Перелом вызывает различные виды циркуляторных расстройств. Он приводит к разрыву кровеносных сосудов, идущих в продольном направлении, открытые концы которых тром-бируются. Кость в непосредственной близости от линии перелома некротизируется. Следующее за этим новообразование кости может привести к появлению демаркационной зоны и секвестров. Кавитация (см. стр.6) в момент возникновения перелома и смещение фрагментов перелома также усиливают сосудистую травму. В любом случае перелом приводит к разрыву продольных кровеносных сосудов кости. Тонкий поверхностный слой кости, жизнеспособность которого поддерживается путем диффузии, прикрывает глубокий слой некровоснабжаемой, некротизированной костной ткани.

Вследствие травмы мягких тканей

Растрескивание надкостницы приводит к повреждению периостального кровотока и, в особенности, к повреждению A. nutricia, которая играет решающую роль в кровоснабжении кости. Расслаивание надкостницы может возникнуть вследствие смещения фрагментов перелома и/или как результат неправильных хирургических действий.

Вследствие контакта с имплантатом

Контакт между имплантатом и костью в любом случае приводит к повреждению ее радиальной перфузии (рис. 1.34) (Rhinelander and Wilson 1982). Gunstetal. (1979) продемонстрировали зависимость повреждения кровоснабжения от контакта с имплантатом, используя метод Luethi et al. (1982), который был разработан для определения зоны контактаимплан-тата (пластины)костью.

Рис. 1.34 Кровоснабжение, перестройка костной ткани и зона остеопороза под пластиной,

А Нарушенное кровоснабжение вследствие давления имплантата.

B Перестройка костной ткани начинается в ограниченной зоне некроза с интактным кровоснабжением и распространяется по направлению к имплантату.

С Участки нормальной кости и зоны перестройки костной ткани, где определяется временный остеопороз. Этот „ранний временный остеопороз" является признаком перестройки гаверсовых каналов с гаверсовыми пластинками (гаверсовой системы).

1.3.2.6 Реакция на нарушение кровоснабжения

Нарушение кортикального кровоснабжения имеет два важных последствия: во-первых, возникает некроз и, во-вторых, затем происходит новообразование кости (рис. 1.34). Новообразование начинается в пределах прилежащей живой кости и распространяется в сторону некротически измененной костной ткани, иногда приводя к удалению и замещению нежизнеспособных участков.

Кровоснабжение сначала нарушается вследствие смещения фрагментов перелома и в результате явлениякавитации во время перелома (см. рис. 1.2). Манипуляции, связанные с репозицией без хирургического вмешательства, могут еще более ухудшить кровоснабжение. Использование наружной шины также ухудшает кровоснабжение, поскольку мягкие ткани остаются без движения. Выделение отломков для открытой репозиции в ходе операции также нарушает циркуляцию. Внутренние шины (например, пластины или гвозди) ухудшают кровоснабжение вследствие их контакта с костью, где они сдавливают кровеносные сосуды, которые входят в или выходят из костной ткани (рис. 1.34). Из экспериментов Rhinelander (1978) и Ganz and Brennwald (1975) мы знаем, что если перелом стабилизирован, то кровообращение в костномозговом канале может восстановиться в течение одной-двух недель. Что касается кровоснабжения, то хирург должен взвесить негативные (операционная травма) и позитивные (более быстрое восстановление кровоснабжения) эффекты различных типов лечения.

Ранний временный остеопороз вблизи имплантатов

Uhthoff et al. (1971), Coutts et al. (1976), Moyen et al. (1978) и Matter et al. (1974) сообщали об изменениях в структуре длинных костей при наличии пластины. Остеопороз был объяснен действием "закона Вольффа" (Wolff 1893,1986), согласно которому кость приспосабливает свою структуру к конкретным механическим условиям нагрузки. Работа Woo et al. (1976) и Claes et al. (1980), как кажется, подтверждает теорию остеопороза, как „защиты от напряжения" в кости, фиксированной пластиной. Tonino etal. (1976) и Taytonet al.(1982) предложили использовать пластины из мягкой пластмассы или углерода для того, что свести к минимуму проявления остеопороза.

Возможное влияние статической компрессии и напряжения на кортикальный слой живой кости было изучено Matter с соавт. (1976). Они не обнаружили статистически достоверного влияния достаточно мощных компрессирующих сил, приложенных к кости, на скорость ее регенерации.

На основе современных экспериментов можно сделать три заключения: ранний временный остеопороз наблюдается в присутствии практически всех имплантатов, включая интрамедуллярные гвозди (рис. 1.35), стержни наружного фиксатора (Pfister et al. 1983), и т.д.

Ранний временный остеопороз тесно взаимосвязан с сосудистыми нарушениями, вызванными операцией и наличием имплантата (т.е. контакта имплантат-кость). На развитие раннего временного остеопороза не оказываает влияния ни один из возможных методов разгрузки (Gautier et al. 1986).

Рис.1.35 Кровоснабжение, перестройка костной ткани и остеопороз вокруг интрамедуллярного гвоздя,

A Нарушение кровоснабжения: крестообразная зона вокруг интрамедуллярного гвоздя.

B Изначальная перестройка в демаркационной зоне между некротизированной и живой костной тканью. Поперечное сечение с окрашенными in vivo дисульфином кровеносными сосудами (с увеличением). В пределах демаркационной зоны видны расширенные канальцы остеонов. Они представляют собой остеоны в процессе перестройки с наличием временного остеопороза.

С Перестройка костной ткани в зоне некроза, распространяющаяся по направлению к гвоздю.

D Скорость и направление процессов перестройки костной ткани определяли при помощи „полихромкой последовательной окраски флюорохромом" (Rahn et al. 1980).

3. Пластмассовые пластины, которые были мягче, чем стандартные металлические пластины, приводили к большему остеопорозу, в противоположность ожиданиям, основанным на механистической теории защиты от напряжения (Gautier et al. 1986). Более мягкая пластина может еще плотнее прилегать к кости и приводить к увеличению сосудистой травмы.

Ранний временный остеопороз исчезает через три месяца после операции, а спустя один год на поперечном сечении кости признаки его не определяются. Некоторые авторы утверждают, что поздние изменения кости вследствие ее разгрузки имплантатом могут привести к рефрактурам (Kessler et al. 1988; Leuet al. 1989). Используя цифровую компьютерную томографию, Cordey et al. (1985) изучал костную структуру большеберцовой кости после удаления пластин у 70 пациентов. Они наблюдали лишь незначительные изменения в костной структуре (менее чем в 20%случаев), причем для получения результатов исследовали и плотность, и форму кости. К моменту удаления пластины онане оказывалась плотно прижатой к кости. Таким образом, шунтирование усилий между костью и пластиной посредством трения со временем терялось, и пластина выполняла функцию разгрузки только в пиковых ситуациях.

Проверяя гипотезу о том, что контакт имплантата с костью и возникающее вследствие этого нарушение кровоснабжения являются причиной раннего остеопороза, Jorger et al. (1987) и Vattolo et al. (1986) изучали немедленные изменения в кровообращении (рис. 1.36) и остеопороз через 3 месяца после имплантации обычных и специальных пластин с бороздками (рис. 1.37). Бороздки уменьшали степень повреждения сосудов и, соответственно, остеопороза, который сопровождается перестройкой гаверсовой системы.

Как известно, при вмешательствах на костях наличие достаточных источников их питания обеспечивает сохранение пластических свойств костной ткани. Особенно важную роль решение этой проблемы играет при свободной и несвободной пересадке кровоснабжаемых участков тканей.

В нормальных условиях любой достаточно крупный костный фрагмент имеет, как правило, смешанный тип питания, который существенно изменяется при формировании сложных лоскутов, включающих кость. При этом определенные источники питания становятся доминирующими или даже единственными.

В связи. с тем, что костная ткань имеет сравнительно низкий уровень метаболизма, ее жизнеспособность может быть сохранена даже при значительном сокращении числа источников питания. С позиций пластической хирургии, целесообразно выделить б основных типов кровоснабжения костных лоскутов. Один из них предполагает наличие внутреннего источника питания (диафизарные питающие артерии), три — наружные источники (ветви мышечных, межмышечных и магистральных сосудов) и два -
сочетание Внутренних и наружных сосудов.

Тип 1 характеризуется внутренним осевым кровоснабжением диафизарного участка кости за счет диафизарной питающей артерии. Последняя может обеспечить жизнеспособность значительного по величине участка кости. Однако в пластической хирургии использование костных лоскутов только с этим типом питания пока не описано.

Тип 2 отличается наружным питанием участка кости за счет сегментарных ветвей расположенной рядом магистральной артерии.
Выделенный вместе с сосудистым пучком костный фрагмент может иметь значительную величину и быть пересажен в виде островкового или свободного комплекса тканей. В условиях клиники костные фрагменты с этим типом питания могут быть взяты в средней и нижней третях костей предплечья на лучевом или локтевом сосудистых пучках, а также на протяжении некоторых участков диафиза малоберцовой кости.

Тип 3 характерен для участков, к которым прикрепляются мышцы. Конечные ветви мышечных артерий могут обеспечить наружное питание костного фрагмента, выделенного на мышечном лоскуте. Несмотря на весьма ограниченные возможности его перемещения, этот вариант костной пластики применяют при ложных суставах шейки бедренной кости, ладьевидной кости.

Тип 4 имеется в участках любой трубчатой кости, расположенных вне зоны прикрепления мышц, на протяжении которых периостальная сосудистая сеть формируется за счет наружных источников — конечных ветвей многочисленных мелких межмышечных и мышечных сосудов. Такие костные фрагменты не могут быть выделены на одном сосудистом пучке и сохраняют свое питание, лишь сохранив свою связь с лоскутом надкостницы и окружающими тканями. В клинике они используются редко.

Тип 5 встречается при выделении комплексов тканей в эпиметафизар-ной части трубчатой кости. Для него характерно смешанное питание за счет наличия относительно крупных ветвей магистральных артерий, которые, подходя к кости, отдают мелкие внут-рикостные питающие сосуды и периостальные ветви. Типичным примером практического использования этого варианта кровоснабжения костного фрагмента может служить пересадка проксимального отдела малоберцовой кости на верхней нисходящей коленной артерии либо на ветвях переднего большеберцового сосудистого пучка.

Тип 6 также смешанный. Его характеризует сочетание внутреннего источника питания диафизарной части кости (за счет питающей артерии) и наружных источников — ветвей магистральной артерии и(или) мышечных ветвей. В отличие от костных лоскутов с питанием по типу 5 здесь могут быть взяты крупные участки диафизарной кости на сосудистой ножке значительной длины, которая может быть использована для реконструкции сосудистого русла поврежденной конечности. Пример этому — пересадка малоберцовой кости на малоберцовом сосудистом пучке, пересадка участков лучевой кости на лучевом сосудистом пучке.

Таким образом, на протяжении каждой длинной трубчатой кости в зависимости от расположения сосудистых пучков, мест прикрепления мышц, сухожилий, а также в соответствии с особенностями индивидуальной анатомии имеется свое неповторимое сочетание перечисленных выше источников питания (типов кровоснабжения). Поэтому, с позиций нормальной анатомии, их классификация выглядит искусственной. Однако при выделении лоскутов, включающих кость, число источников питания, как правило, уменьшается. Один-два из них остаются доминирующими, а иногда — единственными.

Хирурги, выделяя и пересаживая комплексы тканей, уже заранее с учетом многих факторов должны спланировать и сохранение источников кровоснабжения включаемой в лоскут кости (наружные, внутренние, их сочетание). В чем большей степени будет сохраняться кровообращение в пересаженном костном фрагменте, тем более высокий уровень репаративиых процессов будет обеспечен в послеоперационном периоде.

Представленная классификация, вероятно, может быть расширена за счет других возможных сочетаний уже описанных типов кровоснабжения участков костей. Однако главное заключается в другом. При данном подходе формирование костного лоскута на сосудистом пучке в виде островкового или свободного возможно для типов питания костных фрагментов 1, 2, 5, и6 и исключено при типах 3 и 4. В первом случае хирург имеет относительно большую свободу действий, что позволяет ему осуществлять пересадку костных комплексов тканей в любую область человеческого тела с восстановлением их кровообращения путем наложения микрососудистых анастомозов. Следует также отметить, что типы питания 1 и б могли бы быть объединены, тем более, что тип 1 как самостоятельный в клинической практике пока не использовался. Однако большие возможности диафизарных питающих артерий, несомненно, будут использованы хирургами в будущем.

Значительно меньше возможностей для перемещения кровоснабжаемых участков костей имеется при типах кровоснабжения 3 и 4. Эти фрагменты могут перемещаться лишь на относительно малое расстояние на широкой тканевой ножке.

Таким образом, предлагаемая классификация типов кровоснабжения костных комплексов тканей имеет прикладное значение и предназначена прежде-всего для того, чтобы вооружить пластических хирургов пониманием принципиальных особенностей конкретной пластической операции.

14831 0

Общая характеристика

Несмотря на то, что уровень метаболизма в костной ткани относительно низок, сохранение достаточных источников кровоснабжения играет при костно-пластических операциях исключительно важную роль. Это требует от хирурга знания общих и частных закономерностей кровоснабжения конкретных элементов скелета.

Всего могут быть выделены три источника питания трубчатой кости:
1) питающие диафизарные артерии;
2) питающие эпиметафизарные сосуды;
3) мышечно-надкостничные сосуды.
Питающие диафизарные артерии являются конечными ветвями крупных артериальных стволов.

Как правило, они входят в кость на ее поверхности, обращенной к сосудистому пучку в средней трети диафиза и несколько проксимальнее (табл. 2.4.1) и образуют в кортикальной части канал, идущий в проксимальном или дистальном направлении.

Таблица 2.4.1. Характеристика диафизарчых питающих артерий длинных трубчатых костей


Питающая артерия образует мощную внутрикостную сосудистую сеть, питающую костный мозг и внутреннюю часть кортикальной пластинки (рис. 2.4.1).


Рис. 2.4.1. Схема кровоснабжения трубчатой кости на ее продольном сечении.


Наличие этой внутрикостной сосудистой сети может обеспечить достаточное питание практически всего диафизарного отдела трубчатой кости.

В зоне метафиза внутрикостная диафизар-ная сосудистая сеть соединяется с сетью, образованной эпи- и метафизарными более мелкими питающими артериями (рис.2.4.2).



Рис. 2.4.2. Схема взаимосвязей мышечно-нериостальных и эндостальных источников питания кортикальной кости.


На поверхности любой трубчатой кости имеется разветвленная сосудистая сеть, образованная мелкими сосудами. Основными источниками ее формирования являются: 1) конечные разветвления мышечных артерий; 2) межмышечные сосуды; 3) сегментарные артерии, исходящие непосредственно из магистральных артерий и их ветвей. В связи с малым диаметром этих сосудов они могут обеспечивать питание лишь относительно небольших участков кости.

Микроангиографические исследования показали, что периостальная сосудистая сеть обеспечивает питание преимущественно наружной части кортикального слоя кости, в то время как питающая артерия снабжает костный мозг и внутреннюю часть кортикальной пластинки. Однако клиническая практика свидетельствует о том, что и внутрикостное, и периостальное сосудистые сплетения способны самостоятельно обеспечить жизнеспособность компактной кости на всю ее толщину.

Венозный отток от трубчатых костей обеспечивается через систему сопутствующих артериям вен, которые в длинной трубчатой кости образуют центральный венозный синус. Кровь из последнего удаляется через вены, сопутствующие артериальным сосудам, участвующим в образовании пери- и эндостальной сосудистой сети.

Типы кровоснабжения фрагментов костей с позиций пластической хирургии

Как известно, при вмешательствах на костях наличие достаточных источников их питания обеспечивает сохранение пластических свойств костной ткани. Особенно важную роль решение этой проблемы играет при свободной и несвободной пересадке кровоснабжаемых участков тканей.

В нормальных условиях любой достаточно крупный костный фрагмент имеет, как правило, смешанный тип питания, который существенно изменяется при формировании сложных лоскутов, включающих кость. При этом определенные источники питания становятся доминирующими или даже единственными.

В связи с тем, что костная ткань имеет сравнительно низкий уровень метаболизма, ее жизнеспособность может быть сохранена даже при значительном сокращении числа источников питания. С позиций пластической хирургии, целесообразно выделить 6 основных типов кровоснабжения костных лоскутов. Один из них предполагает наличие внутреннего источника питания (диафизарные питающие артерии), три — наружные источники (ветви мышечных, межмышечных и магистральных сосудов) и два — сочетание Внутренних и наружных сосудов (рис. 2.4.3).



Рис. 2.4.3. Схематическое изображение типов кровоснабжения участков кортикальной кости (объяснение в тексте)
.


Тип 1 (рис. 2.4.3, а) характеризуется внутренним осевым кровоснабжением диафизарного участка кости за счет диафизарной питающей артерии. Последняя может обеспечить жизнеспособность значительного по величине участка кости. Однако в пластической хирургии использование костных лоскутов только с этим типом питания пока не описано.

Тип 2 (рис. 2.4.3, б) отличается наружным питанием участка кости за счет сегментарных ветвей расположенной рядом магистральной артерии.

Выделенный вместе с сосудистым пучком костный фрагмент может иметь значительную величину и быть пересажен в виде островкового или свободного комплекса тканей. В условиях клиники костные фрагменты с этим типом питания могут быть взяты в средней и нижней третях костей предплечья на лучевом или локтевом сосудистых пучках, а также на протяжении некоторых участков диафиза малоберцовой кости.

Тип 3 (рис. 2.4.3, в) характерен для участков, к которым прикрепляются мышцы. Конечные ветви мышечных артерий могут обеспечить наружное питание костного фрагмента, выделенного на мышечном лоскуте. Несмотря на весьма ограниченные возможности его перемещения, этот вариант костной пластики применяют при ложных суставах шейки бедренной кости, ладьевидной кости.

Тип 4 (рис. 2.4.3, г) имеется в участках любой трубчатой кости, расположенных вне зоны прикрепления мышц, на протяжении которых периостальная сосудистая сеть формируется за счет наружных источников — конечных ветвей многочисленных мелких межмышечных и мышечных сосудов. Такие костные фрагменты не могут быть выделены на одном сосудистом пучке и сохраняют свое питание, лишь сохранив свою связь с лоскутом надкостницы и окружающими тканями. В клинике они используются редко.

Тип 5 (рис. 2.4.3, д) встречается при выделении комплексов тканей в эпиметафизарной части трубчатой кости. Для него характерно смешанное питание за счет наличия относительно крупных ветвей магистральных артерий, которые, подходя к кости, отдают мелкие внутрикостные питающие сосуды и периостальные ветви. Типичным примером практического использования этого варианта кровоснабжения костного фрагмента может служить пересадка проксимального отдела малоберцовой кости на верхней нисходящей коленной артерии либо на ветвях переднего большеберцового сосудистого пучка.

Тип 6 (рис. 2.4.3, е) также смешанный. Его характеризует сочетание внутреннего источника питания диафизарной части кости (за счет питающей артерии) и наружных источников — ветвей магистральной артерии и(или) мышечных ветвей. В отличие от костных лоскутов с питанием по типу 5 здесь могут быть взяты крупные участки диафизарной кости на сосудистой ножке значительной длины, которая может быть использована для реконструкции сосудистого русла поврежденной конечности. Пример этому — пересадка малоберцовой кости на малоберцовом сосудистом пучке, пересадка участков лучевой кости на лучевом сосудистом пучке.

Таким образом, на протяжении каждой длинной трубчатой кости в зависимости от расположения сосудистых пучков, мест прикрепления мышц, сухожилий, а также в соответствии с особенностями индивидуальной анатомии имеется свое неповторимое сочетание перечисленных выше источников питания (типов кровоснабжения). Поэтому, с позиций нормальной анатомии, их классификация выглядит искусственной. Однако при выделении лоскутов, включающих кость, число источников питания, как правило, уменьшается. Один-два из них остаются доминирующими, а иногда — единственными.

Хирурги, выделяя и пересаживая комплексы тканей, уже заранее с учетом многих факторов должны спланировать и сохранение источников кровоснабжения включаемой в лоскут кости (наружные, внутренние, их сочетание). В чем большей степени будет сохраняться кровообращение в пересаженном костном фрагменте, тем более высокий уровень репаративиых процессов будет обеспечен в послеоперационном периоде.

Представленная классификация, вероятно, может быть расширена за счет других возможных сочетаний уже описанных типов кровоснабжения участков костей. Однако главное заключается в другом. При данном подходе формирование костного лоскута на сосудистом пучке в виде островкового или свободного возможно для типов питания костных фрагментов 1, 2, 5, и 6 и исключено при типах 3 и 4.

В первом случае хирург имеет относительно большую свободу действий, что позволяет ему осуществлять пересадку костных комплексов тканей в любую область человеческого тела с восстановлением их кровообращения путем наложения микрососудистых анастомозов. Следует также отметить, что типы питания 1 и б могли бы быть объединены, тем более, что тип 1 как самостоятельный в клинической практике пока не использовался. Однако большие возможности диафизарных питающих артерий, несомненно, будут использованы хирургами в будущем.

Значительно меньше возможностей для перемещения кровоснабжаемых участков костей имеется при типах кровоснабжения 3 и 4. Эти фрагменты могут перемещаться лишь на относительно малое расстояние на широкой тканевой ножке.

Таким образом, предлагаемая классификация типов кровоснабжения костных комплексов тканей имеет прикладное значение и предназначена прежде-всего для того, чтобы вооружить пластических хирургов пониманием принципиальных особенностей конкретной пластической операции.

Обильное кровоснабжение длинных трубчатых костей , необходимое для поддержания высокой концентрации парциального кислорода для нормальной функции костных клеток, осуществляется с помощью питающих артерий и вен, сосудов метафиза и надкостницы. Диаметр питающих вен меньше, чем у соответствующих им артерий, т.е. часть крови оттекает из кости по другой сосудистой системе. Считается, что в норме около двух третей кортикального слоя кости снабжаются кровью из питающих артерий. Сосуды надкостницы вносят значительный вклад в кровоснабжение Гаверсовых систем только на определенных участках кости. Следует подчеркнуть, что значимость последнего типа сосудов резко возрастает при травмах, переломах и операциях, вызывающих глубинное повреждение питающих артерий и вен. Это необходимо учитывать при лечении переломов и проведении различных ортопедических вмешательств (Мюллер и др., 1996).

Микроциркуляторное русло кости тесно связано с Гаверсовой системой костной ткани и локализуется внутри канала остеона. Следует подчеркнуть, что образование полноценных остеонов начинается как раз с формирования кровеносного сосуда, т.к. процессы пролиферации и дифференцировки остеобластов в остеокласты с формированием костного матрикса и его минерализации невозможны без поддержания высокого парциального давления кислорода в тканевой жидкости и доставки необходимых питательных веществ. Выполнить это условие можно только в том случае, если расстояние от сосуда до остеобласта не превышает 100-200 мкм. Капилляры врастают в резорбированную остеокластами кость. Затем в апикальной части сосуда происходит пролиферация и дифференцировка остеогенных прекурсоров в остеобласты, которые формируют новый остеон. В связи с этим, сложность строения сети кровеносных сосудов кости заключается в том, что она в течение жизни постоянно обновляется путем образования новых структур и отмирания (за счет остеолизиса) старых. При этом сосуды Гаверсовой системы сохраняют связь с сосудами костного мозга и надкостницы. Ее артерии и венулы, как правило, ориентированы параллельно оси кости, могут идти в виде одиночных капилляров или образовывать сеть многочисленных сосудов и нервных волокон. Соединение (анастомозы) между параллельными сосудами проходят, в так называемых, Фолькмановских каналах (Хэм, Кормак, 1983; Омельянченко и др., 1997).

(Омельянченко и др., 1997)


Так как сосуды Гаверсовой системы идут параллельно друг другу, то при травме, переломе, введении штифтов, гвоздей, пластин, спиц наблюдается нарушение кровотока в зоне, расположенной между двумя ближайшими неповрежденными анастомозами, что приводит к развитию некроза ткани и частому присоединению инфекционных процессов.

А.В. Карпов, В.П. Шахов
Системы внешней фиксации и регуляторные механизмы оптимальной биомеханики

Структурной единицей кости является остеон или гаверсова система, т.е. система костных пластинок, концентрически расположенных вокруг канала (гаверсова канала ) содержащего сосуды и нервы. Промежутки между остеонами заполнены промежуточными или вставочными (интерстициальными) пластинками.

Из остеонов состоят более крупные элементы кости, видимые уже невооруженным глазом на распиле – перекладины костного в-ва или балки. Из этих перекладин складывается двоякого рода костное в-во: если перекладины лежат плотно, то получается плотное, компактное в-во. Если перекладины лежат рыхло, образуя между собой костные ячейки наподобие губки, то получается губчатое в-во. Строение губчатого вещества обеспечивает максимальную механическую прочность при наименьшей затрате материала в местах, где при большем объеме требуется сохранить легкость и вместе с тем прочность. Перекладины костного вещества располагаются не беспорядочно, а по направлению линий сил растяжения и сжатия, действующих на кость. Направление костных пластинок двух соседних костей представляет одну линию, прерываемую в суставах.

Трубчатые кости построены из компактного и губчатого в-ва. Компактное в-о преобладает в диафизах костей, а губчатое в эпифизах, где оно покрыто тонким слоем компактного в-ва. Снаружи кости покрыты наружным слоем общих или генеральных пластинок, а изнутри со стороны костномозговой полости – внутренним слоем общих или генеральных пластинок.

Губчатые кости построены в основном из губчатого в-ва и тонкого слоя компактного, расположенного по периферии. В покровных костях свода черепа губчатое в-во расположено между двумя пластинами (костными), компактного в-ва (наружной и внутренней). Последнюю называют также стеклянной, т.к. она ломается при повреждениях черепа легче, чем наружная. В губчатом в-ве проходят многочисленные вены.

Костные ячейки губчатого в-ва и костномозговая полость трубчатых костей содержат костный мозг . Различают красный костный мозг с преобладанием кроветворной ткани и желтый – с преобладанием жировой ткани. Красный костный мозг сохраняется в течении всей жизни в плоских костях (ребрах, грудине, костях черепа, таза), а также в позвонках и эпифизах трубчатых костей. С возрастом кроветворная ткань в полостях трубчатых костей заменяется жировой и костный мозг в них становится желтым.

Снаружи кость покрыта надкостницей, а в местах соединения с костями – суставным хрящом. Костномозговой канал, находящийся в толще трубчатых костей, выстлан соединительно-тканной оболочкой – эндостом.

Надкостница представляет собой соединительнотканное образование, состоящие из двух слоев: внутреннего (камбиального, росткового) и наружного (волокнистого). Она богата кровеносными и лимфатическими сосудами и нервами, которые продолжаются в толщу кости. С костью надкостница связана посредством соединительно-тканных волокон, проникающих в кость. Надкостница является источником роста кости в толщину и участвует в кровоснабжении кости. За счет надкостницы кость восстанавливается после переломов. В старческом возрасте надкостница становится волокнистой, ее способность вырабатывать костное в-во ослабевает. Поэтому переломы костей в старческом возрасте заживают с трудом.

Кровоснабжение и иннервация костей. Кровоснабжение костей осуществляется из ближайших артерий. В надкостнице сосуды образуют сеть, тонкие артериальные ветви которой проникают через питательные отверстия кости, проходят в питательных каналах, каналах остеонов, достигая капиллярной сети костного мозга. Капилляры костного мозга продолжаются в широкие синусы, от которых берут начало венозные сосуды кости, по которым венозная кровь оттекает в обратном направлении.

В иннервации костей принимают участие ветви ближайших нервов, образующие в надкостнице сплетения. Одна часть волокон этого сплетения заканчивается в надкостнице, другая, сопровождая кровеносные сосуды проходит через питательные каналы, каналы остеонов и достигает костного мозга.

Таким образом, в понятие кости как органа входит костная ткань, образующая главную массу кости, а также костный мозг, надкостница, суставной хрящ, многочисленные нервы и сосуды.