Организма.

Индуцированными мутациями называют наследуемые изменения генома , возникающие в результате тех или иных мутагенных воздействий в искусственных (экспериментальных) условиях или при неблагоприятных воздействиях окружающей среды .

Мутации появляются постоянно в ходе процессов, происходящих в живой клетке. Основные процессы, приводящие к возникновению мутаций - репликация ДНК , нарушения репарации ДНК , транскрипции и генетическая рекомбинация .

Связь мутаций с репликацией ДНК [ | ]

Многие спонтанные химические изменения нуклеотидов приводят к мутациям, которые возникают при репликации . Например, из-за дезаминирования цитозина напротив гуанина в цепь ДНК может включаться урацил (образуется пара У-Г вместо канонической пары Ц-Г). При репликации ДНК, напротив урацила в новую цепь включается аденин , образуется пара У-А, а при следующей репликации она заменяется на пару Т-А, то есть происходит транзиция (точечная замена пиримидина на другой пиримидин или пурина на другой пурин).

Связь мутаций с рекомбинацией ДНК [ | ]

Из процессов, связанных с рекомбинацией, наиболее часто приводит к мутациям неравный кроссинговер . Он происходит обычно в тех случаях, когда в хромосоме имеется несколько дуплицированных копий исходного гена, сохранивших похожую последовательность нуклеотидов. В результате неравного кроссинговера в одной из рекомбинантных хромосом происходит дупликация , а в другой - делеция .

Связь мутаций с репарацией ДНК [ | ]

Таутомерная модель мутагенеза [ | ]

Предполагается, что одной из причин образования мутаций замены основания является дезаминирование 5-метилцитозина , что может вызывать транзиции от цитозина к тимину. Из-за дезаминирования цитозина напротив него в цепь ДНК может включаться урацил (образуется пара У-Г вместо канонической пары Ц-Г). При репликации ДНК напротив урацила в новую цепь включается аденин, образуется пара У-А, а при следующей репликации она заменяется на пару Т-А, то есть происходит транзиция (точечная замена пиримидина на другой пиримидин или пурина на другой пурин).

Классификации мутаций [ | ]

Существует несколько классификаций мутаций по различным критериям. Мёллер предложил делить мутации по характеру изменения функционирования гена на гипоморфные (измененные аллели действуют в том же направлении, что и аллели дикого типа; синтезируется лишь меньше белкового продукта), аморфные (мутация выглядит, как полная потеря функции гена, например, мутация white у Drosophila), антиморфные (мутантный признак изменяется, например, окраска зерна кукурузы меняется с пурпурной на бурую) и неоморфные .

В современной учебной литературе используется и более формальная классификация, основанная на характере изменения структуры отдельных генов, хромосом и генома в целом. В рамках этой классификации различают следующие виды мутаций:

  • геномные ;
  • хромосомные ;
  • генные .

Точечная мутация, или единственная замена оснований, - тип мутации в ДНК или РНК, для которой характерна замена одного азотистого основания другим. Термин также применяется и в отношении парных замен нуклеотидов. Термин точечная мутация включает так же инсерции и делеции одного или нескольких нуклеотидов. Выделяют несколько типов точечных мутаций.

Встречаются также сложные мутации. Это такие изменения ДНК, когда один её участок заменяется участком другой длины и другого нуклеотидного состава .

Точечные мутации могут появляться напротив таких повреждений молекулы ДНК, которые способны останавливать синтез ДНК. Например, напротив циклобутановых пиримидиновых димеров. Такие мутации называются мишенными мутациями (от слова «мишень») . Циклобутановые пиримидиновые димеры вызывают как мишенные мутации замены оснований , так и мишенные мутации сдвига рамки .

Иногда точечные мутации образуются на, так называемых, неповрежденных участках ДНК, часто в небольшой окрестности от фотодимеров. Такие мутации называются немишенными мутациями замены оснований или немишенными мутациями сдвига рамки .

Точечные мутации образуются не всегда сразу же после воздействия мутагена. Иногда они появляются после десятков циклов репликаций. Это явление носит название задерживающихся мутаций . При нестабильности генома, главной причине образования злокачественных опухолей, резко возрастает количество немишенных и задерживающихся мутаций .

Возможны четыре генетических последствия точковых мутаций: 1) сохранение смысла она из-за вырожденности генетического а (синонимическая замена нуклеотида), 2) изменение смысла она, приводящее к замене аминокислоты в соответствующем месте полипептидной цепи (миссенс-мутация), 3) образование бессмысленного она с преждевременной терминацией (нонсенс-мутация). В генетическом е имеются три бессмысленных она: амбер - UAG, охр - UAA и опал - UGA (в соответствии с этим получают название и мутации, приводящие к образованию бессмысленных триплетов - например амбер-мутация), 4) обратная замена (стоп-она на смысловой он).

По влиянию на экспрессию генов мутации разделяют на две категории: мутации типа замен пар оснований и типа сдвига рамки считывания (frameshift) . Последние представляют собой делеции или вставки нуклеотидов, число которых не кратно трём, что связано с триплетностью генетического а.

Первичную мутацию иногда называют прямой мутацией , а мутацию, восстанавливающую исходную структуру гена, - обратной мутацией , или реверсией. Возврат к исходному фенотипу у мутантного организма вследствие восстановления функции мутантного гена нередко происходит не за счет истинной реверсии, а вследствие мутации в другой части того же самого гена или даже другого неаллельного гена. В этом случае возвратную мутацию называют супрессорной. Генетические механизмы, благодаря которым происходит супрессия мутантного фенотипа, весьма разнообразны.

Почковые мутации (спорты) - стойкие соматические мутации, происходящие в клетках точек роста растений. Приводят к клоновой изменчивости . При вегетативном размножении сохраняются. Многие сорта культурных растений являются почковыми мутантами .

Последствия мутаций для клетки и организма [ | ]

Мутации, которые ухудшают деятельность клетки в многоклеточном организме, часто приводят к уничтожению клетки (в частности, к программируемой смерти клетки, - апоптозу). Если внутри- и внеклеточные защитные механизмы не распознали мутацию, и клетка прошла деление, то мутантный ген передастся всем потомкам клетки и, чаще всего, приводит к тому, что все эти клетки начинают функционировать иначе.

Кроме того, закономерно различается частота мутирования разных генов и разных участков внутри одного гена. Также известно, что высшие организмы используют «целенаправленные» (то есть происходящие в определённых участках ДНК) мутации в механизмах иммунитета [ ] . С их помощью создаётся разнообразие клонов лимфоцитов , среди которых в результате всегда находятся клетки, способные дать иммунный ответ на новую, неизвестную для организма болезнь. Подходящие лимфоциты подвергаются положительной

Мутационная изменчивость является результатом мутаций.

Мутация (от лат. “mutazio” - изменение, перемена) –наследственное изменение генотипа (это изменение наследственного материала, приводящее к появлению новых признаков организма, способных передаваться последующему поколению. Термин “мутация” ввел в науку в 1901 г. Голландский генетик Г. де Фриз, описавший самопроизвольные мутации у растений. Мутации - это стойкие изменения затрагивающие как целые хромосомы, их части, отдельные гены. Чаще всего, мутации это мелкие, едва заметные отклонения от нормы.

Дарвин назвал наследственную изменчивость неопределенной (индивидуальной), подчеркивая ее случайный и относительно редкий характер.

Мутации являются источником генетического разнообразия, составляя резерв наследственной изменчивости.

Классификация мутаций

1. По характеру проявления:

проявления бывают доминантными и рецессивными . Мутации нередко понижают жизнеспособность или плодовитость. Мутации, резко снижающие жизнеспособность, частично или полностью останавливающие развитие, называют полулетальными а несовместимые с жизнью - летальными.

2. По месту возникновения:

Мутация, возникшая в половых клетках, не влияет на признаки данного организма, а проявляется только в следующем поколении. Такие мутации называют генеративными. Если изменяются гены в соматических клетках, такие мутации проявляются у данного организма и не передаются потомству при половом размножении. Но при бесполом размножении, если организм развивается из клетки или группы клеток, имеющих изменившийся - мутировавший - ген, мутации могут передаваться потомству. Такие мутации называют соматическими.

3. По уровню возникновения:

Генные мутации – изменение строения одного гена. Это изменение в последовательности нуклеотидов: выпадение, вставка, замена и т.п. Например, замена А на Т. Причины – нарушения при удвоении (репликации) ДНК. Примеры: серповидноклеточная анемия, фенилкетонурия.

Хромосомные мутации – изменение строения хромосом: выпадение участка, удвоение участка, поворот участка на 180 градусов, перенос участка на другую (негомологичную) хромосому и т.п. Причины – нарушения при кроссинговере. Пример: синдром кошачьего крика.

Геномные мутации – изменение количества хромосом. Причины – нарушения при расхождении хромосом. В зависимости от характера изменения числа хромосом различают:

  • Полиплоидия – кратные изменения (в несколько раз, например, 12 → 24). У животных не встречается, у растений приводит к увеличению размера.
  • Анеуплоидия – изменения на одну-две хромосомы. Например, одна лишняя двадцать первая хромосома приводит к синдрому Дауна (при этом общее количество хромосом – 47).

В зависимости от характера изменения числа хромосом различают:

Спонтанные мутации - возникают при нормальных условиях жизни, зависят от внешних и внутренних факторов, возникают в соматических и генеративных клетках.

Индуцированные мутации - это искусственное получение мутаций с помощью мутагенов различной природы. Впервые способность ионизирующих излучений вызывать мутации была обнаружена Г.А. Надсоном и Г.С. Филлиповым. В 1927 году американским ученым Джозефом Мюллером было доказано, что частота мутаций увеличивается с увеличением дозы воздействия. Ученые полагают, что факт наследования мутаций вызывает определенные опасения, поскольку это может увеличить риск развития рака. Азиатов от алкоголизма защищает ген-мутант. Почему процент алкоголиков в азиатских странах значительно ниже, чем в странах, где основную часть населения составляет так называемое белое население.

Факторы среды, вызывающие появление мутаций называютсямутагенами .

Различают:

Физические мутагены

- ионизирующее и ультрафиолетовое излучение;

Чрезмерно высокая или низкая температура;

Химические мутагены

Нитраты, нитриты, пестициды, никотин, метанол, бензпирен.

Некоторые пищевые добавки, например, ароматические углеводороды;

Продукты переработки нефти;

Органические растворители;

Лекарственные препараты, препараты ртути, иммунодепрессанты.

Биологические мутагены

Некоторые вирусы (вирус кори, краснухи, гриппа)

Продукты обмена веществ (продукты окисления липидов);

Свойства мутации:

  • мутации наследственны, т.е. передаются из поколения в поколение.
  • мутации возникают внезапно (спонтанно), ненаправленно.
  • мутации не направлены – мутировать может любой локус, вызывая изменения как незначительных, так и жизненно важных признаков в любом направлении.
  • одни и те же мутации могут возникать повторно.
  • мутации индивидуальны, т.е. возникают у отдельных особей.
  • мутации могут быть полезными,вредными, нейтральными; доминантными и рецессивными.

Значение мутаций

Служат резервом наследственной изменчивости (сохраняются в популяции в скрытом-рецессивном) виде, являются материалом для эволюции.

Причина многих наследственных заболеваний и уродств.

Индуцированные мутации “поставляют” материал для искусственного отбора и селекции.

МУТАГЕНЕЗ - процессы-реакции в генном аппарате биологического объекта, при которых происходят изменения в строении генов, передающиеся по наследству. Такие изменения могут затрагивать отдельные нуклеотиды или группы их, сопровождаясь в некоторых случаях изменениями в морфологии хромосом. Изменения уже одного нуклеотида, входящего в состав триплета, приводят к образованию иной аминокислоты, входящей в состав белка, и могут привести к изменению соответствующего признака.

Мутагенез можно условно делить на спонтанный , когда мутации возникают в "нормальных" условиях роста, и индуцированный вследствие применения физических или химических мутагенов.

Спонтанный мутагенез зависит от внешних и внутренних факторов (биологические, химические, физические). Спонтанные мутации возникают у человека в соматических и генеративных тканях. Метод определения спонтанных мутаций основан на том, что у детей появляется доминантный признак, хотя у его родителей он отсутствует. При спонтанном мутагенезе могут происходить все типы наследственных перемен, которые наблюдаются при индуцированном мутагенезе: замена пар аденин-тимин или чаще гуанин-цитозин, ошибочное спаривание двух пуринов или двух пиримидинов, делеции, включения и другие изменения. Каждый биологический объект характеризуется определенным фоном спонтанных мутаций, которые с разной частотой затрагивают те или иные генетические признаки.

Индуцированный мутагенез - это искусственное получение мутаций с помощью мутагенов различной природы. Впервые способность ионизирующих излучений вызывать мутации была обнаружена Г.А. Надсоном и Г.С. Филлиповым. Затем, проводя обширные исследования, была установлена радиобиологическая зависимость мутаций. В 1927 году американским ученым Джозефом Мюллером было доказано, что частота мутаций увеличивается с увеличением дозы воздействия. В конце сороковых годов открыли существование мощных химических мутагенов, которые вызывали серьезные повреждения ДНК человека для целого ряда вирусов. Одним из примеров воздействия мутагенов на человека может служить эндомитоз - удвоение хромосом с последующим делением центромер, но без расхождения хромосом.

Мутационный процесс характеризуется частотой возникновения мутаций и направлением мутирования генов.

Частота возникновения мутаций является одной из определяющих черт каждого вида животных, растений и микроорганизмов: одни виды обладают более высокой мутационной изменчивостью, чем другие. Эти различия обусловлены влиянием многих факторов общего и частного значения: генотипического строения вида, степени его адаптации к условиям внешней среды, места его распространения, силы действия природных факторов и т. д. Как бы организм ни был защищен от воздействия внешней среды, протекающие в нем химические процессы, связанные с обменом веществ, могут быть причиной спонтанной мутационной изменчивости. Под этим термином мы скрываем свое незнание конкретных причин мутаций.

В настоящее время еще нет полного представления о частоте возникновения мутаций за одно поколение. Это объясняется тем, что мутации чрезвычайно разнообразны как по фенотипическому проявлению, так и по генетической обусловленности, а методы их учета несовершенны; лишь в отношении мутабильности отдельных локусов можно дать более или менее точную оценку. Как правило, одновременно мутирует лишь один из членов аллельной пары, что объясняется редкостью самого мутирования; одновременное мутирование обоих членов - маловероятное событие.

Установленные общие закономерности частоты спонтанного мутирования сводятся к следующим положениям:

  1. различные гены в одном генотипе мутируют с разной частотой;
  2. сходные гены в разных генотипах мутируют с различной скоростью.

Эти два положения иллюстрируются таблицами.

В первой из них показана частота мутирования разных генов на примере кукурузы, во второй - сравнивается мутирование генов у разных видов животных, растений и человека, а у кукурузы - мутирование одних и тех же генов в разных линиях, имеющих разные генотипы.

Итак, различные гены мутируют с разной частотой, т. е. имеются гены мутабильные и стабильные. Каждый ген мутирует относительно редко, но так как число генов в генотипе может быть огромным, то суммарная частота мутирования различных генов оказывается довольно высокой. Для дрозофилы этот расчет показывает одну мутацию примерно на 100 гамет за одно поколение. Однако подобные расчеты пока не очень точны, так как фактически нельзя отличить единичное изменение локуса от сложных мелких реорганизаций в хромосомах; кроме того, очень трудно установить одновременное мутирование в разных хромосомах в пределах одной клетки.

Исходя из редкости самого события - мутации гена, следует объяснять и тот факт, что обычно наблюдают мутирование лишь в одном из локусов. Генетика не знает ни одного достоверного факта одновременного мутирования двух аллелей в гомологичных хромосомах. Но возможно, что это объясняется самим механизмом возникновения мутаций.

Причины спонтанного мутирования генов остаются еще далеко не выясненными. Одной из главных причин, обусловливающих разную частоту мутирования, является сам генотип. Один и тот же ген R r в двух линиях кукурузы мутирует к r r по-разному: в одной - с частотой 6,2, а в другой - 18,2 на 10 000 гамет. Установлено также, что частота возникновения летальных мутаций у разных линий дрозофилы различна.

С помощью селекции можно создать линии, которые будут иметь разную спонтанную мутабильность. В пользу этого говорит тот факт, что существуют специальные гены - мутаторы, которые влияют на скорость мутирования других генов. Так, например, У кукурузы вблизи левого конца короткого плеча IX хромосомы лежит локус Dt, который влияет на мутабильность локуса А, находящегося в длинном плече III хромосомы. Правда, до сих пор не совсем ясно, что представляет собой локус Dt. Возможно, он является какой-либо хромосомной перестройкой.

Влияние генотипа на спонтанную мутабильность отдельного гена проявляется также при гибридизации. Имеются указания на то, что частота мутирования одного и того же локуса выше у гибридных организмов, чем у исходных форм.

Спонтанный мутационный процесс обусловлен также физиологическим состоянием и биохимическими изменениями в клетках.

Так, например, М. С. Навашин и Г. Штуббе показали, что в процессе старения семян при хранении в течение нескольких лет частота мутаций, особенно типа хромосомных перестроек, значительно увеличивается. Подобное явление наблюдается в отношении частоты летальных мутаций у дрозофилы при хранении спермы в семеприемниках самок. Такого рода факты указывают на то, что спонтанное мутирование гена зависит от физиологических и биохимических изменений клетки, связанных с внешними условиями.

Одной из возможных причин спонтанного мутирования может быть накопление в генотипе мутаций, блокирующих биосинтез тех или иных веществ, вследствие чего будет происходить чрезмерное накопление предшественников таких веществ, которые могут влиять на изменение генов. Эта гипотеза поддается экспериментальной проверке.

Если вы нашли ошибку, пожалуйста, выделите фрагмент текста и нажмите Ctrl+Enter .

Спонтанные мутации и их причины.

В любой популяции есть особи со спонтанными мутациями, т.е. которые возникли без явных причин. Любой ген с той или иной частотой спонтанно переходит в мутантное состояние. Пример: Частота локуса альбинизма у мышей 3*10 -5 . Причины индукции спонтанных мутаций не ясны:

1. Долго считали, что это фон естественного ионизирующего излучения. Расчеты для дрозофил, показали, что естественный радиационный фон ответственен за 0,1% спонтанных мутаций. Хотя по мере увеличения продолжительности жизни воздействие естественного фона накапливается. У человека от 0,1 до 4% спонтанных мутаций можно отнести к естественному фону радиации.

2. Еще одной причиной может служить случайное повреждение хромосом в ходе нормальных метаболических процессов, происходящих в клетке.

Предполагают, что спонтанные мутации могут быть следствием случайных ошибок функционирования молекулярных механизмов.

3. Причиной спонтанных мутаций может служить перемещение мобильных элементов по геному, которые могут внедряться в любой ген, и вызывать мутацию. 80% спонтанных мутаций именно этой природы.

Способность давать мутации – мутабильность, сильно подвержена влиянию генотипа. Даже в пределах одного вида различающиеся в генетическом отношении линии могут обладать разной мутабильностью. Особенно это заметно, когда в линии есть ген – мутатор, который увеличивает частоту генных мутаций у несущих его особей.

Следует различать частоты:

1. популяционная , которая равна мутационной частоте, если мутант быстро погибает или бесплоден. В этой популяции обнаруживают мутации только de novo. Если мутанты оставляют потомство, популяционная частота = мутационная частота + сегреганты.

2. мутационная частота.

Индуцированные мутации - это процесс возникновения мутаций под направленным действием физических, химических или биологических факторов. Меллер изучал в 1927 г. влияние рентгеновских лучей на мутационные процессы у дрозофил. В 30-е годы был открыт химический мутагенез. Сахаров, Лобашов и Смирнов показали, что уксусная кислота, аммиак способны индуцировать рецессивные летали в хромосоме. Такие факторы получили название мутагены или мутагенные факторы.

1. физический мутагенез . Физические мутагены:

- ионизирующие излучения – волновые (рентген, космические лучи) и корпускулярные (β-частицы, протоны, нейтроны, α-частицы)

Проходя через живое вещество, γ и рентгеновские лучи вырывают электроны из внешней оболочки атома или молекулы. Поэтому заряженные частицы – электроны присоединяются к нейтрально заряженным частицам. В результате нейтральная молекула приобретает заряд, что ведет к дальнейшим превращениям веществ. В 30-е годы Тимофеев-Ресовский и Дельбрюк выдвинули теорию мишени. Согласно которой, вызываемые радиацией мутации обязаны единичным актам ионизации, которые повреждают чувствительность структур (мишень – ДНК). Следовательно, частота индуцируемых мутаций зависит от дозы радиации. При этом не имеет значение дана доза однократно или порциями, хотя эффект более выражен при однократном введении дозы.



Частота генных мутаций и мелких перестроек хромосом, вызываемых ионизирующим излучением прямо пропорциональна дозе излучения. Это описывается уравнением:

у – общая частота наблюдаемых мутаций,

k – частота спонтанных мутаций,

α – коэффициент пропорциональности – вероятность возникновения мутации у данного объекта в результате облучения дозой 1 рентген.

d – доза в рентгенах.

Так как k – мало, то им можно пренебречь:

То, что частота генных мутаций линейно зависит от дозы излучения, привело к предположению, что каждая мутация является результатом единичной мутации, это же относится и к мелким перестройкам. Объясняется это тем, что два разрыва, происходящие очень близко в хромосоме вызываются единичной ионизацией. Если это верно, то для крупных хромосомных перестроек следовало бы наблюдать другой зависимости от дозы излучения. Так как крупные хромосомные перестройки являются результатом двух и более далеко отстоящих друг от друга разрывов, поэтому частота этих перестроек должна быть равна квадрату дозы излучения. Иногда это верно, но больше частота индуцированных облучений крупных перестроек пропорциональна не квадрату дозы, а меньшей величине. Причины этого не ясны. Полагают, что это связано с особенностями механизмов соединения концов образовавшихся фрагментов. Или, возможно, сохраняются только те крупные абберации, которые не влияют на жизнеспособность клетки, либо незначительно ее снижают. Теория мишеней отражает важные стороны ионизирующего излучения. В дальнейшем было выяснено, что механизмы радиационного мутагенеза более сложны. Радиация играет основную роль в возникновении мутаций.

Существуют факты, доказывающие, что ионизирующее излучение может действовать на генетический аппарат косвенно. При прохождении ионизирующих частиц через цитоплазму, они образуют радикалы, способные реагировать с химическими компонентами хромосом. Большое значение играют свободные радикалы, которые образуются в результате радиолиза воды.

Н + ОН = Н 2 О

ОН + ОН = Н 2 О 2

Еще одним доказательством косвенного влияния были опыты, которые показали, что облучение жидкой питательной среды делает ее мутагенной для помещаемых в нее бактерий. Это действуют свободные радикалы перекиси. Если происходит в атмосфере богатой кислородом, то количество мутаций больше, чем в атмосфере бедной кислородом или в атмосфере инертного газа. Полагают, что в присутствии кислорода облучение увеличивает образование перекиси водорода. Увеличение частоты мутаций с увеличением дозы идет до известных определенных пределов, выше которых частота выявленных мутаций снижается. Это объясняется:

При очень высоких дозах поражение генов и хромосом доходит до того, что клетки нежизнеспособны.

Если повреждены половые клетки и способны участвовать в оплодотворении, то зигота погибает из-за грубых нарушений генетического аппарата – это доминантная летальность. Следовательно, вместе с организмом умирает мутация. Значит, снижается частота мутаций в обнаруживаемых потомках особей, которых облучали.

Ионизирующее излучение в большей степени увеличивает частоту перестроения хромосом, чем частоту генетических мутаций. не все повреждения генетического аппарата, вызванные облучением реализуются в виде мутаций. множество из них исправляются за счет репаративных ферментных систем. Явление репарации обнаружены при индукции крупных хромосомных перестроек при фракционированном излучении.

Мутационный эффект радиационного излучения определяется суммой долей излучения и не зависит от фракционирования. Это справедливо для мелких перестроек, но не для крупных перестроек, для которых необходимо 2 и более точек разрыва.

1. Если вся доза дается сразу, то в клетках одновременно присутствуют митотические концы разорвавшихся хромосом. Концы могут соединяться в любых сочетаниях – инверсии, транслокации и делеции.

2. Если доза дается в несколько приемов, то часть ранее возникших перестроек успевает восстановиться до воздействия новой порции.

В результате суммирования доз, а разбитая на фракции дает меньшие мутации. Такой же результат: если короткое высокоинтенсивное излучение заменить тождественной дозой растянутой во времени, но менее интенсивной.

- Сильное ионизирующее излучение (ультрафиолет) – большая длина волны и меньшая энергия.

УФ-лучи не ионизируют атомы, таким образом возбуждение их оболочки, следовательно, различные химические реакции в этих клетках и, => мутации.

Мутагенные свойства УФ-лучей зависят от длины волны. Наиболее мутагенные с длиной волны = 260 нм. И чем меньше длина волны, тем меньше мутагенные свойства. Это связано с тем, что ДНК поглощает УФ-лучи с длиной волны 260 нм. Проникающая способность УФ мала, => нет действия на половые клетки, и мутагенные свойства проявляются у низших организмов. У человека действует на кожу.

- Температура . Воздействует на тех, у кого температура тела зависит от окружающей среды. увеличение температура на каждые 10° увеличивает частоту мутаций в 3-5 раз. При этом возникает генные мутации. Перестройки хромосом могут быть таким образом при приближении к верхней границе переносимости.

2. химические мутагены:

2.1. алкилирующие соединения , т.е. высокоактивные вещества, переносящие алкильные группировки (свободные радикалы). Пример: диметилсульфат, иприт, диэтилсульфат (некоторые из них являются супермутагены).

2.2. вещества, близкие по химической структуре к АКО, которые входят в НК. Пример: 2-аминопурин, кофеин.

2.3. акридиновые красители. Пример: профлавин.

2.4. сборная веществ, мутагенные свойства которых изучены хорошо, но различны по структуре и молекулярному механизму действия. Пример: азотистая кислота, перекись водорода, уретан, формальдегид.

Особенности химического мутагенеза

1. нет прямой зависимости

2. обладают пороговым эффектом

3. специфичность эффектов в разных тканях

4. каждый химический мутаген имеет свой спектр мутации.

5. для химических мутагенов характерно возникновение хроматидных аббераций

6. для химического мутагенеза отмечается задержанный (продленный) эффект, т.е. не после воздействия, а спустя 2-3 клеточных поколений, причины этого неясны.

7. региональная специфичность. Гетерохроматин более подвержен воздействию, чем эухроматин.

8. совместный эффект нескольких действующих мутагенов не всегда носит аддитивный характер.

40. Числовые мутации: полиплоидии, анеуплоидии, их причины, механизмы формирования.

Изменение числа хромосом, когда в клетках присутствуют более двух гаплоидных наборов - это полиплоидия (1910 г. Стасбургер). Гаплоидным называется такой набор хромосом, в котором из каждой пары гомологов присутствует только одно хромосома. Геном – это гаплоидный набор. Причинами полиплоидии может быть:

1. репродукция хромосом в неделящейся клетке,

2. слияние соматических клеток или их ядер,

3. нарушение мейоза, которое приводит к образованию гамет с нередуцированным числом хромосом.

Полиплоиды, у которых несколько раз повторяется один и тот же набор хромосом называются аутополиплоиды , или автополиплоиды . Таким образом, в ходе эволюции образовались многие виды растений. Полиплоиды, возникшие у межвидовых гибридов и содержащие по этому несколько повторений двух разных наборов хромосом называются анеуплоиды . Изменение числа отдельных хромосом – анеуплоидия , причиной которой является нерасхождение отдельных хромосом в мейозе.

2n-1 – моносомия,

2n+1 – трисомия,

2n+2 – тетрасомия.

У растений такие варианты часто жизнеспособны. У животных жизнеспособными являются анеуплоиды по половым хромосомам. У человека жизнеспособными являются анеуплоиды по половой хромосоме, а также трисомии по 21, 13, 18 (с-м Эдвардса). По всем остальным хромосомам анеуплоидии летальны.

Мутации являются важным объектом исследования цитогенетиков и биохимиков. Именно мутации, генные или хромосомные, чаще всего являются причиной наследственных заболеваний. В естественных условиях хромосомные перестройки происходят очень редко. Мутации, вызванные химическими реактивами, биологическими мутагенами или физическими факторами, такими как ионизирующее излучение, часто являются причиной врожденных патологий развития и злокачественных новообразований.

Общие сведения о мутациях

Мутацию Гуго де Фриз определил как внезапное изменение наследственного признака. Это явление встречаются в геноме всех живых организмов, от бактерий до человека. При нормальных условиях мутации в нуклеиновых кислотах происходят очень редко, с частотой примерно 1·10 -4 - 1·10 -10 .

В зависимости от количества затронутого изменениями генетического материала, мутации делят на геномные, хромосомные и генные. Геномные связанны с изменением количества хромосом (моносомия, трисомия, тетрасомия); хромосомные связаны с изменением структуры отдельных хромосом (делеции, дубликации, транслокации); генные мутации затрагивают отдельный ген. Если мутация затронула только одну пару нуклеотидов, то она - точечная.

В зависимости от причин, вызвавших их, выделяют спонтанные и индуцированные мутации.

Спонтанные мутации

Возникают в организме под воздействием внутренних факторов. Спонтанные мутации считаются нормальным явлением, они редко приводят к серьезным последствиям для организма. Чаще всего такие перестройки происходят в пределах одного гена, связаны с заменой оснований - пурина на другой пурин (транзиции), или пурина на пиримидин (трансверсии).

Значительно реже спонтанные мутации происходят в хромосомах. Обычно хромосомные спонтанные мутации представлены транслокациями (переходом одного или нескольких генов одной хромосомы на другую) и инверсиями (изменением последовательности генов в хромосоме).

Индуцированные перестройки

Индуцированные мутации возникают в клетках организма под воздействием химикатов, радиации или репликационного материала вирусов. Такие мутации проявляются чаще, чем спонтанные, имеют более серьезные последствия. Они влияют на отдельные гены и группы генов, блокируя синтез отдельных белков. Индуцированные мутации часто глобально влияют на геном, именно под воздействием мутагенов в клетке появляются аномальные хромосомы: изохромосомы, кольцевые хромосомы, дицентрики.

Мутагены, помимо хромосомных перестроек, вызывают повреждения ДНК: двунитевые разрывы, образование ДНК-сшивок.

Примеры химических мутагенов

К химическим мутагенам относятся нитраты, нитриты, аналоги азотистых оснований, азотистая кислота, пестициды, гидроксиламин, некоторые пищевые добавки.

Азотистая кислота вызывает отщепление аминогруппы от азотистых оснований и замену их другой группой. Это приводит к точковым мутациям. Химически индуцированные мутации также вызывает гидроксиламин.

Нитраты и нитриты в больших дозах повышают риск возникновения рака. Некоторые пищевые добавки вызывают реакции арилирования нуклеиновых кислот, что приводит к нарушению процессов транскрипции и трансляции.

Химические мутагены очень разнообразны. Часто именно эти вещества вызывают индуцированные мутации в хромосомах.

К физическим мутагенам относятся ионизирующее излучение, прежде всего коротковолновое, и ультрафиолет. Ультрафиолет запускает процесс в мембранах, провоцирует образование различных дефектов в ДНК.

Рентгеновское и гамма-излучение провоцируют мутации на уровне хромосом. Такие клетки не способны к делению, они погибают в ходе апоптоза. Индуцированные мутации могут затрагивать и отдельные гены. Например, блокирование генов опухолевых супрессоров приводит к появлению опухолей.

Примеры индуцированных перестроек

Примерами индуцированных мутаций могут служить различные генетические заболевания, чаще проявляющиеся в зонах, подверженных воздействию физического или химического мутагенного фактора. Известно, в частности, что в индийском штате Керала, где годовая эффективная доза ионизирующего излучения превосходит норму в 10 раз, повышена частота рождения детей с синдромом Дауна (трисомия по 21-й хромосоме). В китайском округе Янцзян в почве выявлено большое количество радиоактивного монацита. Нестабильные элементы в его составе (церий, торий, уран) распадаются с выделением гамма-квантов. Воздействие коротковолнового излучения на жителей округа привело к большому количеству рождений детей с синдромом кошачьего крика (делеция большого участка 8-й хромосомы), а также повышенной заболеваемости раком. Еще один пример: в январе 1987 года на Украине было зарегистрировано рекордное количество рождений детей с синдромом Дауна, связанное с аварией на ЧАЭС. На первом триместре беременности плод наиболее чувствителен к воздействию физических и химических мутагенов, потому колоссальная доза радиации привела к повышению частоты аномалий хромосомного набора.

Один из самых печально известных химических мутагенов в истории - седативное средство "Талидомид", выпускаемое в ФРГ в 50-х годах прошлого века. Прием этого препарата привел к рождению множества детей с самыми разными генетическими отклонениями.

Метод индуцированных мутаций обычно применяется учеными для поиска оптимальных способов борьбы с аутоиммунными заболеваниями и генетическими отклонениями, связанными с гиперсекрецией белков.