Водородная, или термоядерная бомба стала краеугольным камнем гонки вооружений между США и СССР. Две сверхдержавы несколько лет спорили о том, кто станет первым обладателем нового вида разрушительного оружия.

Проект термоядерного оружия

В начале холодной войны испытание водородной бомбы было для руководства СССР важнейшим аргументом в борьбе с США. В Москве хотели достичь ядерного паритета с Вашингтоном и вкладывали в гонку вооружений огромные средства. Впрочем, работы по созданию водородной бомбы начались не благодаря щедрому финансированию, а из-за донесений законспирированной агентуры в Америке. В 1945 года в Кремле узнали о том, что в США идет подготовка к созданию нового оружия. Это была сверхбомба, проект которой получил название Super.

Источником ценной информации был Клаус Фукс - сотрудник Лос-Аламосской национальной лаборатории США. Он передал Советскому Союзу конкретные сведения, которые касались секретных американских разработок сверхбомбы. К 1950 году проект Super был выброшен в корзину, так как западным ученым стало ясно, что такая схема нового оружия не может быть реализована. Руководителем этой программы был Эдвард Теллер.

В 1946 году Клаус Фукс и Джон развили идеи проекта Super и запатентовали собственную систему. Принципиально новым в ней был принцип радиоактивной имплозии. В СССР эту схему начали рассматривать несколько позже - в 1948 году. В целом можно сказать, что на стартовом этапе полностью базировался на американских информации, полученной разведкой. Но, продолжая исследования уже на основе этих материалов, советские ученые заметно опередили своих западных коллег, то позволило СССР получить сначала первую, а потом и самую мощную термоядерную бомбу.

17 декабря 1945 года на заседании специального комитета, созданного при Совете Народных комиссаров СССР, физики-ядерщики Яков Зельдович, Исаак Померанчук и Юлий Хартион выступили с докладом «Использование ядерной энергии легких элементов». В этом документе рассматривалась возможность использования бомбы с дейтерием. Данное выступление стало началом советской ядерной программы.

В 1946 году теоретические исследования тали проводиться в Институте химической физики. Первые результаты этой работы были обсуждены на одном из заседаний Научно-технического совета в Первом главном управлении. Еще через два года Лаврентий Берия поручил Курчатову и Харитону проанализировать материалы о системе фон Неймана, которые были доставлены в Советский Союз благодаря законспирированной агентуре на западе. Данные из этих документов дали дополнительный импульс исследованиям, благодаря которым родился проект РДС-6.

«Иви Майк» и «Кастл Браво»

1 ноября 1952 года американцы испытали первое в мире термоядерное Это была еще не бомба, но уже ее важнейшая составная часть. Подрыв произошел на атолле Энивотек, в Тихом океане. и Станислав Улам (каждый из них фактически создатель водородной бомбы) незадолго до того разработали двухступенчатую конструкцию, которую американцы и опробовали. Устройство не могло использоваться в качестве оружия, так как производился с помощью дейтерия. Кроме того, оно отличалось огромным весом и габаритами. Такой снаряд просто нельзя было сбросить с самолета.

Испытание первой водородной бомбы было проведено советскими учеными. После того как в США узнали об успешном использовании РДС-6с, стало ясно что необходимо как можно быстрее сократить отставание от русских в гонке вооружений. Американское испытание прошло 1 марта 1954 года. В качестве полигона был выбран атолл Бикини на Маршалловых островах. Тихоокеанские архипелаги выбирались не случайно. Здесь почти не было населения (а те немногие люди, которые жили на близлежащих островах, были выселена накануне эксперимента).

Самый разрушительный взрыв водородной бомбы американцев стал известен как «Кастл Браво». Мощность заряда оказалась в 2,5 раза выше предполагаемой. Взрыв привел к радиационному заражению значительной площади (множества островов и Тихого океана), что привело к скандалу и пересмотру ядерной программы.

Разработка РДС-6с

Проект первой советской термоядерной бомбы получил название РДС-6с. План был написан выдающимся физиком Андреем Сахаровым. В 1950 году Совет министров СССР постановил сосредоточить работы над созданием нового оружия в КБ-11. Согласно этому решению, группа ученых под руководством Игоря Тамма отправилась в закрытый Арзамас-16.

Специально для этого грандиозного проекта был подготовлен Семипалатинский полигон. Перед тем как началось испытание водородной бомбы, там были установлены многочисленные измерительные, киносъемочные и регистрирующие приборы. Кроме того, по поручению ученых там появились почти две тысячи индикаторов. Область, которую затронуло испытание водородной бомбы, включала в себя 190 сооружений.

Семипалатинский эксперимент был уникальным не только из-за нового вида оружия. Использовались уникальные заборники, предназначенные для химических и радиоактивных проб. Их могла открыть только мощная ударная волна. Регистрирующие и киносъемочные приборы были установлены в специально подготовленных укрепленных сооружениях на поверхности и в подземных бункерах.

Alarm Clock

Еще в 1946 году Эдвард Теллер, работавший в США, разработал прототип РДС-6с. Он получил название Alarm Clock. Первоначально проект этого устройства был предложен как альтернатива Super. В апреле 1947 года в лаборатории в Лос-Аламосе началась целая серия экспериментов, предназначенная для исследования природы термоядерных принципов.

От Alarm Clock ученые ожидали наибольшего энерговыделения. Осенью Теллер решил использовать в качестве горючего для устройства дейтерид лития. Исследователи еще не использовали это вещество, но ожидали, что оно позволит повысить эффективность Интересно, что Теллер уже тогда отмечал в своих служебных записках зависимость ядерной программы от дальнейшего развития компьютеров. Эта техника была необходима ученым для более точных и сложных расчетов.

Alarm Clock и РДС-6с имели много общего, но многим и отличались. Американский вариант не был столь практичным как советский из-за своей величины. Большие размеры он унаследовал от проекта Super. В конце концов, американцам пришлось отказаться от этой разработки. Последние исследования прошли в 1954 году, после чего стало ясно, что проект нерентабелен.

Взрыв первой термоядерной бомбы

Первое в человеческой истории испытание водородной бомбы произошло 12 августа 1953 года. Утром на горизонте появилась ярчайшая вспышка, которая слепила даже через защитные очки. Взрыв РДС-6с оказался в 20 раз мощнее атомной бомбы. Эксперимент был признан удачным. Ученые смогли достичь важного технологического прорыва. Впервые в качестве горючего был использован гидрид лития. В радиусе 4 километров от эпицентра взрыва волной уничтожило все постройки.

Последующие испытания водородной бомбы в СССР основывались на опыте, полученном при использовании РДС-6с. Это разрушительное оружие было не только самым мощным. Важным достоинством бомбы являлась ее компактность. Снаряд помещался в бомбардировщик Ту-16. Успех позволил советским ученым опередить американцев. В США в это время было термоядерное устройство, размером с дом. Оно было нетранспортабельным.

Когда в Москве заявили, что водородная бомба СССР уже готова, в Вашингтоне оспорили эту информацию. Главным аргументом американцев был тот факт, что термоядерная бомба должна быть изготовлена по схеме Теллера-Улама. В ее основе лежал принцип радиационной имплозии. Этот проект будет реализован в СССР через два года, в 1955-м.

В создание РДС-6с наибольший вклад внес физик Андрей Сахаров. Водородная бомба была его детищем - именно он предложил революционные те технические решения, которые позволили успешно завершить испытания на Семипалатинском полигоне. Молодой Сахаров сразу же стал академиком в АН СССР, Героем Социалистического Труда и лауреатом Сталинской премии. Наград и медалей удостоились и другие ученые: Юлий Харитон, Кирилл Щелкин, Яков Зельдович, Николай Духов и т. д. В 1953 испытание водородной бомбы показало, что советская наука может преодолеть то, что еще совсем недавно казалось выдумкой и фантастикой. Поэтому сразу после успешного взрыва РДС-6с началась разработка еще более мощных снарядов.

РДС-37

20 ноября 1955 года прошли очередные испытания водородной бомбы в СССР. На этот раз она была двухступенчатой и соответствовала схеме Теллера-Улама. Бомбу РДС-37 собирались сбросить с самолета. Однако, когда он поднялся в воздух, стало ясно что испытания придется проводить при нештатной ситуации. Вопреки прогнозам синоптиков, заметно испортилась погода, из-за чего полигон накрыла плотная облачность.

Впервые специалисты оказались вынуждены сажать самолет с термоядерной бомбой на борту. Некоторое время на Центральном командном пункте шла дискуссия о том, что делать дальше. Рассматривалось предложение сбросить бомбу в горах неподалеку, однако этот вариант был отклонен, как слишком рискованный. Меж тем самолет продолжал кружить рядом с полигоном, вырабатывая горючее.

Решающее слово получили Зельдович и Сахаров. Водородная бомба, взорвавшаяся не на полигоне, привела бы к катастрофе. Ученые понимали всю степень риска и собственной ответственности, и все-таки дали письменное подтверждение того, что посадка самолета будет безопасной. Наконец, командир экипажа Ту-16 Федор Головашко получил команду приземляться. Посадка была очень плавной. Летчики проявили все свои умения и не запаниковали в критической ситуации. Маневр был идеальным. В Центральном командном пункте облегченно выдохнули.

Создатель водородной бомбы Сахаров и его команда перенесли испытания. Вторая попытка была намечена на 22 ноября. В этот день все прошло без внештатных ситуаций. Бомбу сбросили с высоты в 12 километров. Пока снаряд падал, самолет успел удалиться на безопасное расстояние от эпицентра взрыва. Через несколько минут ядерный гриб достиг высоты 14 километров, а его диаметр - 30 километров.

Взрыв не обошелся без трагических происшествий. От ударной волны на расстоянии в 200 километров выбивало стекла, из-за чего пострадало несколько человек. Также погибла девочка, жившая в соседнем ауле, на которую обвалился потолок. Еще одной жертвой стал солдат, находившийся в специальном выжидательном районе. Солдата засыпало в землянке, и он умер от удушья до того, как товарищи смогли вытащить его.

Разработка «Царь-бомбы»

В 1954 году лучшие физики-ядерщики страны под руководством начали разработку мощнейшей в истории человечества термоядерной бомбы. В этом проекте также приняли участие Андрей Сахаров, Виктор Адамский, Юрий Бабаев, Юрий Смирнов, Юрий Трутнев и т. д. Благодаря своей мощности и размеру бомба стала известна как «Царь-бомба». Участники проекта позже вспоминали, что эта фраза появилась после знаменитого высказывания Хрущева о «Кузькиной матери» в ООН. Официально же проект назывался АН602.

За семь лет разработок бомба пережила несколько реинкарнаций. Сначала ученые планировали использовать компоненты из урана и реакцию Джекилла-Хайда, однако позже от этой идеи пришлось отказаться из-за опасности радиоактивного загрязнения.

Испытание на Новой Земле

На некоторое время проект «Царь-бомба» был заморожен, так как Хрущев собирался в США, а в холодной войне наступила короткая пауза. В 1961 году конфликт между странами разгорелся вновь и в Москве снова вспомнили о термоядерном оружии. Хрущев сообщил о предстоящих испытаниях в октябре 1961 года во время XXII съезда КПСС.

30 числа Ту-95В с бомбой на борту вылетел из Оленьи и направился на Новую Землю. Самолет добирался до цели два часа. Очередная советская водородная бомба была сброшена на высоте в 10,5 тысяч метров над ядерным полигоном «Сухой Нос». Снаряд взорвался еще в воздухе. Возник огненный шар, который достиг диаметра трех километров и почти коснулся земли. Согласно подсчетам, ученых сейсмическая волна от взрыва три раза пересекла планету. Удар чувствовался за тысячу километров, а все живое на расстоянии ста километров могло получить ожоги третьей степени (этого не произошло, так как данный район был необитаемым).

На тот момент наиболее мощная термоядерная бомба США в мощности уступала «Царю-бомбе» в четыре раза. Советское руководство было довольно результатом эксперимента. В Москве получили то, чего так хотели от очередной водородной бомбы. Испытание продемонстрировало, что у СССР есть оружие куда более мощное чем у США. В дальнейшем разрушительный рекорд «Царя-бомбы» так и не был побит. Самый мощный взрыв водородной бомбы стал важнейшей вехой в истории науки и холодной войны.

Термоядерное оружие других стран

Британские разработки водородной бомбы начались в 1954 году. Руководителем проекта был Уильям Пенней, который до того был участником манхэттенского проекта в США. Англичане обладали крохами информации о строении термоядерного оружия. Американские союзники не делились этой информацией. В Вашингтоне ссылались на закон об атомной энергии, принятый в 1946 году. Единственным исключением для британцев было разрешение вести наблюдения за испытаниями. Кроме того, они использовали самолеты для сбора проб, оставшихся после взрывов американских снарядов.

Сперва в Лондоне решили ограничиться созданием очень мощной атомной бомбы. Так начались испытания «Оранжевый вестник». В ходе них была сброшена самая мощная из не термоядерных бомб в истории человечества. Ее недостатком была чрезмерная дороговизна. 8 ноября 1957 года была испытана водородная бомба. История создания британского двухступенчатого устройства - это пример успешного прогресса в условиях отставания от двух споривших между собой сверхдержав.

В Китае водородная бомба появилась в 1967 году, во Франции - в 1968-м. Таким образом, в клубе стран-обладательниц термоядерного оружия сегодня пять государств. Спорными остаются сведения о водородной бомбе в Северной Корее. Глава КНДР заявлял, что его ученые смогли разработать такой снаряд. В ходе испытаний сейсмологи разных стран зафиксировали сейсмическую активность, вызванную ядерным взрывом. Но никакой конкретной информации о водородной бомбе в КНДР до сих пор нет.

Олег Лаврентьев

Родился Олег Лаврентьев в 1926 году во Пскове и был, наверное, вундеркиндом. Во всяком случае, прочитав в 7-м классе книгу «Введение в ядерную физику», он сразу загорелся «голубой мечтой работать в области ядерной энергетики». Но началась война. Олег пошел добровольцем на фронт. Победу встретил в Прибалтике, однако дальнейшую учебу опять пришлось отложить — солдат должен был продолжить срочную службу на только что освобожденном от японцев Южном Сахалине, в небольшом городке Поронайске.

В части была библиотека с технической литературой и вузовскими учебниками, да еще Олег на свое сержантское денежное довольствие подписался на журнал «Успехи физических наук». Идея водородной бомбы и управляемого термоядерного синтеза впервые зародилась у него в 1948 году, когда командование части, отличавшее способного сержанта, поручило ему подготовить для личного состава лекцию по атомной проблеме.
http://wsyachina.narod.ru/history/nucle ... /p03_a.gif http://wsyachina.narod.ru/history/nucle ... /p03_c.gif
Первая в мире водородная бомба — «РДС–6с»
— Имея несколько свободных дней на подготовку, я заново переосмыслил весь накопленный материал и нашел решение вопросов, над которыми бился не один год, — рассказывает Олег Александрович. — В 1949 году я за один год закончил 8-й, 9-й и 10-й классы вечерней школы рабочей молодежи и получил аттестат зрелости. В январе 1950 года американский президент, выступая перед Конгрессом, призвал ученых США к быстрейшему завершению работ над водородной бомбой. А я знал, как сделать бомбу.

Читаем медленно и осмысленно:
простой русский парень, находясь на действительной военной служде, за один год закончил 8-й, 9-й и 10-й классы вечерней школы рабочей молодежи. Имея доступ только к школьному учебнику физики, сам в одиночку, с помощью только своих мозгов, сделал то, над чем бились огромные коллективы высокооплачиваемых высоколобых еврейских ученых, с неограниченными средствами и возможностями по обе стороны океана.

Не имея никаких контактов с научным миром, солдат, в полном согласии с нормами тогдашней жизни, пишет письмо Сталину. "Я знаю секрет водородной бомбы!" Ответа нет. В ЦК ВКП(б). И вскоре командование части получило из Москвы предписание создать сержанту Лаврентьеву условия для работы. Ему выделили в штабе части охраняемую комнату, где он написал свои первые статьи. В июле 1950 года отослал их секретной почтой в отдел тяжелого машиностроения ЦК ВКП(б).

Лаврентьев описал принцип действия водородной бомбы, где в качестве горючего использовался твердый дейтерид лития. Такой выбор позволял сделать компактный заряд — вполне «по плечу» самолету. Заметим, что первая американская водородная бомба «Майк», испытанная двумя годами позже, в 1952-м, в качестве горючего содержала жидкий дейтерий, была высотой с дом и весила 82 тонны.

Олегу Александровичу принадлежит и идея использования управляемого термоядерного синтеза в народном хозяйстве для производства электроэнергии. Цепная реакция синтеза легких элементов должна идти здесь не по взрывному типу, как в бомбе, а медленно и регулируемо. Главный вопрос состоял в том, как изолировать разогретый до сотен миллионов градусов ионизированный газ, то есть плазму, от холодных стенок реактора. Никакой материал не выдержит такого жара. Сержант предложил на тот момент революционное решение — в качестве оболочки для высокотемпературной плазмы может выступать силовое поле. В первом варианте — электрическое.

В атмосфере секретности, которая окружала все, связанное с атомным оружием, Лаврентьев не только понимал устройство и принцип действия атомной бомбы, которая в его проекте служила запалом, инициирующим термоядерный взрыв, но и предвосхитил идею компактности, предложив в качестве горючего использовать твердый дейтерид лития-6.

Он не знал, что его послание весьма оперативно было направлено на рецензию тогда кандидату наук, а впоследствии академику и трижды Герою Социалистического Труда А.Сахарову, который уже в августе так отозвался об идее управляемого термоядерного синтеза: «…я считаю, что автор ставит весьма важную и не являющуюся безнадежной проблему… Я считаю необходимым детальное обсуждение проекта тов. Лаврентьева. Независимо от результатов обсуждения необходимо уже сейчас отметить творческую инициативу автора».

5 марта 1953 года умирает Сталин, 26 июня арестовывают и вскоре расстреливают Берию, а 12 августа 1953-го в СССР успешно испытывается термоядерный заряд, в котором используется дейтерид лития. Участники создания нового оружия получают государственные награды, звания и премии, зато Лаврентьев по совершенно непонятной для него причине в одночасье многое теряет.

— В университете мне не только перестали давать повышенную стипендию, но и «вывернули» плату за обучение за прошедший год, фактически оставив без средств к существованию, — рассказывает Олег Александрович. — Я пробился на прием к новому декану и в полной растерянности услышал: «Ваш благодетель умер. Чего же вы хотите?». Одновременно в ЛИПАНе был снят допуск, и я лишился постоянного пропуска в лабораторию, где по существующей ранее договоренности должен был проходить преддипломную практику, а впоследствии и работать. Если стипендию потом все-таки восстановили, то допуск в институт я так и не получил.
Другими словами, просто удалили с секретной вотчины. Оттеснили, отгородились от него секретностью. Наивный русский учёный! Он даже не мог себе представить, что так может быть.

      Пришлось пятикурснику писать дипломный проект вопреки всем вузовским канонам — без прохождения практики и без научного руководителя. Что ж, Олег взял за основу уже сделанные им теоретические работы по УТС, успешно защитился и получил диплом с отличием.

Однако на работу в ЛИПАН, единственное место в стране, где тогда занимались управляемым термоядерным синтезом, его не взяли.

      Олег не собирался отказываться от выбранной раз и навсегда «голубой мечты». По предложению Панасенкова, научного референта Хрущева и физика по образованию, он решил ехать в Харьков, в физико-технический институт, где должен был создаваться новый отдел плазменных исследований.
      Весной 1956 года молодой специалист приехал в Харьков с отчетом о теории электромагнитных ловушек, который он хотел показать директору института К.Синельникову.

Олег не знал, что еще до его приезда в Харьков Кириллу Дмитриевичу уже звонил кто-то из ЛИПАНовцев, предупреждая, что к нему едет «скандалист» и «автор путаных идей». Звонили и начальнику теоретического отдела института Александру Ахиезеру, порекомендовав работу Лаврентьева «зарубить».

    Но харьковчане не спешили с оценками. Ахиезер попросил по существу разобраться в работе молодых теоретиков Константина Степанова и Виталия Алексина. Независимо от них отчет читал и работавший с Синельниковым Борис Руткевич. Специалисты, не сговариваясь, дали работе положительную оценку.

Ну слава Богу! Влияние могущественной Московско-Арзамасской научной клики не смогло распространиться на полторы тысячи километров. Однако принимали активное участие - звонили, распространяли слухи, дискредитировали ученого. Как защищают свою кормушку!

      Заявка на открытие
      О том, что все-таки именно он первым предложил удерживать плазму полем, Олег Александрович узнал случайно, наткнувшись в 1968 (! через 15 лет) году в одной из книг на воспоминания И.Тамма (Руководитель Сахарова). Его фамилии не было, лишь невнятная фраза об «одном военном с Дальнего Востока»,

предложившем способ синтеза водорода, которым «…даже в принципе ничего сделать было невозможно

    ». Лаврентьеву ничего не оставалось, как отстаивать свой научный авторитет.

Чует кошка, (Тамм) чьё мясо сьела! Тамм, и Сахаров отлично понимали что к чему. То, что придумал Лаврентьев - это ключ, открывающий доступ к воплощению на практике водородной бомбы. Все остальное, вся теория, была давно известна абсолютно всем, поскольку была описана даже в обыкновенных учебниках. И довести идею до материального воплощения мог не только "гениальный " Сахаров, но и любой технарь, имеющий неограниченный доступ к материальным госресурсам.

И ещё интересный кусочек, в котором хорошо чувствуется невидимая костлявая рука саботажников на американские деньги: Это уже про "период застоя", когда передовые мысли и разработки русских ученых принудительно"застаивали" ...

      Лаврентьев был уверен в своей идее электромагнитных ловушек. К 1976 году его группа подготовила техническое предложение на крупную многощелевую установку «Юпитер-2Т». Все складывалось чрезвычайно удачно. Тематика поддерживалась руководством института и непосредственным руководителем отдела Анатолием Калмыковым (русский). Госкомитет по использованию атомной энергии выделил на проектирование «Юпитера-2Т» триста тысяч рублей. ФТИНТ АН СССР брался установку изготовить.
      — Я был на седьмом небе от счастья, — вспоминает Олег Александрович. — Мы сможем построить установку, которая выведет нас на прямую дорогу к термоядерному Эльдорадо! В том, что на ней будут получены высокие параметры плазмы, я нисколько не сомневался.
      Беда пришла с совершенно неожиданной стороны. Будучи на стажировке в Англии, Анатолий Калмыков случайно получил большую дозу облучения, заболел и умер.

А новый начальник отдела предложил Лаврентьеву спроектировать… что-нибудь поменьше и подешевле.

      Потребовалось два года, чтобы выполнить проект установки «Юпитер-2», где линейные размеры были уменьшены в два раза. Но пока его группа получила на этот проект положительный отзыв из Москвы, из Института атомной энергии,

зарезервированная рабочая площадка была отдана под другие проекты, финансирование сократили и группе предложили… еще уменьшить размеры установки.

    — Так родился проект «Юпитер-2М», уже в одну треть натуральной величины «Юпитера-2», — констатирует Олег Александрович. — Ясно, что это был шаг назад, но выбора не было. Изготовление новой установки затянулось на несколько лет. Только в середине 80-х мы смогли приступить к экспериментам, которые полностью подтвердили наши прогнозы. Но о развитии работ речи уже не было. Финансирование по УТС начало сокращаться, а с 1989 года прекратилось совсем. Я до сих пор считаю, что электромагнитные ловушки являются одной из немногих термоядерных систем, где удалось полностью подавить гидродинамические и кинетические неустойчивости плазмы и получить близкие к классическим коэффициенты переноса частиц и энергии.

Чётко видна работа саботажников от науки, точно такая-же ситуация была в 1970-80е годы с отечественными разработками микропроцессоров, и советских компьютеров (см сообщшение "Советские компьютеры, преданные и забытые") Когда профильными министерствами и некоторыми академиками, всячески тормозились самые передовые отечественные разработки.

    Я начал думать, как я уже писал, об этом круге вопросов ещё в 1949 году, но без каких-либо разумных конкретных идей. Летом 1950 года на объект пришло присланное из секретариата Берии письмо с предложением молодого моряка Тихоокеанского флота Олега Лаврентьева. В вводной части автор писал о важности проблемы управляемой термоядерной реакции для энергетики будущего. Далее излагалось само предложение. Автор предлагал осуществить высокотемпературную дейтериевую плазму с помощью системы электростатической термоизоляции. Конкретно предлагалась система из двух (или трёх) металлических сеток, окружающих реакторный объём. На сетки должна была подаваться разница потенциалов в несколько десятков Кэв, так чтобы задерживался вылет ионов дейтерия или (в случае трёх сеток) в одном из зазоров задерживался вылет ионов, а в другом — электронов. В своём отзыве я написал, что выдвигаемая автором идея управляемой термоядерной реакции является очень важной. Автор поднял проблему колоссального значения, это свидетельствует о том, что он является очень инициативным и творческим человеком, заслуживающим всяческой поддержки и помощи. По существу конкретной схемы Лаврентьева я написал, что она представляется мне неосуществимой, так как в ней не исключён прямой контакт горячей плазмы с сетками и это неизбежно приведёт к огромному отводу тепла и тем самым к невозможности осуществления таким способом температур, достаточных для протекания термоядерных реакций. Вероятно, следовало также написать, что, возможно, идея автора окажется плодотворной в сочетании с какими-то другими идеями, но у меня не было никаких мыслей по этому поводу, и я этой фразы не написал. Во время чтения письма и писания отзыва у меня возникли первые, неясные ещё мысли о магнитной термоизоляции. Принципиальное отличие магнитного поля от электрического заключается в том, что его силовые линии могут быть замкнутыми (или образовывать замкнутые магнитные поверхности) вне материальных тел, тем самым может быть в принципе решена „проблема контакта“. Замкнутые магнитные силовые линии возникают, в частности, во внутреннем объёме тороида при пропускании тока через тороидальную обмотку, расположенную на его поверхности. Именно такую систему я и решил рассмотреть.
      В этот раз я ехал один. В приёмной Берии я увидел, однако, Олега Лаврентьева — его отозвали из флота. К Берии нас пригласили обоих. Берия, как всегда, сидел во главе стола, в пенсне и в накинутой на плечи светлой накидке, что-то вроде плаща. Рядом с ним сидел его постоянный референт Махнев, в прошлом начальник лагеря на Колыме. После устранения Берии Махнев перешёл в наше Министерство в качестве начальника отдела информации; вообще тогда говорили, что МСМ — это „заповедник“ для бывших сотрудников Берии.
    Берия, даже с какой-то вкрадчивостью, спросил меня, что я думаю о предложении Лаврентьева. Я повторил свой отзыв. Берия задал несколько вопросов Лаврентьеву, потом отпустил его. Больше я его не видел. Знаю, что он поступил на физический факультет или в какой-то радиофизический институт на Украине и по окончании приехал в ЛИПАН. Однако после месяца пребывания там у него возникли большие разногласия со всеми сотрудниками. Он уехал обратно на Украину.

Интересно, какие разногласия могли возникнуть у русского ученого в коллективе возглавляемом двумя лауреатами, которые четко знали, чьей именно идеей они воспользовались?

      В 70-х годах я получил от него письмо, в котором он сообщал, что работает старшим научным сотрудником в каком-то прикладном научно-исследовательском институте, и просил выслать документы, подтверждающие факт его предложения 1950 года и мой отзыв того времени. Он хотел оформить свидетельство об изобретении. У меня ничего на руках не было, я написал по памяти и выслал ему, заверив официально моё письмо в канцелярии ФИАНа.

Моё первое письмо почему-то не дошло.

    По просьбе Лаврентьева я выслал ему письмо вторично. Больше я о нём ничего не знаю. Может быть, тогда, в середине 50-х годов, следовало выделить Лаврентьеву небольшую лабораторию и предоставить ему свободу действий. Но все ЛИПАНовцы были убеждены, что ничего, кроме неприятностей, в том числе для него, из этого бы не вышло.


Как хорошо видны из этого отрывка душевные страдания великого "изобретателя водородной бомбы"! Сначала он всё-таки надеялся отсидеться, авось пронесёт. Лаврентьев послал второе письмо. Ведь никто, кроме Сахарова не может подтвердить его авторство! Письма или спрятаны в далекие Бериевские архивы или уничтожены. Ну хорошо, Сахаров всё-же подтвердил, после долгих раздумий. А представьте, что на его месте был бы Ландау? Мы хорошо знаем его моральный облик.

А вот что пишет сам Олег Лаврентьев. http://www.zn.ua/3000/3760/41432/

      — Из-за стола поднялся грузный мужчина в пенсне и пошел мне навстречу, — вспоминает Олег Александрович. — Подал руку, предложил садиться. Я ждал и готовился отвечать на вопросы, связанные с разработкой водородной бомбы, но таких вопросов не последовало. Берии хотелось на меня, а возможно, и на Андрея Дмитриевича Сахарова посмотреть, что мы за люди. Смотрины прошли успешно.

Потом мы с Сахаровым шли до метро, долго разговаривали, оба были возбуждены после такой встречи. Тогда я услышал от Андрея Дмитриевича много теплых слов. Он заверил меня, что теперь все будет хорошо, и предложил работать вместе.

      Я, конечно, согласился на предложение человека, очень мне понравившегося.

Лаврентьев и не подозревал, что его идея управляемого термоядерного синтеза настолько понравилась А.Сахарову, что он решил ее использовать

    и к тому времени вместе с И.Таммом уже начал работать над проблемой УТС. Правда, в их варианте реактора плазму удерживало не электрическое, а магнитное поле. (Впоследствии это направление вылилось в реакторы под названием «токамак».)

И еще через несколько лет:

      — Для меня это было большой неожиданностью, — вспоминает Олег Александрович. — При встречах со мной Андрей Дмитриевич ни одним словом не обмолвился о своих работах по магнитной термоизоляции плазмы. Тогда я думал, что мы с Андреем Дмитриевичем Сахаровым пришли к идее изоляции плазмы полем независимо друг от друга, только я выбрал в качестве первого варианта электростатический термоядерный реактор, а он — магнитный.

Справка из интернета:
В 1950-х годах в СССР Андрей Сахаров и Игорь Тамм предложили принципиально новую идею производства энергии в легендарных токамаках, магнитных камерах в форме бублика, которые удерживают раскаленную до нескольких сотен миллионов градусов плазму. В 1956 году в Англии Игорь Курчатов заявил о термоядерных исследованиях в СССР. Сейчас ведущие страны, в том числе Россия, реализуют проект ИТЭР. Для сооружения термоядерного реактора выбрана площадка во Франции. В реакторе будет поддерживаться температура в 150 млн градусов - температура в центре Солнца 20 млн градусов.

А где-же Лаврентьев? Может спросить на сайте http://www.sem40.ru ?

ОТЦЫ ВОДОРОДНОЙ БОМБЫ САХАРОВ И ТЕЛЛЕР?

Мир атома настолько фантастичен, что для его понимания требуется коренная ломка привычных понятий о пространстве и времени. Атомы так малы, что если бы каплю воды можно было увеличить до размеров Земли, то каждый атом в этой капле был бы меньше апельсина. В самом деле, одна капля воды состоит из 6000 миллиардов миллиардов (6000000000000000000000) атомов водорода и кислорода. И тем не менее, несмотря на свои микроскопические размеры, атом имеет строение до некоторой степени сходное со строением нашей солнечной системы. В его непостижимо малом центре, радиус которого менее одной триллионной сантиметра, находится относительно огромное «солнце» - ядро атома.

Вокруг этого атомного «солнца» вращаются крохотные «планеты» - электроны. Ядро состоит из двух основных строительных кирпичиков Вселенной - протонов и нейтронов (они имеют объединяющее название - нуклоны). Электрон и протон - заряженные частицы, причем количество заряда в каждом из них совершенно одинаково, однако заряды различаются по знаку: протон всегда заряжен положительно, а электрон - отрицательно. Нейтрон не несет электрического заряда и вследствие этого имеет очень большую проницаемость.

В атомной шкале измерений масса протона и нейтрона принята за единицу. Атомный вес любого химического элемента поэтому зависит от количества протонов и нейтронов, заключенных в его ядре. Например, атом водорода, ядро которого состоит только из одного протона, имеет атомную массу равную 1. Атом гелия, с ядром из двух протонов и двух нейтронов, имеет атомную массу, равную 4.

Ядра атомов одного и того же элемента всегда содержат одинаковое число протонов, но число нейтронов может быть разным. Атомы, имеющие ядра с одинаковым числом протонов, но отличающиеся по числу нейтронов и относящиеся к разновидностям одного и того же элемента, называются изотопами. Чтобы отличить их друг от друга, к символу элемента приписывают число, равное сумме всех частиц в ядре данного изотопа.

Может возникнуть вопрос: почему ядро атома не разваливается? Ведь входящие в него протоны - электрически заряженные частицы с одинаковым зарядом, которые должны отталкиваться друг от друга с большой силой. Объясняется это тем, что внутри ядра действуют еще и так называемые внутриядерные силы, притягивающие частицы ядра друг к другу. Эти силы компенсируют силы отталкивания протонов и не дают ядру самопроизвольно разлететься.

Внутриядерные силы очень велики, но действуют только на очень близком расстоянии. Поэтому ядра тяжелых элементов, состоящие из сотен нуклонов, оказываются нестабильными. Частицы ядра находятся здесь в беспрерывном движении (в пределах объема ядра), и если добавить им какое-то дополнительное количество энергии, они могут преодолеть внутренние силы - ядро разделится на части. Величину этой избыточной энергии называют энергией возбуждения. Среди изотопов тяжелых элементов есть такие, которые как бы находятся на самой грани самораспада. Достаточно лишь небольшого «толчка», например, простого попадания в ядро нейтрона (причем он даже не должен разгоняться до большой скорости), чтобы пошла реакция ядерного деления. Некоторые из этих «делящихся» изотопов позже научились получать искусственно. В природе же существует только один такой изотоп - это уран-235.

Уран был открыт в 1783 году Клапротом, который выделил его из урановой смолки и назвал в честь недавно открытой планеты Уран. Как оказалось в дальнейшем, это был, собственно, не сам уран, а его оксид. Чистый уран - металл серебристо-белого цвета - был получен
только в 1842 году Пелиго. Новый элемент не обладал никакими замечательными свойствами и не привлекал к себе внимания вплоть до 1896 года, когда Беккерель открыл явление радиоактивности солей урана. После этого уран сделался объектом научных исследований и экспериментов, но практического применения по-прежнему не имел.

Когда в первой трети XX века физикам более или менее стало понятно строение атомного ядра, они прежде всего попробовали осуществить давнюю мечту алхимиков - постарались превратить один химический элемент в другой. В 1934 году французские исследователи супруги Фредерик и Ирен Жолио-Кюри доложили Французской академии наук о следующем опыте: при бомбардировке пластин алюминия альфа-частицами (ядрами атома гелия) атомы алюминия превращались в атомы фосфора, но не обычные, а радиоактивные, которые свою очередь переходили в устойчивый изотоп кремния. Таким образом, атом алюминия, присоединив один протон и два нейтрона, превращался в более тяжелый атом кремния.

Этот опыт навел на мысль, что если «обстреливать» нейтронами ядра самого тяжелого из существующих в природе элементов - урана, то можно получить такой элемент, которого в естественных условиях нет. В 1938 году немецкие химики Отто Ган и Фриц Штрассман повторили в общих чертах опыт супругов Жолио-Кюри, взяв вместо алюминия уран. Результаты эксперимента оказались совсем не те, что они ожидали - вместо нового сверхтяжелого элемента с массовым числом больше, чем у урана, Ган и Штрассман получили легкие элементы из средней части периодической системы: барий, криптон, бром и некоторые другие. Сами экспериментаторы не смогли объяснить наблюдаемое явление. Только в следующем году физик Лиза Мейтнер, которой Ган сообщил о своих затруднениях, нашла правильное объяснение наблюдаемому феномену, предположив, что при обстреле урана нейтронами происходит расщепление (деление) его ядра. При этом должны были образовываться ядра более легких элементов (вот откуда брались барий, криптон и другие вещества), а также выделяться 2-3 свободных нейтрона. Дальнейшие исследования позволили детально прояснить картину происходящего.

Природный уран состоит из смеси трех изотопов с массами 238, 234 и 235. Основное количество урана приходится на изотоп-238, в ядро которого входят 92 протона и 146 нейтронов. Уран-235 составляет всего 1/140 природного урана (0, 7% (он имеет в своем ядре 92 протона и 143 нейтрона), а уран-234 (92 протона, 142 нейтрона) лишь - 1/17500 от общей массы урана (0, 006%. Наименее стабильным из этих изотопов является уран-235.

Время от времени ядра его атомов самопроизвольно делятся на части, вследствие чего образуются более легкие элементы периодической системы. Процесс сопровождается выделением двух или трех свободных нейтронов, которые мчатся с огромной скоростью - около 10 тыс. км/с (их называют быстрыми нейтронами). Эти нейтроны могут попадать в другие ядра урана, вызывая ядерные реакции. Каждый изотоп ведет себя в этом случае по-разному. Ядра урана-238 в большинстве случаев просто захватывают эти нейтроны без каких-либо дальнейших превращений. Но примерно в одном случае из пяти при столкновении быстрого нейтрона с ядром изотопа-238 происходит любопытная ядерная реакция: один из нейтронов урана-238 испускает электрон, превращаясь в протон, то есть изотоп урана обращается в более
тяжелый элемент - нептуний-239 (93 протона + 146 нейтронов). Но нептуний нестабилен - через несколько минут один из его нейтронов испускает электрон, превращаясь в протон, после чего изотоп нептуния обращается в следующий по счету элемент периодической системы - плутоний-239 (94 протона + 145 нейтронов). Если же нейтрон попадает в ядро неустойчивого урана-235, то немедленно происходит деление - атомы распадаются с испусканием двух или трех нейтронов. Понятно, что в природном уране, большинство атомов которого относятся к изотопу-238, никаких видимых последствий эта реакция не имеет - все свободные нейтроны окажутся в конце концов поглощенными этим изотопом.

Ну а если представить себе достаточно массивный кусок урана, целиком состоящий из изотопа-235?

Здесь процесс пойдет по-другому: нейтроны, выделившиеся при делении нескольких ядер, в свою очередь, попадая в соседние ядра, вызывают их деление. В результате выделяется новая порция нейтронов, которая расщепляет следующие ядра. При благоприятных условиях эта реакция протекает лавинообразно и носит название цепной реакции. Для ее начала может быть достаточно считанного количества бомбардирующих частиц.

Действительно, пусть уран-235 бомбардируют всего 100 нейтронов. Они разделят 100 ядер урана. При этом выделится 250 новых нейтронов второго поколения (в среднем 2, 5 за одно деление). Нейтроны второго поколения произведут уже 250 делений, при котором выделится 625 нейтронов. В следующем поколении оно станет равным 1562, затем 3906, далее 9670 и т.д. Число делений будет увеличиваться безгранично, если процесс не остановить.

Однако реально лишь незначительная часть нейтронов попадает в ядра атомов. Остальные, стремительно промчавшись между ними, уносятся в окружающее пространство. Самоподдерживающаяся цепная реакция может возникнуть только в достаточно большом массиве урана-235, обладающим, как говорят, критической массой. (Эта масса при нормальных условиях равна 50 кг.) Важно отметить, что деление каждого ядра сопровождается выделением огромного количества энергии, которая оказывается примерно в 300 миллионов раз больше энергии, затраченной на расщепление! (Подсчитано, что при полном делении 1 кг урана-235 выделяется столько же тепла, сколько при сжигании 3 тыс. тонн угля.)

Этот колоссальный выплеск энергии, освобождающейся в считанные мгновения, проявляет себя как взрыв чудовищной силы и лежит в основе действия ядерного оружия. Но для того чтобы это оружие стало реальностью, необходимо, чтобы заряд состоял не из природного урана, а из редкого изотопа - 235 (такой уран называют обогащенным). Позже было установлено, что чистый плутоний также является делящимся материалом и может быть использован в атомном заряде вместо урана-235.

Все эти важные открытия были сделаны накануне Второй мировой войны. Вскоре в Германии и в других странах начались секретные работы по созданию атомной бомбы. В США этой проблемой занялись в 1941 году. Всему комплексу работ было присвоено наименование «Манхэттенского проекта».

Административное руководство проектом осуществлял генерал Гровс, а научное - профессор Калифорнийского университета Роберт Оппенгеймер. Оба хорошо понимали огромную сложность стоящей перед ними задачи. Поэтому первой заботой Оппенгеймера стало комплектование высокоинтеллектуального научного коллектива. В США тогда было много физиков, эмигрировавших из фашистской Германии. Нелегко было привлечь их к созданию оружия, направленного против их прежней родины. Оппенгеймер лично говорил с каждым, пуская в ход всю силу своего обаяния. Вскоре ему удалось собрать небольшую группу теоретиков, которых он шутливо называл «светилами». И в самом деле, в нее входили крупнейшие специалисты того времени в области физики и химии. (Среди них 13 лауреатов Нобелевской премии, в том числе Бор, Ферми, Франк, Чедвик, Лоуренс.) Кроме них, было много других специалистов самого разного профиля.

Правительство США не скупилось на расходы, и работы с самого начала приняли грандиозный размах. В 1942 году была основана крупнейшая в мире исследовательская лаборатория в Лос-Аламосе. Население этого научного города вскоре достигло 9 тысяч человек. По составу ученых, размаху научных экспериментов, числу привлекаемых к работе специалистов и рабочих Лос-Аламосская лаборатория не имела себе равных в мировой истории. «Манхэттенский проект» имел свою полицию, контрразведку, систему связи, склады, поселки, заводы, лаборатории, свой колоссальный бюджет.

Главная цель проекта состояла в получении достаточного количества делящегося материала, из которого можно было бы создать несколько атомных бомб. Кроме урана-235 зарядом для бомбы, как уже говорилось, мог служить искусственный элемент плутоний-239, то есть бомба могла быть как урановой, так и плутониевой.

Гровс и Оппенгеймер согласились, что работы должны вестись одновременно по двум направлениям, поскольку невозможно наперед решить, какое из них окажется более перспективным. Оба способа принципиально отличались друг от друга: накопление урана-235 должно было осуществляться путем его отделения от основной массы природного урана, а плутоний мог быть получен только в результате управляемой ядерной реакции при облучении нейтронами урана-238. И тот и другой путь представлялся необычайно трудным и не сулил легких решений.

В самом деле, как можно отделить друг от друга два изотопа, которые лишь незначительно отличаются своим весом и химически ведут себя совершенно одинаково? Ни наука, ни техника никогда еще не сталкивались с такой проблемой. Производство плутония тоже поначалу казалось очень проблематичным. До этого весь опыт ядерных превращений сводился к нескольким лабораторным экспериментам. Теперь же предстояло в промышленном масштабе освоить производство килограммов плутония, разработать и создать для этого специальную установку - ядерный реактор, и научиться управлять течением ядерной реакции.

И там и здесь предстояло разрешить целый комплекс сложных задач. Поэтому «Манхэттенский проект» состоял из нескольких подпроектов, во главе которых стояли видные ученые. Сам Оппенгеймер был главой Лос-Аламосской научной лаборатории. Лоуренс заведовал Радиационной лабораторией Калифорнийского университета. Ферми вел в Чикагском университете исследования по созданию ядерного реактора.

Поначалу важнейшей проблемой было получение урана. До войны этот металл фактически не имел применения. Теперь, когда он потребовался сразу в огромных количествах, оказалось, что не существует промышленного способа его производства.

Компания «Вестингауз» взялась за его разработку и быстро добилась успеха. После очистки урановой смолы (в таком виде уран встречается в природе) и получения окиси урана, ее превращали в тетрафторид (UF4), из которого путем электролиза выделялся металлический уран. Если в конце 1941 года в распоряжении американских ученых было всего несколько граммов металлического урана, то уже в ноябре 1942 года его промышленное производство на заводах фирмы «Вестингауз» достигло 6000 фунтов в месяц.

Одновременно шла работа над созданием ядерного реактора. Процесс производства плутония фактически сводился к облучению урановых стержней нейтронами, в результате чего часть урана-238 должна была обратиться в плутоний. Источниками нейтронов при этом могли быть делящиеся атомы урана-235, рассеянные в достаточном количестве среди атомов урана-238. Но для того чтобы поддерживать постоянное воспроизводство нейтронов, должна была начаться цепная реакция деления атомов урана-235. Между тем, как уже говорилось, на каждый атом урана-235 приходилось 140 атомов урана-238. Ясно, что у разлетающихся во все стороны нейтронов было гораздо больше вероятности встретить на своем пути именно их. То есть, огромное число выделившихся нейтронов оказывалось без всякой пользы поглощенным основным изотопом. Очевидно, что при таких условиях цепная реакция идти не могла. Как же быть?

Сначала представлялось, что без разделения двух изотопов работа реактора вообще невозможна, но вскоре было установлено одно важное обстоятельство: оказалось, что уран-235 и уран-238 восприимчивы к нейтронам разных энергий. Расщепить ядро атома урана-235 можно нейтроном сравнительно небольшой энергии, имеющим скорость около 22 м/с. Такие медленные нейтроны не захватываются ядрами урана-238 - для этого те должны иметь скорость порядка сотен тысяч метров в секунду. Другими словами уран-238 бессилен помешать началу и ходу цепной реакции в уране-235, вызванной нейтронами, замедленными до крайне малых скоростей - не более 22 м/с. Это явление было открыто итальянским физиком Ферми, который с 1938 года жил в США и руководил здесь работами по созданию первого реактора. В качестве замедлителя нейтронов Ферми решил применить графит. По его расчетам, вылетевшие из урана-235 нейтроны, пройдя через слой графита в 40 см, должны были снизить свою скорость до 22 м/с и начать самоподдерживающуюся цепную реакцию в уране-235.

Другим замедлителем могла служить так называемая «тяжелая» вода. Поскольку атомы водорода, входящие в нее, по размерам и массе очень близки к нейтронам, они могли лучше всего замедлять их. (С быстрыми нейтронами происходит примерно то же, что с шарами: если маленький шар ударяется о большой, он откатывается назад, почти не теряя скорости, при встрече же с маленьким шаром он передает ему значительную часть своей энергии - точно так же нейтрон при упругом столкновении отскакивает от тяжелого ядра лишь незначительно замедляясь, а при столкновении с ядрами атомов водорода очень быстро теряет всю свою энергию.) Однако обычная вода не подходит для замедления, так как ее водород имеет тенденцию поглощать нейтроны. Вот почему для этой цели следует использовать дейтерий, входящий в состав «тяжелой» воды.

В начале 1942 года под руководством Ферми в помещении теннисного корта под западными трибунами Чикагского стадиона началось строительство первого в истории ядерного реактора. Все работы ученые проводили сами. Управление реакцией можно осуществлять единственным способом - регулируя число нейтронов, участвующих в цепной реакции. Ферми предполагал добиться этого с помощью стержней, изготовленных из таких веществ, как бор и кадмий, которые сильно поглощают нейтроны. Замедлителем служили графитовые кирпичи, из которых физики возвели колоны высотой в 3 м и шириной в 1, 2 м. Между ними были установлены прямоугольные блоки с окисью урана. На всю конструкцию пошло около 46 тонн окиси урана и 385 тонн графита. Для замедления реакции служили введенные в реактор стержни из кадмия и бора.

Если бы этого оказалось недостаточно, то для страховки на платформе, расположенной над реактором, стояли двое ученых с ведрами, наполненными раствором солей кадмия - они должны были вылить их на реактор, если бы реакция вышла из-под контроля. К счастью, этого не потребовалось. 2 декабря 1942 года Ферми приказал выдвинуть все контрольные стержни, и эксперимент начался. Через четыре минуты нейтронные счетчики стали щелкать все громче и громче. С каждой минутой интенсивность нейтронного потока становилась больше. Это говорило о том, что в реакторе идет цепная реакция. Она продолжалась в течение 28 минут. Затем Ферми дал знак, и опущенные стержни прекратили процесс. Так впервые человек освободил энергию атомного ядра и доказал, что может контролировать ее по своей воле. Теперь уже не было сомнения, что ядерное оружие - реальность.

В 1943 году реактор Ферми демонтировали и перевезли в Арагонскую национальную лабораторию (50 км от Чикаго). Здесь был вскоре
построен еще один ядерный реактор, в котором в качестве замедлителя использовалась тяжелая вода. Он состоял из цилиндрической алюминиевой цистерны, содержащей 6, 5 тонн тяжелой воды, в которую было вертикально погружено 120 стержней из металлического урана, заключенные в алюминиевую оболочку. Семь управляющих стержней были сделаны из кадмия. Вокруг цистерны располагался графитовый отражатель, затем экран из сплавов свинца и кадмия. Вся конструкция заключалась в бетонный панцирь с толщиной стенок около 2, 5 м.

Эксперименты на этих опытных реакторах подтвердили возможность промышленного производства плутония.

Главным центром «Манхэттенского проекта» вскоре стал городок Ок-Ридж в долине реки Теннеси, население которого за несколько месяцев выросло до 79 тысяч человек. Здесь в короткий срок был построен первый в истории завод по производству обогащенного урана. Тут же в 1943 году был пущен промышленный реактор, вырабатывавший плутоний. В феврале 1944 года из него ежедневно извлекали около 300 кг урана, с поверхности которого путем химического разделения получали плутоний. (Для этого плутоний сначала растворяли, а потом осаждали.) Очищенный уран после этого вновь возвращался в реактор. В том же году в бесплодной унылой пустыне на южном берегу реки Колумбия началось строительство огромного Хэнфордского завода. Здесь размещалось три мощных атомных реактора, ежедневно дававших несколько сот граммов плутония.

Параллельно полным ходом шли исследования по разработке промышленного процесса обогащения урана.

Рассмотрев разные варианты, Гровс и Оппенгеймер решили сосредоточить усилия на двух методах: газодиффузионном и электромагнитном.

Газодиффузионный метод основывался на принципе, известном под названием закона Грэхэма (он был впервые сформулирован в 1829 году шотландским химиком Томасом Грэхэмом и разработан в 1896 году английским физиком Рейли). В соответствии с этим законом, если два газа, один из которых легче другого, пропускать через фильтр с ничтожно малыми отверстиями, то через него пройдет несколько больше легкого газа, чем тяжелого. В ноябре 1942 года Юри и Даннинг из Колумбийского университета создали на основе метода Рейли газодиффузионный метод разделения изотопов урана.

Так как природный уран - твердое вещество, то его сначала превращали во фтористый уран (UF6). Затем этот газ пропускали через микроскопические - порядка тысячных долей миллиметра - отверстия в перегородке фильтра.

Так как разница в молярных весах газов была очень мала, то за перегородкой содержание урана-235 увеличивалось всего в 1, 0002 раза.

Для того чтобы увеличить количество урана-235 еще больше, полученную смесь снова пропускают через перегородку, и количество урана опять увеличивается в 1, 0002 раза. Таким образом, чтобы повысить содержание урана-235 до 99%, нужно было пропускать газ через 4000 фильтров. Это происходило на огромном газодиффузионном заводе в Ок-Ридж.

В 1940 году под руководством Эрнста Лоуренса в Калифорнийском университете начались исследования по разделению изотопов урана электромагнитным методом. Необходимо было найти такие физические процессы, которые позволили бы разделять изотопы, пользуясь разностью их масс. Лоуренс предпринял попытку разделить изотопы, используя принцип масс-спектрографа - прибора, с помощью которого определяют массы атомов.

Принцип его действия сводился к следующему: предварительно ионизированные атомы ускорялись электрическим полем, а затем пропускались через магнитное поле, в котором они описывали окружности, расположенные в плоскости, перпендикулярной направлению поля. Так как радиусы этих траекторий были пропорциональны массе, легкие ионы оказывались на окружностях меньшего радиуса, чем тяжелые. Если на пути атомов размещали ловушки, то можно было таким образом раздельно собирать различные изотопы.

Таков был метод. В лабораторных условиях он дал неплохие результаты. Но строительство установки, на которой разделение изотопов могло бы производиться в промышленных масштабах, оказалось чрезвычайно сложным. Однако Лоуренсу в конце концов удалось преодолеть все трудности. Результатом его усилий стало появление калутрона, который был установлен на гигантском заводе в Ок-Ридже.

Этот электромагнитный завод был построен в 1943 году и оказался едва ли не самым дорогостоящим детищем «Манхэттенского проекта». Метод Лоуренса требовал большого количества сложных, еще не разработанных устройств, связанных с высоким напряжением, высоким вакуумом и сильными магнитными полями. Масштабы затрат оказались огромны. Калутрон имел гигантский электромагнит, длина которого достигала 75 м при весе около 4000 тонн.

На обмотки для этого электромагнита пошло несколько тысяч тонн серебряной проволоки.

Все работы (не считая стоимости серебра на сумму 300 миллионов долларов, которое государственное казначейство предоставило только на время) обошлись в 400 миллионов долларов. Только за электроэнергию, затраченную калутроном, министерство обороны заплатило 10 миллионов. Большая часть оборудования ок-риджского завода превосходила по масштабам и точности изготовления все, что когда-либо разрабатывалось в этой области техники.

Но все эти затраты оказались не напрасными. Издержав в общей сложности около 2 миллиардов долларов, ученые США к 1944 году создали уникальную технологию обогащения урана и производства плутония. Тем временем в Лос-Аламосской лаборатории работали над проектом самой бомбы. Принцип ее действия был в общих чертах ясен уже давно: делящееся вещество (плутоний или уран-235) следовало в момент взрыва перевести в критическое состояние (для осуществления цепной реакции масса заряда должна быть даже заметно больше критической) и облучить пучком нейтронов, что влекло за собой начало цепной реакции.

По расчетам, критическая масса заряда превосходила 50 килограмм, но ее смогли значительно уменьшить. Вообще на величину критической массы сильно влияют несколько факторов. Чем больше поверхностная площадь заряда - тем больше нейтронов бесполезно излучается в окружающее пространство. Наименьшей площадью поверхности обладает сфера. Следовательно, сферические заряды при прочих равных условиях имеют наименьшую критическую массу. Кроме того, величина критической массы зависит от чистоты и вида делящихся материалов. Она обратно пропорциональна квадрату плотности этого материала, что позволяет, например, при увеличении плотности вдвое, уменьшить критическую массу в четыре раза. Нужную степень подкритичности можно получить, к примеру, уплотнением делящегося материала за счет взрыва заряда обычного взрывчатого вещества, выполненного в виде сферической оболочки, окружающей ядерный заряд. Критическую массу, кроме того, можно уменьшить, окружив заряд экраном, хорошо отражающим нейтроны. В качестве такого экрана могут быть использованы свинец, бериллий, вольфрам, природный уран, железо и многие другие.

Одна из возможных конструкций атомной бомбы состоит из двух кусков урана, которые, соединяясь, образуют массу больше критической. Для того чтобы вызвать взрыв бомбы, надо как можно быстрее сблизить их. Второй метод основан на использовании сходящегося внутрь взрыва. В этом случае поток газов от обычного взрывчатого вещества направлялся на расположенный внутри делящийся материал и сжимал его до тех пор, пока он не достигал критической массы. Соединение заряда и интенсивное облучение его нейтронами, как уже говорилось, вызывает цепную реакцию, в результате которой в первую же секунду температура возрастает до 1 миллиона градусов. За это время успевало разделиться всего около 5% критической массы. Остальная часть заряда в бомбах ранней конструкции испарялась без
всякой пользы.

Первая в истории атомная бомба (ей было дано имя «Тринити») была собрана летом 1945 года. А 16 июня 1945 года на атомном полигоне в пустыне Аламогордо (штат Нью-Мексико) был произведен первый на Земле атомный взрыв. Бомбу поместили в центре полигона на вершине стальной 30-метровой башни. Вокруг нее на большом расстоянии размещалась регистрирующая аппаратура. В 9 км находился наблюдательный пункт, а в 16 км - командный. На всех свидетелей этого события атомный взрыв произвел потрясающее впечатление. По описанию очевидцев, было такое ощущение, будто множество солнц соединилось в одно и разом осветило полигон. Затем над равниной возник огромный огненный шар и к нему медленно и зловеще стало подниматься круглое облако пыли и света.

Оторвавшись от земли, этот огненный шар за несколько секунд взлетел на высоту более трех километров. С каждым мгновением он разрастался в размерах, вскоре его диаметр достиг 1, 5 км, и он медленно поднялся в стратосферу. Затем огненный шар уступил место столбу клубящегося дыма, который вытянулся на высоту 12 км, приняв форму гигантского гриба. Все это сопровождалось ужасным грохотом, от которого дрожала земля. Мощность взорвавшейся бомбы превзошла все ожидания.

Как только позволила радиационная обстановка, несколько танков «Шерман», выложенные изнутри свинцовыми плитами, ринулись в район взрыва. На одном из них находился Ферми, которому не терпелось увидеть результаты своего труда. Его глазам предстала мертвая выжженная земля, на которой в радиусе 1, 5 км было уничтожено все живое. Песок спекся в стекловидную зеленоватую корку, покрывавшую землю. В огромной воронке лежали изуродованные остатки стальной опорной башни. Сила взрыва была оценена в 20000 тонн тротила.

Следующим шагом должно было стать боевое применение бомбы против Японии, которая после капитуляции фашистской Германии одна продолжала войну с США и их союзниками. Ракет-носителей тогда еще не было, поэтому бомбардировку предстояло осуществить с самолета. Компоненты двух бомб были с большой осторожностью доставлены крейсером «Индианаполис» на остров Тиниан, где базировалась 509-я сводная группа ВВС США. По типу заряда и конструкции эти бомбы несколько отличались друг от друга.

Первая бомба - «Малыш» - представляла собой крупногабаритную авиационную бомбу с атомным зарядом из сильно обогащенного урана-235. Длина ее была около 3 м, диаметр - 62 см, вес - 4, 1 т.

Вторая бомба - «Толстяк» - с зарядом плутония-239 имела яйцеобразную форму с крупногабаритным стабилизатором. Длина ее
составляла 3, 2 м, диаметр 1, 5 м, вес - 4, 5 т.

6 августа бомбардировщик Б-29 «Энола Гэй» полковника Тиббетса сбросил «Малыша» на крупный японский город Хиросиму. Бомба опускалась на парашюте и взорвалась, как это и было предусмотрено, на высоте 600 м от земли.

Последствия взрыва были ужасны. Даже на самих пилотов вид уничтоженного ими в одно мгновение мирного города произвел гнетущее впечатление. Позже один из них признался, что они видели в эту секунду самое плохое, что только может увидеть человек.

Для тех же, кто находился на земле, происходящее напоминало подлинный ад. Прежде всего, над Хиросимой прошла тепловая волна. Ее действие длилось всего несколько мгновений, но было настолько мощным, что расплавило даже черепицу и кристаллы кварца в гранитных плитах, превратило в уголь телефонные столбы на расстоянии 4 км и, наконец, настолько испепелило человеческие тела, что от них остались только тени на асфальте мостовых или на стенах домов. Затем из-под огненного шара вырвался чудовищный порыв ветра и промчался над городом со скоростью 800 км/ч, сметая все на своем пути. Не выдержавшие его яростного натиска дома рушились как подкошенные. В гигантском круге диаметром 4 км не осталось ни одного целого здания. Через несколько минут после взрыва над городом прошел черный радиоактивный дождь - это превращенная в пар влага сконденсировалась в высоких слоях атмосферы и выпала на землю в виде крупных капель, смешанных с радиоактивной пылью.

После дождя на город обрушился новый порыв ветра, на этот раз дувший в направлении эпицентра. Он был слабее первого, но все же достаточно силен, чтобы вырывать с корнем деревья. Ветер раздул гигантский пожар, в котором горело все, что только могло гореть. Из 76 тысяч зданий полностью разрушилось и сгорело 55 тысяч. Свидетели этой ужасной катастрофы вспоминали о людях-факелах, с которых сгоревшая одежда спадала на землю вместе с лохмотьями кожи, и о толпах обезумевших людей, покрытых ужасными ожогами, которые с криком метались по улицам. В воздухе стоял удушающий смрад от горелого человеческого мяса. Всюду валялись люди, мертвые и умирающие. Было много таких, которые ослепли и оглохли и, тычась во все стороны, не могли ничего разобрать в царившем вокруг хаосе.

Несчастные, находившиеся от эпицентра на расстоянии до 800 м, за доли секунды сгорели в буквальном смысле слова - их внутренности испарились, а тела превратились в комки дымящихся углей. Находившиеся от эпицентра на расстоянии 1 км, были поражены лучевой болезнью в крайне тяжелой форме. Уже через несколько часов у них началась сильнейшая рвота, температура подскочила до 39-40 градусов, появились одышка и кровотечения. Затем на коже высыпали незаживающие язвы, состав крови резко изменился, волосы выпали. После ужасных страданий, обычно на второй или третий день, наступала смерть.

Всего от взрыва и лучевой болезни погибло около 240 тысяч человек. Около 160 тысяч получили лучевую болезнь в более легкой форме - их мучительная смерть оказалась отсроченной на несколько месяцев или лет. Когда известие о катастрофе распространилось по стране, вся Япония была парализована страхом. Он еще увеличился, после того как 9 августа самолет «Бокс Кар» майора Суини сбросил вторую бомбу на Нагасаки. Здесь также погибло и было ранено несколько сот тысяч жителей. Не в силах противостоять новому оружию, японское правительство капитулировало - атомная бомба положила конец Второй мировой войне.

Война закончилась. Она продолжалась всего шесть лет, но успела изменить мир и людей почти до неузнаваемости.

Человеческая цивилизация до 1939 года и человеческая цивилизация после 1945 года разительно не похожи друг на друга. Тому есть много причин, но одна из важнейших - появление ядерного оружия. Можно без преувеличений сказать, что тень Хиросимы лежит на всей второй половине XX века. Она стала глубоким нравственным ожогом для многих миллионов людей, как бывших современниками этой катастрофы, так и родившихся через десятилетия после нее. Современный человек уже не может думать о мире так, как думали о нем до 6 августа 1945 года - он слишком ясно понимает, что этот мир может за несколько мгновений превратиться в ничто.

Современный человек не может смотреть на войну, так как смотрели его деды и прадеды - он достоверно знает, что эта война будет последней, и в ней не окажется ни победителей, ни побежденных. Ядерное оружие наложило свой отпечаток на все сферы общественной жизни, и современная цивилизация не может жить по тем же законам, что шестьдесят или восемьдесят лет назад. Никто не понимал этого лучше самих создателей атомной бомбы.

«Люди нашей планеты , - писал Роберт Оппенгеймер, - должны объединиться. Ужас и разрушение, посеянные последней войной, диктуют нам эту мысль. Взрывы атомных бомб доказали ее со всей жестокостью. Другие люди в другое время уже говорили подобные слова - только о другом оружии и о других войнах. Они не добились успеха. Но тот, кто и сегодня скажет, что эти слова бесполезны, введен в заблуждение превратностями истории. Нас нельзя убедить в этом. Результаты нашего труда не оставляют человечеству другого выбора, кроме как создать объединенный мир. Мир, основанный на законности и гуманизме».

Изменение военной доктрины США в период с 1945 по 1996 год и основные концепции

//

На территории Соединенных Штатов, в Лос-Аламосе, в пустынных просторах штата Нью-Мексико, в 1942 году был создан американский ядерный центр. На его базе были развернуты работы по созданию ядерной бомбы. Общее руководство проектом было поручено талантливому физику-ядерщику Р. Оппенгеймеру. Под его началом были собраны лучшие умы того времени не только США и Англии, но практически всей Западной Европы. Над созданием ядерного оружия трудился огромный коллектив, включая 12 лауреатов Нобелевской премии. Не было недостатка и в финансовых средствах.

К лету 1945 года американцам удалось собрать две атомные бомбы, получившие названия «Малыш» и «Толстяк». Первая бомба весила 2722 кг и была снаряжена обогащенным Ураном-235. «Толстяк» с зарядом из Плутония-239 мощностью более 20 кт имела массу 3175 кг. 16 июня состоялось первое полигонное испытание ядерного устройства, приуроченное к встрече руководителей СССР, США, Великобритании и Франции.

К этому времени изменились отношения между бывшими соратниками. Следует отметить, что США, как только у них появилась атомная бомба, стремились к монопольному праву обладания ею, чтобы лишить другие страны возможности использовать атомную энергию по своему усмотрению.

Президент США Г. Трумэн стал первым политическим руководителем, кто принял решение на применение ядерных бомб. С военной точки зрения необходимости таких бомбардировок густонаселенных японских городов не было. Но политические мотивы в этот период превалировали над военными. Руководство Соединенных Штатов стремилось к главенству во всем послевоенном мире, а ядерные бомбардировки, по их мнению, должны были стать весомым подкреплением этих устремлений. С этой целью они стали добиваться принятия американского «плана Баруха», который закрепил бы за США монопольное владение атомным оружием, другими словами, «абсолютное военное превосходство».

Роковой час настал. 6 и 9 августа экипажи самолетов B-29 «Enola Gay» и «Bocks car» сбросили свой смертоносный груз на города Хиросима и Нагасаки. Общие людские потери и масштабы разрушений от этих бомбардировок характеризуются следующими цифрами: мгновенно погибло от теплового излучения (температура около 5000 градусов С) и ударной волны — 300 тысяч человек, еще 200 тысяч получили ранение, ожоги, облучились. На площади 12 кв. км были полностью разрушены все строения. Только в одной Хиросиме из 90 тысяч строений было уничтожено 62 тысячи. Эти бомбардировки потрясли весь мир. Считается, что это событие положило начало гонке ядерных вооружений и противостоянию двух политических систем того времени на новом качественном уровне.

Развитие американских стратегических наступательных вооружений после Второй Мировой войны осуществлялось в зависимости от положений военной доктрины. Ее политическая сторона определяла главную цель руководства США — достижение мирового господства. Главным препятствием на пути этих устремлений считался Советский Союз, который по их мнению должен был ликвидирован. В зависимости от расстановки сил в мире, достижений науки и техники менялись ее основные положения, что находило соответствующее отражение в принятии определенных стратегических стратегий (концепций). Каждая последующая стратегия не заменяла полностью предшествовавшую ей, а лишь модернизировала ее главным образом в вопросах определения путей строительства Вооруженных сил и способах ведения войны.

С середины 1945 года и по 1953 год американское военно-политическое руководство в вопросах строительства стратегических ядерных сил (СЯС) исходило из того, что США монопольно владеют ядерным оружием и могут достичь мирового господства путем ликвидации СССР в ходе ядерной войны. Подготовка к такой войне началась практически сразу после разгрома гитлеровской Германии. Об этом свидетельствует директива Объединенного комитета военного планирования № 432/д от 14 декабря 1945 года, где ставилась задача на подготовку атомной бомбардировки 20 советских городов — основных политических и промышленных центров Советского Союза. При этом планировалось использовать весь наличный на то время запас атомных бомб (196 штук), носителями которых являлись модернизированные бомбардировщики В-29. Определялся и способ их применения — внезапный атомный «первый удар», который должен поставить советское руководство перед фактом бесперспективности дальнейшего сопротивления.

Политическим обоснованием таких действий становится тезис о «советской угрозе», одним из главных авторов которого можно считать поверенного в делах США в СССР Дж. Кеннана. Именно он 22 февраля 1946 года послал в Вашингтон «длинную телеграмму», где в восьми тысячах слов обрисовал «жизненную угрозу», будто бы нависшую над США, и предложил стратегию конфронтации с Советским Союзом.

Президент Г. Трумэн дал указание разработать доктрину (в последствии получила название «доктрины Трумэна») проведения политики с позиции силы по отношению к СССР. Для централизации планирования и повышения эффективности применения стратегической авиации весной 1947 году создается стратегическое авиационное командование (САК). Одновременно ускоренными темпами реализуется задача совершенствования стратегической авиационной техники.

К середине 1948 года в Комитете начальников штабов был составлен план ядерной войны с СССР, получивший кодовое название «Чариотир». Он предусматривал, что война должна начаться «с концентрированных налетов с использованием атомных бомб против правительственных, политических и административных центров, промышленных городов и избранных предприятий нефтеочистительной промышленности с баз в западном полушарии и Англии». Только за первые 30 дней намечалось сбросить 133 ядерные бомбы на 70 советских городов.

Однако, как подсчитали американские военные аналитики, этого было недостаточно для достижения быстрой победы. Они считали, что за это время Советская Армия сможет овладеть ключевыми районами Европы и Азии. В начале 1949 года был создан специальный комитет из высших чинов армии, авиации и флота под руководством генерал-лейтенанта Х. Хармона, которому была поставлена задача попытаться оценить политические и военные последствия намеченного атомного наступления на Советский Союз с воздуха. Выводы и подсчеты комитета явно свидетельствовали, что США к ядерной войне пока не готовы.

В выводах комитета значилось, что требуется увеличить количественный состав САК, повысить его боевые возможности, пополнить ядерные арсеналы. Чтобы обеспечить нанесение массированного ядерного удара авиационными средствами Соединенным Штатам необходимо создать сеть баз вдоль границ СССР, с которых бомбардировщики-носители ядерного оружия могли осуществлять боевые вылеты по кратчайшим маршрутам к запланированным целям на советской территории. Необходимо развернуть серийное производство тяжелых стратегических межконтинентальных бомбардировщиков В-36, способных действовать с баз на американской территории.

Сообщение о том, что Советский Союз овладел секретом ядерного оружия вызвало у правящих кругов США желание как можно быстрее развязать превентивную войну. Был разработан план «Тройан», в котором предусматривалось начать боевые действия 1 января 1950 года. На то время САК располагало 840 стратегическими бомбардировщиками в строевых частях, 1350 — в резерве и свыше 300 атомными бомбами.

Чтобы оценить его жизненность, Комитет начальников штабов приказал группе генерал-лейтенанта Д. Хэлла проверить на штабных играх шансы выведения из строя девяти наиболее важных стратегических районов на территории Советского Союза. Проиграв воздушное наступление против СССР, аналитики Хэлла подвели итог: вероятность достижения указанных целей составляет 70 %, что повлечет потерю 55 % наличного состава бомбардировщиков. Выяснилось, что стратегическая авиация США в этом случае очень быстро потеряет боеспособность. Поэтому вопрос о превентивной войне в 1950 году был снят. Вскоре американское руководство смогло на деле убедиться в правильности таких оценок. В ходе начавшейся в 1950 году Корейской войны бомбардировщики В-29 понесли тяжелые потери от атак реактивной истребительной авиации.

Но ситуация в мире быстро менялась, что нашло свое отражение в американской стратегии «массированного возмездия», принятой в 1953 году. Она основывалась на превосходстве США над СССР в количестве ядерных боеприпасов и средствах их доставки. Предусматривалось ведение всеобщей ядерной войны против стран социалистического лагеря. Главным средством достижения победы считалась стратегическая авиация, на развитие которой направлялось до 50 % финансовых средств, выделяемых Министерству обороны на закупку вооружений.

В 1955 году САК располагало 1565 бомбардировщиками, 70 % из которых составляли реактивные В-47, и 4750 ядерными бомбами для них мощностью от 50 кт до 20 Мт. В этом же году на вооружение принимается тяжелый стратегический бомбардировщик В-52, который постепенно становится основным межконтинентальным носителем ядерного оружия.

В то же время военно-политическое руководство США начинает осознавать, что в условиях быстрого возрастания возможностей советских средств ПВО тяжелые бомбардировщики не смогут в одиночку решить задачу достижения победы в ядерной войне. В 1958 году на вооружение поступают баллистические ракеты средней дальности «Тор» и «Юпитер», развертывание которых ведется в Европе. Годом позже на боевое дежурство ставятся первые межконтинентальные ракеты «Атлас-D», заканчивается ввод в боевой состав атомной подводной лодки «Дж. Вашингтон» с ракетами «Поларис-А1».

С появлением в составе СЯС баллистических ракет возможности по нанесению ядерного удара у США значительно возрастают. Однако и в СССР к концу 50-х годов создаются межконтинентальные носители ядерного оружия, способные нанести ответный удар по территории Соединенных Штатов. Особую тревогу у Пентагона вызывали советские МБР. В этих условиях руководители Соединенных Штатов посчитали, что стратегия «массированного возмездия» не в полной мере соответствует современным реалиям и должна быть скорректирована.

К началу 1960 года ядерное планирование в США принимает централизованный характер. До этого каждый вид Вооруженных сил планировал применение ядерного оружия самостоятельно. Но увеличение числа стратегических носителей потребовало создания единого органа для планирования ядерных операций. Им стал Объединенный штаб планирования стратегических целей, подчиненный командующему САК и Комитету начальников штабов Вооруженных Сил США. В декабре 1960 года был составлен первый единый план ведения ядерной войны, получивший наименование «Единый комплексный оперативный план» — СИОП. Он предусматривал, в соответствии с требованиями стратегии «массированного возмездия», ведение против СССР и Китая только всеобщей ядерной войны с неограниченным применением ядерного оружия (3,5 тысячи ядерных боезарядов).

В 1961 году принимается стратегия «гибкого реагирования», отразившая изменения официальных взглядов на возможный характер войны с СССР. Кроме всеобщей ядерной войны американские стратеги стали допускать возможность ограниченного применения ядерного оружия и ведение войн обычными средствами поражения непродолжительное время (не более двух недель). Выбор способов и средств ведения войны должен был быть осуществлен с учетом сложившейся геостратегической ситуации, соотношения сил и наличия ресурсов.

На развитие американских стратегических вооружений новые установки отразились весьма значительно. Начинается бурный количественный рост МБР и БРПЛ. Совершенствованию последних уделяется особое внимание, так как их можно было использовать в качестве средств «передового базирования» в Европе. При этом американскому правительству уже не требовалось искать для них возможные районы размещения и уговаривать европейцев дать свое согласие на использование их территории, как это было в период развертывания ракет средней дальности.

Военно-политическое руководство США считало, что необходимо иметь такой количественный состав СЯС, применение которого обеспечило бы «гарантированное уничтожение» Советского Союза, как жизнеспособного государства.

В первые годы этого десятилетия была развернута значительная группировка МБР. Так, если в начале 1960 года в боевом составе САК имелось 20 ракет только одного типа — «Атлас-D», то к концу 1962 года — уже 294. К этому времени были приняты на вооружение межконтинентальные баллистические ракеты «Атлас» модификаций «E» и «F», «Титан-1» и «Минитмен-1А». Последние МБР по степени совершенства стояли на несколько порядков выше своих предшественниц. В этом же году на боевое патрулирование вышла десятая американская ПЛАРБ. Общее число БРПЛ «Поларис-А1» и «Поларис-А2» достигло 160 единиц. В строй вступили последние из заказанных тяжелых бомбардировщиков В-52Н и средних бомбардировщиков В-58. Общее количество бомбардировщиков в составе стратегического авиационного командования составило 1819. Таким образом, организационно оформилась американская ядерная триада стратегических наступательных сил (части и соединения МБР, атомных ракетных подводных лодок и стратегических бомбардировщиков), каждый компонент которой гармонично дополнял друг друга. На ее оснащении имелось свыше 6000 ядерных боезарядов.

В середине 1961 года был одобрен план СИОП-2, отражавший стратегию «гибкого реагирования». Он предусматривал проведение пяти взаимосвязанных операций по уничтожению советского ядерного арсенала, подавления системы ПВО, уничтожение органов и пунктов военного и государственного управления, крупных группировок войск, а также нанесение ударов по городам. Общее количество целей в плане составляло 6 тысяч. В месте тем разработчики плана учитывали и возможность нанесения Советским Союзом ответного ядерного удара по территории США.

В начале 1961 года была сформирована комиссия, в обязанности которой вменялось вырабатывать перспективные пути развития американских СЯС. В последствии такие комиссии создавались регулярно.

Осенью 1962 года мир снова оказался на грани ядерной войны. Разразившийся Карибский кризис заставил политиков всего мира взглянуть на ядерное оружие с новой стороны. Впервые оно явно сыграло роль сдерживающего фактора. Внезапное для США появление советских ракет средней дальности на Кубе и отсутствие у них подавляющего превосходства в количестве МБР и БРПЛ над Советским Союзом сделали военный путь разрешения конфликта невозможным.

Американское военное руководство тут же заявило о необходимости довооружения, фактически взяв курс на развязывание гонки стратегических наступательных вооружений (СНВ). Желания военных нашли должную поддержку в сенате США. На развитие СНВ были выделены громадные деньги, что позволило качественно и количественно улучшить СЯС. В 1965 году полностью были сняты с вооружения ракеты «Тор» и «Юпитер», «Атлас» всех модификаций и «Титан-1». На замену им поступили межконтинентальные ракеты «Минитмен-1В» и «Минитмен-2», а также тяжелая МБР «Титан-2».

Существенно количественно и качественно вырос морской компонент СНС. Учитывая такие факторы, как практически безраздельное господство ВМС США и объединенного флота НАТО на просторах мирового океана в начале 60-х годов, высокую живучесть, скрытность и мобильность ПЛАРБ, американское руководство решило значительно увеличить число развернутых подводных ракетоносцев, которые смогли бы успешно заменить ракеты средней дальности. Их главными целями должны были стать крупные промышленные и административные центры Советского Союза и других социалистических стран.

В 1967 году в боевом строю СЯС имелось 41 ПЛАРБ с 656 ракетами, из которых более 80 % составляли БРПЛ «Поларис-А3», 1054 МБР и свыше 800 тяжелых бомбардировщиков. После снятия с вооружения устаревших самолетов типа В-47 предназначавшиеся для них ядерные бомбы были ликвидированы. В связи с изменением тактики стратегической авиации на оснащение В-52 поступили крылатые ракеты AGM-28 «Хаунд Дог» с ядерной головной частью.

Быстрый рост во второй половине 60-х годов числа советских МБР типа «ОС» с улучшенными характеристиками, создание системы ПРО, сделали вероятность достижения Америкой быстрой победы в возможной ядерной войне мизерной.

Гонка стратегических ядерных вооружений ставила перед военно-промышленным комплексом США все новые и новые задачи. Требовалось найти новый путь быстрого наращивания ядерной мощи. Высокий научно-производственный уровень ведущих американских ракетостроительных фирм позволил решить и эту задачу. Конструкторы нашли способ значительного увеличения количества поднимаемых ядерных зарядов без увеличения числа их носителей. Были разработаны и внедрены разделяющиеся головные части (РГЧ) сначала с рассеивающимися боевыми элементами, а затем и с индивидуальным наведением.

Руководство США решило, что пришло время несколько скорректировать военно-техническую сторону своей военной доктрины. Используя испытанный тезис о «советской ракетной угрозе» и «отставании США», оно легко добилось выделения финансовых средств на новые стратегические вооружения. С 1970 года началось развертывание МБР «Минитмен-3» и БРПЛ «Посейдон-С3» с РГЧ типа «МИРВ». В тоже время устаревшие «Минитмен-1В» и «Поларисы» снимались с боевого дежурства.

В 1971 году официально принимается стратегия «реалистического устрашения». В основе ее была заложена идея ядерного превосходства над СССР. Авторы стратегии учитывали наступающее равенство в количестве стратегических носителей между США и СССР. К тому времени без учета ядерных сил Англии и Франции сложился следующий баланс стратегических вооружений. По МБР наземного базирования — у США 1054 против 1300 у Советского Союза, по числу БРПЛ — 656 против 300 и по стратегическим бомбардировщикам — 550 против 145 соответственно. Новая стратегия в области развития СНВ предусматривала резкое наращивание количества ядерных боевых блоков на баллистических ракетах при одновременном улучшении их тактико-технических характеристик, что должно было обеспечить качественное превосходство над СЯС Советского Союза.

Совершенствование стратегических наступательных сил нашло свое отражение в очередном плане — СИОП-4, принятом в 1971 году. Он был разработан с учетом взаимодействия всех компонентов ядерной триады и предусматривал поражение 16 тысяч целей.

Но под давлением мировой общественности руководство США вынуждено было пойти на переговоры по вопросам ядерного разоружения. Методы ведения таких переговоров регламентировала концепция «ведения переговоров с позиции силы» — составная часть стратегии «реалистического устрашения». В 1972 году был заключен Договор между США и СССР об ограничении систем ПРО и Временное соглашение о некоторых мерах в области ограничения СНВ (ОСВ-1). Однако, наращивание стратегического ядерного потенциала противостоящих политических систем продолжалось.

К середине 70-х годов было завершено развертывание ракетных систем «Минитмен-3» и «Посейдон». Все ПЛАРБ типа «Лафайет», оснащенные новыми ракетами, прошли модернизацию. Тяжелые бомбардировщики получили на вооружение ядерные УР SRAM. Все это привело к резкому возрастанию ядерного арсенала, закрепленного за стратегическими носителями. Так за пять лет с 1970 по 1975 год количество боевых блоков возросло с 5102 до 8500 штук. Полным ходом велось совершенствование системы боевого управления стратегическими вооружениями, что позволило реализовать принцип быстрого переприцеливания боевых блоков на новые цели. Чтобы полностью пересчитать и заменить полетное задание для одной ракеты теперь требовалось всего несколько десятков минут, а всю группировку МБР СНС можно было переприцелить за 10 часов. К концу 1979 года эта система была внедрена на всех пусковых установках межконтинентальных ракет и пунктах управления пуском. Одновременно повышалась защищенность шахтных пусковых установок МБР «Минитмен».

Качественное улучшение СНВ США позволило перейти от концепции «гарантированного уничтожения» к концепции «выбора целей», предусматривавшей многовариантные действия — от ограниченного ядерного удара несколькими ракетами до массированного удара по всему комплексу намеченных объектов поражения. Был составлен и утвержден в 1975 году план СИОП-5, предусматривавший нанесение ударов по военным, административным и экономическим объектам Советского Союза и стран Варшавского договора общим числом до 25 тысяч.

Основной формой применения американских СНВ считался внезапный массированный ядерный удар всеми боеготовыми МБР и БРПЛ, а также некоторым количеством тяжелых бомбардировщиков. К этому времени БРПЛ стали ведущими в ядерной триаде США. Если до 1970 года большая часть ядерных зарядов числилась за стратегической авиацией, то в 1975 году на 656 ракетах морского базирования было установлено 4536 боевых блока (на 1054 МБР — 2154 заряда, а на тяжелых бомбардировщиках — 1800). Изменились и взгляды на их применение. Кроме нанесения ударов по городам, учитывая малое подлетное время (12 — 18 минут), ракеты подводных лодок могли применяться для поражения стартующих советских МБР на активном участке траектории или непосредственно в пусковых установках, воспрепятствования их старта до подлета американских МБР. На последние возлагалась задача поражения высокозащищенных целей и прежде всего ШПУ и командных пунктов ракетных частей РВСН. Таким образом мог быть сорван или значительно ослаблен советский ответно-встречный ядерный удар по территории США. Тяжелые бомбардировщики планировалось применять для поражения сохранившихся или вновь выявленных целей.

Со второй половины 70-х годов начинается трансформация взглядов американского политического руководства на перспективы ядерной войны. Учитывая мнение большинства ученых о гибельности для США даже ответного советского ядерного удара, оно решило принять теорию ограниченной ядерной войны для одного ТВД, а конкретно, Европейского. Для ее осуществления были необходимы новые ядерные вооружения.

Администрация президента Дж. Картера выделила средства на разработку и производство высокоэффективной стратегической системы морского базирования «Трайдент». Реализацию данного проекта предусматривалось осуществить в два этапа. На первом планировалось перевооружить 12 ПЛАРБ типа «Дж. Мэдисон» ракетами «Трайдент-С4», а также построить и ввести в строй 8 ПЛАРБ нового поколения типа «Огайо» с 24 такими же ракетами. На втором этапе предполагалось построить еще 14 ПЛАРБ и вооружить все лодки этого проекта новой БРПЛ «Трайдент-D5» с более высокими тактико-техническими характеристиками.

В 1979 году президент Дж. Картер принимает решение о полномасштабном производстве межконтинентальной баллистической ракеты «Пискипер» («МХ»), которая по своим характеристикам должна была превзойти все существовавшие советские МБР. Ее разработка велась с середины 70-х годов наряду с БРСД «Першинг-2» и новым видом стратегических вооружений — крылатыми ракетами большой дальности наземного и воздушного базирования.

С приходом к власти администрации президента Р. Рейгана на свет появилась «доктрина неоглобализма», отражавшая новые взгляды военно-политического руководства США на пути достижения мирового господства. Она предусматривала широкий комплекс мероприятий (политических, экономических, идеологических, военных) по «отбрасыванию коммунизма», прямое использование военной силы против тех стран, где США усматривают наличие угрозы своим «жизненно важным интересам». Естественно была скорректирована и военно-техническая сторона доктрины. Основу ее на 80-е годы составила стратегия «прямого противоборства» с СССР в глобальном и региональном масштабах, направленная на достижение «полного и неоспоримого военного превосходства США».

Вскоре в Пентагоне были разработаны «Директивные указания по строительству вооруженных сил США» на ближайшие годы. В них, в частности, определялось, что в ядерной войне «США должны одержать верх и иметь возможность принудить СССР в короткие сроки прекратить военные действия на условиях США». Военными планами предусматривалось ведение как всеобщей, так и ограниченной ядерной войны в рамках одного ТВД. Кроме того, ставилась задача быть готовыми вести эффективную войну из космоса.

На основании этих положений были разработаны концепции развития СНС. Концепция «стратегической достаточности» требовала иметь такой боевой состав стратегических носителей и ядерных боевых блоков к ним, чтобы обеспечить «устрашение» Советского Союза». Концепция «активного противодействия» предусматривала пути обеспечения гибкости применения стратегических наступательных сил в любой обстановке — от одиночного применения ядерного оружия до использования всего ядерного арсенала.

В марте 1980 года президент утверждает план СИОП-5Д. Планом предусматривалось нанесение трех вариантов ядерных ударов: превентивного, ответно-встречного и ответного. Количество объектов поражения составило 40 тысяч, куда вошли 900 городов с населением свыше 250 тысяч в каждом, 15 тысяч промышленных и экономических объектов, 3500 военных целей на территории СССР, стран Варшавского договора, КНР, Вьетнама и Кубы.

В начале октября 1981 года президент Рейган объявил свою «стратегическую программу» на 80-е годы, содержавшую установки на дальнейшее наращивание стратегического ядерного потенциала. На шести заседаниях комитета по военным вопросам конгресса США состоялись последние слушания по этой программе. На них были приглашены представители президента, Министерства обороны, ведущие ученые в области вооружений. В результате всесторонних обсуждений всех структурных элементов программа наращивания стратегических вооружений была одобрена. В соответствии с ней, начиная с 1983 года, в качестве ядерных средств передового базирования были развернуты в Европе 108 пусковых установок БРСД «Першинг-2», 464 крылатые ракеты наземного базирования BGM-109G.

Во второй половине 80-х годов была разработана еще одна концепция -«существенной эквивалентности». В ней определялось, как в условиях сокращения и ликвидации одних типов СНВ за счет улучшения боевых характеристик других обеспечить качественное превосходство над СЯС СССР.

С 1985 года началось развертывание 50 МБР «МХ» шахтного базирования (еще 50 ракет этого типа в мобильном варианте планировалось поставить на боевое дежурство в начале 90-х годов) и 100 тяжелых бомбардировщиков В-1В. Полным ходом велось производство крылатых ракет воздушного базирования BGM-86 для оснащения 180 бомбардировщиков В-52. На 350 МБР «Минитмен-3» устанавливалась новая РГЧ с более мощными боевыми блоками, одновременно модернизировалась система управления.

Интересная ситуация сложилась после размещения на территории Западной Германии ракет «Першинг-2». Формально эта группировка не входила в состав СНС США и являлась ядерным средством верховного главнокомандующего объединенными вооруженными силами НАТО в Европе (эту должность всегда занимали представители США). Официальной версией, для мировой общественности, ее развертывание в Европе была реакция на появление у Советского Союза ракет РСД-10 (SS-20) и необходимости довооружения НАТО перед лицом ракетной угрозы с Востока. На самом деле причина была конечно же другая, что и подтвердил верховный главнокомандующий объединенных вооруженных сил НАТО в Европе генерал Б. Роджерс. Он в 1983 году в одном из своих выступлений сказал: «Большинство людей полагают, что мы предпринимаем модернизацию своего оружия из-за ракет SS-20. Мы осуществили бы модернизацию и в том случае, если бы ракет SS-20 не было».

Главное предназначение «Першингов» (учтенных в плане «СИОП») было нанесение «обезглавливающего удара» по командным пунктам стратегических формирований Вооруженных сил СССР и РВСН в Восточной Европе, что должно было сорвать осуществление советского ответного удара. Для этого они обладали всеми необходимыми тактико-техническими характеристиками: малым временем подлета (8-10 минут), высокой точностью стрельбы и ядерным зарядом, способным поражать высокозащищенные цели. Таким образом, становилось ясно, что они предназначались для решения стратегических наступательных задач.

Опасным оружием стали крылатые ракеты наземного базирования, также считавшиеся ядерным средством НАТО. Но применение их предусматривалось в соответствии с планом «СИОП». Главное их достоинство заключалось в высокой точности стрельбы (до 30 м) и скрытности полета, который происходил на высоте нескольких десятков метров, что в сочетании с малой эффективной площадью рассеивания делало перехват системой ПВО таких ракет крайне сложным делом. Объектами поражения для КР могли быть любые точечные высокозащищенные цели типа командных пунктов, ШПУ и т. п.

Однако, к концу 80-х годов США и СССР накопили такой огромный ядерный потенциал, что он давно перерос разумные пределы. Создалась ситуация, когда необходимо было принять решение, что дальше делать. Положение усугублялось тем, что половина МБР («Минитмен-2» и часть «Минитмен-3») находились в эксплуатации 20 и более лет. Поддержание их в боеготовом состоянии обходилось с каждым годом все дороже. В этих условиях руководством страны было принято решение о возможности 50 % сокращения СНВ при условии ответного шага со стороны Советского Союза. Такой договор был заключен в конце июля 1991 года. Его положения во многом определили пути развития стратегических вооружений на 90-е годы. Была дана установка, на развитие таких СНВ, чтобы на парирование угрозы от них, СССР потребовалось бы затратить большие финансовые и материальные средства.

Ситуация коренным образом изменилась после развала Советского Союза. В результате США достигли мирового господства и остались единственной «сверхдержавой» мира. Наконец была выполнена политическая часть американской военной доктрины. Но с окончанием «холодной войны», как считает администрация Б. Клинтона, угрозы для интересов США сохранились. В 1995 году появился доклад «Национальная военная стратегия», представленный председателем комитета начальников штабов ВС, и направленный Конгрессу. Он стал последним из официальных документов, в которых излагались положения новой военной доктрины. В ее основе лежит «стратегия гибкой и избирательной вовлеченности». Определенные коррективы в новой стратегии внесены в содержание основных стратегических концепций.

Военно-политическое руководство по-прежнему делает ставку на силу, а Вооруженные силы готовятся к ведению войны и достижению «победы в любых войнах, где и когда они бы ни возникали». Естественно, проводится совершенствование военной структуры, в том числе и стратегических ядерных сил. На них возлагается задача сдерживания и устрашения возможного противника, как в мирный период, так и входе всеобщей или ограниченной войны с применением обычных средств поражения.

Значительное место в теоретических разработках уделено месту и способам действия СНС в ядерной войне. С учетом сложившегося соотношения сил между США и Россией в области стратегических вооружений, американское военно-политическое руководство считает, что цели в ядерной войне могут быть достигнуты в результате многократных и разнесенных по времени ядерных ударов по объектам военного и экономического потенциалов, административного и политического управления. По времени это могут быть как упреждающие, так и ответно-встречные действия.

Предусматриваются следующие виды ядерных ударов: выборочные — для поражения различных органов управления, ограниченные или региональные (например, по группировкам войск противника в ходе обычной войны при неудачном развитии ситуации) и массированные. В связи с этим проведена определенная реорганизация СНВ США. Дальнейшее изменение американских взглядов на возможное развитие и применение стратегических ядерных вооружений можно ожидать в начале следующего тысячелетия.

12 августа 1953 года в 7.30 утра на Семипалатинском полигоне была испытана первая советская водородная бомба , которая имела служебное название "Изделие РДС‑6c". Это было четвертое по счету советское испытание ядерного оружия.

Начало первых работ по термоядерной программе в СССР относится ещё к 1945 году . Тогда была получена информация об исследованиях, ведущихся в США над термоядерной проблемой. Они были начаты по инициативе американского физика Эдварда Теллера в 1942 году. За основу была взята теллеровская концепция термоядерного оружия, получившая в кругах советских ученых‑ядерщиков название "труба" ‑ цилиндрический контейнер с жидким дейтерием, который должен был нагреваться от взрыва инициирующего устройства типа обычной атомной бомбы. Только в 1950 году американцы установили, что "труба" бесперспективна, и они продолжили разработку других конструкций. Но к этому времени советскими физиками уже была самостоятельно разработана другая концепция термоядерного оружия, которая вскоре ‑ в 1953 году ‑ привела к успеху.

Альтернативную схему водородной бомбы придумал Андрей Сахаров. В основу бомбы им была положена идея "слойки" и применения дейтерида лития‑6. Разработанный в КБ‑11 (сегодня это город Саров, бывший Арзамас‑16, Нижегородская область) термоядерный заряд РДС‑6с представлял собой сферическую систему из слоев урана и термоядерного горючего, окруженных химическим взрывчатым веществом.

Академик Сахаров - депутат и диссидент 21 мая исполняется 90 лет со дня рождения советского физика, политического деятеля, диссидента, одного из создателя советской водородной бомбы, лауреата Нобелевской премии мира академика Андрея Сахарова. Он умер в 1989 году в возрасте 68 лет, семь из которых Андрей Дмитриевич провел в ссылке.

Для увеличения энерговыделения заряда в его конструкции был использован тритий. Основная задача при создании подобного оружия заключалась в том, чтобы с помощью энергии, выделенной при взрыве атомной бомбы, нагреть и поджечь тяжелый водород — дейтерий, осуществить термоядерные реакции с выделением энергии, способные сами себя поддерживать. Для увеличения доли "сгоревшего" дейтерия Сахаров предложил окружить дейтерий оболочкой из обычного природного урана, который должен был замедлить разлет и, главное, существенно повысить плотность дейтерия. Явление ионизационного сжатия термоядерного горючего, ставшее основой первой советской водородной бомбы, до сих пор называют "сахаризацией".

По результатам работ над первой водородной бомбой Андрей Сахаров получил звание Героя Соцтруда и лауреата Сталинской премии.

"Изделие РДС‑6с" было выполнено в виде транспортабельной бомбы весом 7 тонн, которая помещалась в бомбовом люке бомбардировщика Ту‑16. Для сравнения — бомба, созданная американцами, весила 54 тонн и была размером с трехэтажный дом.

Чтобы оценить разрушительные воздействия новой бомбы, на Семипалатинском полигоне построили город из промышленных и административных зданий. В общей сложности на поле имелось 190 различных сооружений. В этом испытании впервые были применены вакуумные заборники радиохимических проб, автоматически открывавшиеся под действием ударной волны. Всего к испытаниям РДС‑6с было подготовлено 500 различных измерительных, регистрирующих и киносъемочных приборов, установленных в подземных казематах и прочных наземных сооружениях. Авиационно‑техническое обеспечение испытаний — измерение давления ударной волны на самолет, находящийся в воздухе в момент взрыва изделия, забор проб воздуха из радиоактивного облака, аэрофотосъемка района осуществлялось специальной летной частью. Подрыв бомбы осуществлялся дистанционно, подачей сигнала с пульта, который находился в бункере.

Было решено произвести взрыв на стальной башне высотой 40 метров, заряд был расположен на высоте 30 метров . Радиоактивный грунт от прошлых испытаний был удален на безопасное расстояние, специальные сооружения были отстроены на своих же местах на старых фундаментах, в 5 метрах от башни был сооружен бункер для установки разработанной в ИХФ АН СССР аппаратуры, регистрирующей термоядерные процессы.

На поле установили военную технику всех родов войск. В ходе испытаний были уничтожены все опытные сооружения в радиусе до четырех километров. Взрыв водородной бомбы мог бы полностью разрушить город в 8 километров в поперечнике. Экологические последствия взрыва оказались ужасающими: на долю первого взрыва приходится 82% стронция‑90 и 75% цезия‑137.

Мощность бомбы достигла 400 килотонн, в 20 раз больше первых атомных бомб в США и СССР.

Уничтожение последнего ядерного заряда в Семипалатинске. Справка 31 мая 1995 г. на бывшем Семипалатинском полигоне был уничтожен последний ядерный заряд. Семипалатинский полигон был создан в 1948 г. специально для проведения испытаний первого советского ядерного устройства. Полигон располагался в северо-восточном Казахстане.

Работа по созданию водородной бомбы стала первой в мире интеллектуальной "битвой умов" поистине мирового масштаба. Создание водородной бомбы инициировало появление совершенно новых научных направлений — физики высокотемпературной плазмы, физики сверхвысоких плотностей энергии, физики аномальных давлений. Впервые в истории человечества было масштабно использовано математическое моделирование.

Работы по "изделию РДС‑6с" создали научно‑технический задел, который затем был использован в разработке несравнимо более совершенной водородной бомбы принципиально нового типа — водородной бомбы двухстадийной конструкции.

Водородная бомба сахаровской конструкции не только стала серьезным контраргументом в политическом противостоянии между США и СССР, но и послужила причиной бурного развития советской космонавтики тех лет. Именно после успешных ядерных испытаний ОКБ Королева получило важное правительственное задание разработать межконтинентальную баллистическую ракету для доставки к цели созданного заряда. В дальнейшем ракета, получившая название "семерка", вывела в космос первый искусственный спутник Земли , и именно на ней стартовал первый космонавт планеты Юрий Гагарин.

Материал подготовлен на основе информации открытых источников