через тонкие стенки альвеол и капилляров поступает из воздуха в кровь, а углекислый газ из крови в воздух. Диффузия газов происходит в результате разности их концентраций в крови и в воздухе. Кислород проникает в эритроциты и соединяется с гемоглобином, кровь становится артериальной и направляется в ткани. В тканях происходит обратный процесс: кислород за счет диффузии переходит из крови в ткани, а углекислый газ , наоборот, переходит из тканей в кровь.

Кривая диссоциации оксигемоглобина - это зависимость насыщения гемоглобина кислородом (измеряется процентным отношением оксигемоглобина к общему количеству гемоглобина).

Газообмен между кровью и тканями. Нарушение газообмена в тканях.

Газообмен в тканях - четвертый этап дыхания, в результате которого кислород из крови капилляров поступает в клетки, а углекислый газ из клеток в кровь. Фактором, способствующим газообмену в тканях, является, также как и в легких, разность парциальных давлений газов между кровью и межтканевой жидкостью, омывающей все клетки и ткани.

Насколько клетки интенсивно поглощают кислород, настолько же интенсивно они вырабатывают углекислый газ. Напряжение углекислоты в клетках достигает 50 - 60 мм. рт. ст. Эта углекислота непрерывно переходит в межтканевую жидкость, а оттуда в кровь, делая кровь венозной.

Следствием таких нарушений газообмена может явиться гипоксия, кислородное голодание тканей. Гипоксия это недостаток кислорода.

Газообмен в легких, состав вдыхаемого альвеолярного, выдыхаемого воздуха.

Как атмосферный воздух, так и альвеолярный необходимо воздух представляют собой смесь газов, содержащую О2 , СО2 , N, и инертные газы. Определенное количество дыхательных газов содержится и в крови, поскольку она является их переносчиком. Парциальное давление того или иного газа в крови, ровно как и в любой другой жидкости, принято называть парциальным напряжением. Газообмен между альвеолярным воздухом и кровью капилляров (второй этап дыхания) осуществляется путем диффузии, благодаря разности давлений О2 и СО2. Тот воздух, который мы вдыхаем, т.е. атмосферный воздух , имеет более или менее постоянный состав: он содержит

20,94% кислорода,

0,03% углекислого газа

79,03% азота.

Выдыхаемый воздух обеднен кислородом и насыщен углекислотой. В среднем выдыхаемый воздух содержит

16,3% кислорода,

4% углекислоты

79,7% азота.

По сравнению с атмосферным воздухом, альвеолярный воздух содержит

14% кислорода,

5% углекислоты

79,5% азота.

Состав альвеолярного воздуха относительно стабилен, так как при спокойном дыхании в альвеолы поступает всего 350 мл свежего воздуха, что составляет лишь 1/7 того воздуха, который содержится в легких после обычного выдоха. Данный воздух находится в альвеолах и обеспечивает потребление кислорода для обменных процессов в капиллярах легких.

Такая же небольшая порция альвеолярного воздуха удаляется при выдохе, что способствует стабилизации его состава.

Регуляция дыхания. Нервно-регуляторная и гуморальная регуляция дыхания.

Внешнее дыхание- это обмен воздуха между альвеолами легких и внешней средой, которое осуществляется в результате ритмического дыхания движения грудной клетки,вызывающих чередование актов вдоха и выдоха.

Главная цель внешнего дыхания - поддержание оптимальный состав артериальной крови. Основной способ для достижения этой цели - регулирование объема легочной вентиляции путем изменения частоты и глубины дыхания. Какие же механизмы обеспечивают приспособление дыхания к меняющимся потребностям организма? Организм располагает двумя регуляторными системами - нервной и гуморальной . Последняя представлена циркулирующими в крови гормонами и метаболитами, которые могут влиять на дыхание.

Регуляция дыхания – называется процесс управления вентиляцией легких,направленный на поддержание дыхательных констант и приспособления дыхания к условиям изменяющейся внешней среды.

Следовательно, для осуществления дыхательных движений нужен продолговатый мозг и тот отдел спинного мозга, который посылает двигательные нервы к дыхательным мышцам.

ГАЗООБМЕН И ТРАНСПОРТ ГАЗОВ

Газообмен и транспорт СО2

Поступление СО2 в легких из крови в альвеолы обеспечивается из следующих источников: 1) из СО2, растворенного в плазме крови (5-10%); 2) из гидрокарбонатов (80-95%); 3) из карбаминовых соединений эритроцитов (5-15%), которые способны диссоцииро­вать.

Для СО2 коэффициент растворимости в мембранах аэрогематического барьера больше, чем для О2, и составляет в среднем 0,231 ммоль*л-1 кПа-1 поэтому СО2 диффундирует быстрее, чем O2. Это положение является верным только для диффузии молекулярного СО2. Большая часть СО2 транспортируется в организме в связанном состоянии в виде гидрокарбонатов и карбаминовых соединений, что увеличивает время обмена СО2, затрачиваемое на диссоциацию этих соединений.

В венозной крови, притекающей к капиллярам легких, напря­жение СО2 составляет в среднем 46 мм рт.ст. (6,1 кПа), а в альвеолярном воздухе парциальное давление СО2 равно в среднем 40 мм рт.ст. (5,3 кПа), что обеспечивает диффузию СО2 из плазмы крови в альвеолы легких по концентрационному градиенту.

Эндотелий капилляров проницаем только для молекулярного СО2 как полярной молекулы (О - С - О). Из крови в альвеолы диффундирует физически растворенный в плазме крови молеку­лярный СО2. Кроме того, в альвеолы легких диффундирует СО2, который высвобождается из карбаминовых соединений эритроцитов благодаря реакции окисления гемоглобина в капиллярах легкого, а также из гидрокарбонатов плазмы крови в результате их быстрой диссоциации с помощью фермента карбоангидразы, содержащейся в эритроцитах.

Молекулярный СО2 проходит аэрогематический барьер, а затем поступает в альвеолы.

В норме через 1 с происходит выравнивание концентраций СО2 на альвеолярно-капиллярной мембране, поэтому за половину времени капиллярного кровотока происходит полный обмен СО2 через аэрогематический барьер. Реально равновесие наступает не­сколько медленнее. Это связано с тем, что перенос СО2, так же как и О2, ограничивается скоростью перфузии капилляров легких.

Диффузия СО2 из тканей в кровь. Обмен СО2 между клетками тканей с кровью тканевых капилляров осуществляется с помощью следующих реакций: 1) обмена С1- и НСО3- через мембрану эрит­роцита; 2) образования угольной кислоты из гидрокарбонатов; 3) диссоциации угольной кислоты и гидрокарбонатов.

В ходе газообмена СО2 между тканями и кровью содержание НСОз- в эритроците повышается и они начинают диффундировать в кровь. Для поддержания электронейтральности в эритроциты нач­нут поступать из плазмы дополнительно ионы С1- Наибольшее количество бикарбонатов плазмы крови образуется при участии карбоангидразы эритроцитов.

Карбаминовый комплекс СО2 с гемоглобином образуется в ре­зультате реакции СО2 с радикалом NH2 глобина. Эта реакция про­текает без участия какого-либо фермента, т. е. она не нуждается в катализе. Реакция СО2 с Нb приводит, во-первых, к высвобождению Н+; во-вторых, в ходе образования карбаминовых комплексов сни­жается сродство Нb к О2. Эффект сходен с действием низкого рН. Как известно, в тканях низкое рН потенцирует высвобождение О2 из оксигемоглобина при высокой концентрации СО2 (эффект Бора). С другой стороны, связывание О2 гемоглобином снижает сродство его аминогрупп к СО2 (эффект Холдена).

Каждая реакция в настоящее время хорошо изучена. Например, полупериод обмена С1-и НСО3- равен 0,11-0,16 с при 37 oС. В ус­ловиях in vitro образование молекулярного СО2 из гидрокарбонатов происходит чрезвычайно медленно и диффузия этого газа занимает около 5 мин, тогда как в капиллярах легкого равновесие наступает через 1 с. Это определяется функцией фермента карбоангидразы угольной кислоты. В функции карбоангидразы выделяют следующие типы реакций:

СО2+Н2Оß> H2СО3 ß> H++НСО3-

Процесс выведения СО2 из крови в альвеолы легкого менее лимитирован, чем оксигенация крови. Это обусловлено тем, что молекулярный СО2 легче проникает через биологические мембраны, чем О2. По этой причине он легко проникает из тканей в кровь. К тому же карбоангидраза способствует образованию гидрокарбо­ната. Яды, которые ограничивают транспорт О2 (такие как СО, метгемоглобинобразующие субстанции - нитриты, метиленовый си­ний, ферроцианиды и др.) не действуют на транспорт СО2. Блокаторы карбоангидразы, например диакарб, которые используются нередко в клинической практике или для профилактики горной или высотной болезни, полностью никогда не нарушают образование молекуляр­ного СО2. Наконец, ткани обладают большой буферной емкостью, но не защищены от дефицита О2. По этой причине нарушение транспорта О2 наступает в организме гораздо чаще и быстрее, чем нарушения газообмена СО2. Тем не менее при некоторых заболе­ваниях высокое содержание СО2 и ацидоз могут быть причиной смерти.

Измерение напряжения О2 и СО2 в артериальной или смешанной венозной крови производят полярографическими методами с исполь­зованием очень небольшого количества крови. Количество газов в крови измеряют после их полного извлечения из пробы крови, взятой для анализа.

Такие исследования выполняют с помощью манометрических приборов типа аппарата Ван-Слайка, или гемоалкариметра (необ­ходимо 0,5-2,0 мл крови) или на микроманометре Холандера (не­обходимо около 50 мкл крови).

Только 3-6% (2-3 мл) СО 42 0 переносится плазмой крови в растворенном состоянии. Остальная часть переносится в виде химических соединений: в виде бикарбонатов, и с Нв в виде карбгемоглобина.

В тканях.

Благодаря градиентам напряжений, СО 2 , образующийся в тканях, переходит из интерстициальной жидкости в плазму крови, а из нее в эритроциты.

Еще в 1870 г. И.М.Сеченов обнаружил соединение СО 2 с гемоглобином. Это соединение возникает за счет связи СО 2 с аминогруппой гемоглобина (карбгемоглобин - 3-4 мл).

1. НbNH2 + CO2 = HbNHCOOH

Попадая в кровь из ткани СО2 вступает в реакцию с водой и образует угольную кислоту:

2. СО2 + Н2О = Н2СО3

В виде угольной кислоты переносится незначительная часть СО2. Эта реакция в плазме медленнее, а в эритроцитах быстрее, так как там имеется фермент-карбоангидраза,которая ускоряет реакцию в 20000 раз. Под влиянием фермента реакция может протекать как в ту, так и в другую сторону. Все зависит от парциального напряжения СО2.

Когда кровь проходит через ткани, где СО2 много, карбоангидраза в эритроцитах способствует образованию Н2СО3. В легких, где СО2 меньше, карбоангидраза способствует распаду Н2СО3. Угольная кислота легко диссоциирует на ионы Н+ и НСО3-.

Между анионами НСО3-, находящимися в эритроцитах и в плазме существует определенное соотношение. Это соотношение не меняется во всех отделах кровеносного русла:

К=НСО3 эритроциты/нсо3 плазмы = 0,84

Если количество ионов увеличивается, они диффундируют из эритроцита в плазму и наоборот. Такое соотношение существует и для ионов СL в эритроцитах и плазме. Выход НСО3- как правило уравновешивается входом С1-.

Анионы НСО3- в большей своей массе (50 мл) связываются с катионами. В плазме с натрием. Таким образом образуется NаНСО3.

3. Na + НСО3 = NаНСО3

А в эритроците с калием. Образуется КНСО3.

4. К + НСО3 = КНСО3

Итак СО2 переносится кровью в виде:

1. карбгемоглобина в эритроцитах,

2. в растворенном виде в плазме и эритроцитах,

3. в виде бикарбоната натрия в плазме и бикарбоната калия в эритроцитах.

4. в виде угольной кислоты.

Эритроцит Плазма Ткани

СО2 ¦ СО2 _¦ СО2

В связи с образованием в эритроцитах Н2СО3 и карбгемоглобина распадается КНвО2, так как угольная кислота обладает более сильными кислыми свойствами.

КHb + Н2СО3 = КНСО3 + ННb

Так в крови тканевых капилляров одновременно с поступлением СО2 внутрь эритроцита и образованием в нем угольной кислоты происходит отдача кислорода оксигемоглобином. Восстановленный гемоглобин представляет собой более слабую кислоту, чем оксигенированный. Поэтому он легче связывается с СО2.

Таким образом, переход СО2 в кровь способствует выходу О2 из крови в ткани. Поэтому, чем больше в тканях образуется СО2, тем больше ткани получают О2.

В легких.

Эритроцит Плазма Легкие

СО2 _¦ СО2 _¦ СО2

Парциальное давление О2 в легких - 100 мм рт.ст., а в крови 40 мм рт.ст., поэтому кислород идет из альвеол в кровь. В эритроцитах он соединяется с восстановленным гемоглобином (оксигемоглобин). Под влиянием оксигемоглобина карбгемоглобин распадается идет в плазму, а затем в альвеолы.

В плазме NaHCO3 диссоциирует. Анионы идут в эритроциты, где произошла диссоциация КС1. Анионы НСО3 образуют КНСО3, а ионы С1 идут в плазму, соединяясь с Nа. Оксигемоглобин вступает в реакцию с КНСО3 и в результате образуется калиевая соль оксигемоглобина и угольная кислота, которая под влиянием карбоангидразы распадается на воду и СО2.

/Н2СО3=СО2+Н2О/. СО2 входит в плазму, а затем в альвеолы.

Таким образом, для того чтобы СО2 покинул кровь необходимо образование оксигемоглобина.

В состоянии покоя в процессе дыхания из организма человека удаляется 230 мл СО2 в минуту. Поскольку углекислый газ является "летучим" ангидридом угольной кислоты, то при его удалении из крови исчезает примерно эквивалентное количество ионов Н+. Поэтому дыхание играет важную роль в поддержании кислотно-щелочного равновесия во внутренней среде организма. Если в результате обменных процессов в крови увеличивается содержание водородных ионов, то благодаря гуморальным механизмам регуляции дыхания, это приводит к увеличению легочной вентиляции /гипервентиляции/.

Транспорт кислорода и углекислого газа в тканях.

Кислород проникает из крови в клетки тканей путем диффузии, обусловленной разностью его парциальных давлений по обе стороны гистогематического барьера. Величина потребления О2 в различных тканях неодинакова и связана с периодической активностью тканей. Наиболее чувствительны к недостатку О2 клетки мозга, особенно коры больших полушарий, где окислительные процессы очень интенсивны. Именно поэтому мероприятия по реанимации человека приносят успех только в том случае, если они начаты не более чем через 4-5 мин после остановки дыхания.

Кислород, поступающий в ткани, используется в клеточных окислительных процессах, которые протекают на клеточном уровне с участием специальных ферментов, расположенных группами в строгой последовательности на внутренней поверхности мембран митохондрий. Более подробно данный процесс изучает курс биохимии. Для нормального хода окислительных обменных процессов в клетках необходимо, чтобы напряжение кислорода в области митохондрий было не меньше 0,1-1 мм рт.ст. Эта величина называется критическим напряжением кислорода в митохондриях. Поскольку единственным резервом О2 в большинстве тканей служит его физически растворенная фракция, снижение поступления О2 из крови приводит к тому, что потребности тканей в О2 перестают удовлетворяться, развивается кислородное голодание и окислительные обменные процессы замедляются. Единственной тканью, в которой имеется депо О2, является мышечная. Роль депо О2 в данной ткани играет белок миоглобин, близкий по строению к гемоглобину и способный обратимо связывать О2.

Соотношение компонентов дыхательного цикла: длительность фаз инспирации и экспирации, глубина дыхания, динамика давления и потоков в воздухоносных путях - характеризует так называемый рисунок или паттерн дыхания. Во время разговора, приема пищи паттерн дыхания меняется, периодически наступает апноэ - задержки дыхания на вдохе или на выдохе, т.е. при осуществлении некоторых рефлексов /например, глотательного, кашлевого, чихательного/, а также определенных видов деятельности, характерных для человека /речи, пения/, характер дыхания должен изменяться, а химический состав артериальной крови должен оставаться постоянным.

Учитывая все эти разнообразные, и часто очень сложные комбинированные запросы, предъявляемый к дыхательной системе вполне понятно, что для ее оптимального функционирования необходимы сложные регуляторные механизмы.

Регуляция дыхания.

Учение о дыхательном центре берет свое начало с Галена, который наблюдал остановку дыхания у животного после отделения у него головного мозга от спинного. Другой ученый- Лори в 1760 году отметил прекращение дыхания после повреждения стволовой части головного мозга.

В начале Х1Х в. ученым Легаллуа, а потом и Флуранс было установлено, что у всех позвоночных животных после удаления головного мозга выше продолговатого дыхательные движения сохраняются, но они неминуемо и причем сразу прекращаются после разрушения продолговатого мозга или после перерезки спинного мозга под продолговатым. Если, не разрушая продолговатый мозг, выключить его функции путем охлаждения, то результатом также явится остановка дыхания.

В связи с этим, французский физиолог Мари Ж.П.Флуранс в Х1Хв. ввел такое понятие, как "жизненный центр", а т.к. укол иглой в область писчего пера мгновенно останавливал дыхательные движения, то этот участок продолговатого мозга Флуранс назвал "жизненным узлом" /1842/.

Миславский в 1885 году доказал, что дыхательный центр локализован в продолговатом мозге и является парным образованием, т.е. двусторонним: левая и правая части. При чем имеется два антагонистических отдела, отвечающих соответственно за инспирацию и экспирацию, т.е. ритмичное чередование вдоха и выдоха, которое обусловлено взаимодействием различных групп нервных клеток.

Дыхательный центр.

Подавляющая масса дыхательных нейронов сосредоточена в двух группах ядер продолговатого мозга: дорсальной и вентральной.

Большая часть нейронов дорсальной группы - инспираторные. Ядра вентральной дыхательной группы содержат наряду с инспираторными и экспираторные нейроны.

Однако, это грубое деление дыхательных нейронов на инспираторноые и экспираторные. Как показали современные исследования, выполненные при помощи микроэлектродной техники, эти два основных типа подразделяются на разные подтипы, различающиеся между собой как по точному началу, так и по тому куда направляется их импульсация.

В настоящее время различают: а) "полные" инспиратоные и экспираторные нейроны, ритмическое возбуждение которых по времени точно совпадает с соответствующей фазой дыхания, б) "ранние" инспираторные и экспираторнве нейроны, дающие короткие серии импульсов до начала вдоха или выдоха, в) "поздние", проявляющие залповую активность уже после начала инспирации или экспирации, а так-же нейроны, получившие название г) экспиратоно-инспираторных, д) инспираторно-экспираторных и е) непрерывных.

Исследования показали, что в варолиевом мосту также имеются скопления нейронов, имеющих отношение к регуляции дыхания. Данные нейроны участвуют в регуляции длительности фаз вдоха и выдоха, т.е. в переключении фаз дыхательного цикла. Скопление нейронов варолиевого моста, участвующее в регуляции дыхания, принято называть пневмотаксическим центром.

Механизм периодической деятельности ДЦ.

На основе многих экспериментальных исследований в настоящее время созданы различные модельные представления о деятельности дыхательного центра. Их можно кратко обобщить.

У новорожденного первый вдох (первый крик) происходит в момент пережатия пуповины. После прекращения связи с матерью, в крови новорожденного быстро увеличивается концентрация в крови СО2 и уменьшается количество О2. Эти изменения активируют центральные и периферические хеморецепторы. Импульсы от данных рецепторов возбуждают нейроны дорзальной группы дыхательного центра (так называемый "центр вдоха"). Аксоны данной (дорзальной) группы нейронов направляются в шейные сегменты спинного мозга и образуют синапсы с мотонейронами диафрагмального ядра.

Эти нейроны возбуждаются и происходит сокращение диафрагмы. Как вы знаете, диафрагма иннервируется парой диафрагмальных нервов (n.n. phrenici). Волокна, образующие эти нервы, являются аксонами нервных клеток, лежащих в передних рогах Ш-V шейных сегментах спинного мозга и выходят из них в составе Ш-V передних спинномозговых корешков. Одновременно с возбуждением мотонейронов диафрагмального ядра сигналы идут к тем инспираторным нейронам, которые возбуждают- мотонейроны спинного мозга, которые иннервируют наружные межреберные и межхрящевые мышцы. Происходит вдох.

Большое значение для возникновения вдоха имеет активация тактильных и температурных рецепторов, повышающих активность ЦНС.

Поэтому если ребенок долго не делает первый вдох, то необходимо побрызгать в лицо водой, похлопать по пяткам, тем самым усиливая импульсы с экстерорецепторов.

Одновременно информация из центра вдоха поступает к дыхательным нейронам варолиевого моста (так называемый "пневмотаксический центр"), откуда импульсы посылаются к экспираторным нейронам (в так называемый "центр выдоха"). Кроме того, экспираторные нейроны получают информацию прямо от "центра вдоха". Возбуждение экспираторных нейронов усиливается под влиянием импульсов, поступающих от рецепторов растяжения легких. Среди экспираторных нейронов имеются тормозные, активация которых приводит к прекращению возбуждения инспираторных нейронов. В результате вдох прекращается. Наступает пассивный выдох.

Если дыхание усиленное, то пассивный выдох не обеспечивает изгнания из легких необходимого количества воздуха. Тогда активированные экспираторные нейроны посылают импульсы к мотонейронам спинного мозга, иннервирующим внутренние косые межреберные и брюшные мышцы. Эти мотонейроны расположены в грудных и поясничных сегментах спинного мозга. Указанные мышцы сокращаются и следовательно обеспечивают более глубокий выдох.

Следуют подчеркнуть значение в переключении фаз вдоха нейронов варолиевого моста, объединенных в пневмотаксический центр.

Дыхательный центр всегда находится под контролем. Дыхательные нейроны продолговатого отдела и моста постоянно получают информацию из вышележащих отделов головного мозга: гипоталамуса, лимбической системы, коры больших полушарий. Они имеют большое значение к приспособлению дыхания к условиям жизнедеятельности.

Факт изменения дыхания при прямом раздражении коры больших полушарий электрическим током был открыт Данилевским (1876). С этого времени многократно высказывались утверждения, что в коре больших полушарий имеются дыхательные центры, специфическим образом изменяющих дыхание.

Роль коры в регуляции дыхания была убедительно показана в исследованиях Асратяна (1938). Он показал, что бескорковые собаки не могут приспособить дыхания к условиям внешней среды. Стоит бескорковым собакам в течении 1-2 мин сделать несколько шагов по комнате, чтобы у них гначалась резко выраженная и длительная одышка.

Во многих исследованиях было показано условнорефлекторное изменение дыхания. Ольнянская (1950) впервые экспериментально установила, что если за несколько секунд до начала мышечной работы давать звуковые сигналы, то после нескольких опытов звуковой сигнал сам по себе вызывал увеличение легочной вентиляции.

Полушария головного мозга осуществляют свое влияние на дыхательный центр как через кортико-бульбарные пути, так и через подкорковые структуры. И.П.Павлов писал о дыхательном центре: "С самого начала думали, что это точка с булавочную головку в продолговатом мозгу. Но теперь он чрезвычайно расползся, поднялся в головной мозг и спустился в спинной и сейчас границы его точно никто не укажет".

Т.о. дыхательном центром называют совокупность взаимосвязанных нейронов ЦНС, обеспечивающих координированную ритмическую деятельность дыхательных мышц и постоянное приспособление внешнего дыхания к изменяющимся условиям внутри организма и в окружающей среде. Условно дыхательный центр можно подразделить на 3 отдела:

1.Низший - включает в себя мотонейроны спинного мозга, иннервирующие дыхательные мышцы.

2.Рабочий- объединяет нейроны продолговатого отдела и моста.

3.Высший - все вышележащие нейроны, влияющие на процесс дыхания.

Из венозной крови можно извлечь 55-58 об.% углекислого газа . Большая часть СО 2 , извлекаемого из крови, происходит из имеющихся в плазме и эритроцитах солей угольной кислоты и только около 2,5 об.% углекислого газа растворено и около 4-5об.% находится в соединении с гемоглобином в виде карбогемоглобина.

Образованно угольной кислоты из углекислого газа происходит в эритроцитах, где содержится фермент карбоангидраза, являющийся мощным катализатором, ускоряющим реакцию гидратации СО 2 .

. Существование этого фермента предполагал еще И. М. Сеченов, но открыт он был лишь в 1932 г. Мелдрумом и Рафтоном.

Связывание углекислого газа кровью в капиллярах большого круга . Углекислый газ, образующийся в тканях, диффундирует в кровь кровеносных капилляров, так как напряжение СО 2 в тканях значительно превышает его напряжение в артериальной крови. Растворяющийся в плазме СО 2 диффундирует внутрь эритроцита, где под влиянием карбоангидразы он мгновенно превращается в угольную кислоту,

Согласно расчетам, активность карбоангидразы в эритроцитах такова, что реакция гидратации углекислоты ускоряется в 1500-2000 раз. Так как весь углекислый газ внутри эритроцита превращается в угольную кислоту, то напряжение СО 2 внутри эритроцита близко к нулю, поэтому все новые и новые количества СО 2 поступают внутрь эритроцита. В связи с образованием угольной кислоты из СО 3 в эритроците концентрация ионов НСО 3 " возрастает, и они начинают диффундировать в плазму. Это возможно потому, что поверхностная мембрана эритроцита проницаема для анионов. Для катионов мембрана эритроцита практически непроницаема. Взамен ионов НСО 3 " в эритроциты входит ион хлора. Переход ионов хлора из плазмы внутрь эритроцита освобождает в плазме ионы натрия, которые связывают поступающие нз эритроцита ионы НСО 3 , образуя NaHCО 3 Химический анализ плазмы венозной крови показывает значительное увеличение в ней бикарбоната.

Накопление внутри эритроцита анионов приводит к повышению осмотического давления внутри эритроцита, а это вызывает переход воды из плазмы через поверхностную мембрану эритроцита. В результате объем эритроцитов в капиллярах большого круга увеличивается. При исследовании с помощью гематокрнта установлено, что эритроциты занимают 40% объема артериальной крови и 40,4% объема венозной крови. Из этого следует, что объем эритроцитов венозной крови больше, чем эритроцитом артериальной, что объясняется проникновением в них воды.

Одновременно с поступлением СО 2 внутрь эритроцита и образованием в нем угольной кислоты происходит отдача кислорода оксигемоглобином и превращение его в редуцированный гемоглобин. Последний является значительно менее диссоциирующей кислотой, чем оксигемоглобин и угольная кислота. Поэтому при превращении оксигемоглобина в гемоглобин Н 2 СО 3 вытесняет из гемоглобина ионы калия и, соединяясь с ними, образует калиевую соль бикарбоната.

Освобождающийся Н˙ ион угольной кислоты связывается гемоглобином. Так как редуцированный гемоглобин является малодиссоциированной кислотой, то при этом не происходит закисления крови и разница рН венозной и артериальной крови крайне невелика. Происходящую в эритроцитах тканевых капилляров реакцию можно представить следующим образом:

КНbO 2 + Н 2 СO 3 = HHb + O 2 + КНСO 3

Из изложенного следует, что оксигемоглобин, превращаясь в гемоглобин и отдавая связанные им основания углекислоте, способствует образованию бикарбоната и транспорту в таком виде углекислоты. Кроме того, гкмоглобин образует химическое соединение с СО 2 - карбогемоглобин. Наличие в крови соединения гемоглобина с углекислым газом было установлено путем следующего опыта. Если к цельной крови прибавить цианистый калий, который полностью инактивирует карбоангидразу, то оказывается, что эритроциты такой крови связывают больше СО 2 , чем плазма. Отсюда был сделан вывод, что связывание СО 2 эритроцитами после инактивирования карбоангидразы объясняется наличием в эритроцитах соединения гемоглобина с СО 2 . В дальнейшем выяснилось, что СО 2 присоединяется к аминной группе гемоглобина, образуя так называемую карбаминовую связь.

Реакция образования карбогемоглобина может идти в одну или другую сторону в зависимости от напряжения углекислого газа в крови. Хотя небольшая часть всего количества углекислого газа, которое может быть извлечено из крови, находится в соединении с гемоглобином (8-10%), однако роль этого соединения в транспорте углекислоты кровью достаточно велика. Примерно 25-30% углекислого газа, поглощаемого кровью в капиллярах большого круга, вступает в соединение с гемоглобином, образуя карбогемоглобин.

Отдача СО2 кровью в легочных капиллярах . Вследствие более низкого парциального давления СО 2 в альвеолярном воздухе по сравнению с напряжением его в венозной крови углекислый газ переходит путем диффузии из крови легочных капилляров в альвеолярный воздух. Напряжение СО 2 в крови падает.

Одновременно с этим вследствие более высокого парциального давления кислорода в альвеолярном воздухе по сравнению с его напряжением в венозной крови кислород поступает из альвеолярного воздуха в кровь капилляров легких. Напряжение О2 в крови возрастает, и гемоглобин превращается в оксигемоглобин. Так как последний является кислотой, диссоциация которой значительно выше, чем гемоглобина угольной кислоты, то он вытесняет угольную кислоту из ее калиевой. Реакция идет следующим образом:

ННb + O 2 + КНСO 3 = КНbO 2 +H 2 CO 3

Освободившаяся из своей связи с основаниями угольная кислота расщепляется карбоангидразой на углекислый газ в воду. Значение карбоангидразы в отдаче углекислого газа в легких видно из следующих данных. Для того чтобы произошла реакция дегидратации Н 2 СО 3 растворенной в воде, с образованием того количества углекислого газа, которое выходит из крови за время ее нахождения в капиллярах легких, требуется 300 секунд. Кровь же проходит через капилляры легких в течение 1-2 секунд, но за это время успевает произойти дегидратация угольной кислоты внутри эритроцита и диффузия образовавшегося СО 2 сначала в плазму крови, а затем в альвеолярный воздух.

Так как в легочных капиллярах уменьшается в эритроцитах концентрация ионов НСО 3 , то эти ионы из плазмы начинают диффундировать в эритроциты, а ионы хлора диффундируют из эритроцитов в плазму. В связис тем что напряжение углекислого газа в крови легочных капилляров уменьшается, карбаминовая связь расщепляется и карбогемоглобин отдает углекислый газ.

Схематически все эти процессы приведены на рис. 57 .

Рис. 57. Схема процессов, происходящих в эритроците при поглощении или отдаче кровью кислорода и углекислого газа.

Кривые диссоциации соединений угольной кислоты в крови . Как мы уже говорили, свыше 85% углекислого газа, которое может быть извлечено из крови подкислении ее, освобождается в результате расщепления бикарбонатов (калия в эритроцитах и натрия в плазме).

Связывание углекислого газа и отдача его кровью зависят от его парциального напряжения. Можно построить кривые диссоциации соединений углекислоты в крови, подобные кривым диссоциации оксигемоглобина. Для этого по оси ординат откладывают объемные проценты связанного кровью углекислого газа, а по оси абсцисс- парциальные напряжения углекислого газа. Нижняя кривая на рис. 58 показывает связывание углекислого газа артериальной кровью, гемоглобин которой почти полностью насыщен кислородом. Верхняя кривая показывает связывание кислого газа венозной кровью.

Точка А на нижней кривой на рис. 58 соответствует напряжению кислоты, равному 40 мм рт. ст., т. е. тому напряжению, которое фактически имеется в артериальной крови. При таком напряжении связано 52 об.% СО 2 . Точка V на верхней кривой соответствует напряжению кислого газа 46 мм рт. ст., т. е. фактически имеющемуся в венозной крови. Как видно из кривой, при таком напряжении венозная кровь связывает 58 об.% углекислого газа. Линия AV, соединяющая верхнюю и нижнюю кривую, соответствует тем изменениям способности связывать углекислый газ, которые происходят при превращении артериальной крови в венозную или, наоборот, венозной крови в артериальную.

Венозная кровь благодаря тому, что содержащийся в ней гемоглобин переходит в оксигемоглобин, в капиллярах легких отдает около 6 об.% СО 2 . Если бы в легких гемоглобин не превращался в оксигемоглобин, то, как видно из кривой, венозная кровь при имеющемся в альвеолах парциальном давлении углекислого газа, равном 40 мм рт. ст.. связывала бы 54 об.% СО 2 , следовательно, отдала бы не 6, а только 4об.%. Равным образом, если бы артериальная кровь в капиллярах большого круга не отдавала своего кислорода, т. е. если бы гемоглобин ее оставался насыщенным кислородом, то эта артериальная кровь при парциальпом давлении углекислого газа, имеющемся в капиллярах тканей тела, смогла бы связат не 58 об.% СО 2 , а лишь 55 об.%.

Таким образом, переход гемоглобина в оксигемоглобин в легких и оксигемоглобина в гемоглобин в тканях тела способствует поглощению и отдаче примерно 3-4 об.% углекислого газа из тех 6 об.%, которые поглощает кровь в тканях и отдает в легких. Около 25-30% выделяемого в легких углекислого газа переносится карбогемоглобином.

Из всего сказанного вытекает, что в механизме транспорта и кислорода, и углекислого газа кровью важнейшая роль принадлежит эритроцитам, в которых содержатся гемоглобин и карбоангидраза.

Двуокись углерода – конечный продукт окислительных обменных процессов в клетках – переносится с кровью к легким и удаляется через них во внешнюю среду. Так же как и кислород, СО 2 может переноситься как в физически растворенном виде, так и в составе химических соединений. Химические реакции связывания СО 2 несколько сложнее, чем реакции присоединения кислорода. Это обусловлено тем, что механизмы, отвечающие за транспорт СО 2 должны одновременно обеспечивать поддержание постоянства кислотно-щелочного равновесия крови и тем самым внутренней среды организма в целом.

Напряжение СО 2 в артериальной крови, поступающей в тканевые капилляры составляет 40 мм рт.ст. В клетках же, расположенных около этих капилляров, напряжение СО 2 значительно выше, так как это вещество постоянно образуется в результате метаболизма. В связи с этим физически растворенный СО 2 переносится по градиенту напряжения из тканей в капилляры. Здесь некоторое количество углекислого газа остается в состоянии физического растворения, но большая часть СО 2 претерпевает ряд химических превращений. Прежде всего происходит гидратация молекул СО 2 с образованием угольной кислоты.

В плазме крови эта реакция протекает очень медленно; в эритроците же она ускоряется примерно в 10 тыс. раз. Это связано с действием фермента карбоангидразы. Поскольку этот фермент присутствует только в клетках, практически все молекулы СО 2 , участвующие в реакции гидратации, должны сначала поступить в эритроциты.

Следующая реакция в цепи химических превращений СО 2 заключается в диссоциации слабой кислоты Н 2 СО 3 на ионы бикарбоната и водорода.

Накопление НСО 3 - в эритроците приводит к тому, что между его внутренней средой и плазмой крови создается диффузионный градиент. Ионы НСО 3 - могут передвигаться по этому градиенту лишь в том случае, если при этом не будет нарушаться равновесное распределение электрических зарядов. В связи с этим одновременно с выходом каждого иона НСО 3 - должен происходить либо выход из эритроцита одного катиона, либо вход одного аниона. Поскольку мембрана эритроцита практически не проницаема для катионов, но сравнительно легко пропускает небольшие анионы, взамен НСО 3 - в эритроцит поступают ионы Сl - . Этот обменный процесс называется хлоридным сдвигом.

СО 2 может связываться также путем непосредственного присоединения к аминогруппам белкового компонента гемоглобина. При этом образуется так называемая карбаминова связь.

Гемоглобин, связанный с СО 2 , называется карбогемоглобином.

Зависимость содержания СО 2 от степени оксигенации гемоглобина называется эффектом Холдейна. Данный эффект частично обусловлен различной способностью оксигемоглобина и дезоксигемоглобина к образованию карбаминовой связи.