Диплоидный набор

"...Диплоидный набор - набор хромосом в соматических клетках организма, который содержит два гомологичных набора хромосом, из которых один передается от одного родителя, а второй - от другого..."

(утв. председателем Комитета здравоохранения г. Москвы 17.01.2000)


Официальная терминология . Академик.ру . 2012 .

Смотреть что такое "Диплоидный набор" в других словарях:

    диплоидный набор - Полный набор генетического материала, содержащийся в парных хромосомах Тематики биотехнологии EN diploid …

    ДИПЛОИДНЫЙ НАБОР - Нормальное число хромосом в соматических клетках определенных видов. У людей диплоидный набор – 46. Диплоидный набор представляет собой двойной гаплоидный набор … Толковый словарь по психологии

    Диплоидный набор - (греч. diploos двойной) нормальное количество хромосом в соматических клетках (у человека 46) … Энциклопедический словарь по психологии и педагогике

    Диплоидный набор хромосом - * дыплоідны набор храмасом * diploid chromosome number …

    диплоидный набор хромосом - ЭМБРИОЛОГИЯ ЖИВОТНЫХ ДИПЛОИДНЫЙ НАБОР ХРОМОСОМ, ДВОЙНОЙ НАБОР ХРОМОСОМ (2п) – набор хромосом, содержащий по две копии каждой из гомологичных хромосом … Общая эмбриология: Терминологический словарь

    диплоидный набор хромосом - diploidinis chromosomų rinkinys statusas T sritis augalininkystė apibrėžtis Du haploidiniai chromosomų rinkiniai, turintys tik vieno arba abiejų tėvų chromosomas. atitikmenys: angl. diploid chromosome set rus. диплоидный набор хромосом … Žemės ūkio augalų selekcijos ir sėklininkystės terminų žodynas

    диплоидный набор хромосом - (син.: двойной набор хромосом, зиготический набор хромосом, полный набор хромосом, соматический набор хромосом) совокупность хромосом, присущая соматическим клеткам, в которой все характерные для данного биологического вида хромосомы представлены … Большой медицинский словарь

    ДИПЛОИДНЫЙ НАБОР ХРОМОСОМ - удвоенное число хромосом в зиготе и соматических клетках взрослого организма … Словарь ботанических терминов

    диплоидный (соматический) партеногенез - Форма партеногенеза, при котором яйцо содержит нередуцированный (диплоидный) набор хромосом. [Арефьев В.А., Лисовенко Л.А. Англо русский толковый словарь генетических терминов 1995 407с.] Тематики генетика EN diploid… … Справочник технического переводчика

    Диплоидный партеногенез соматический п - Диплоидный партеногенез, соматический п. * дыплоідны партэнагенез, саматычны п. * diploid parthenogenesis or somatic p. or parthenogamy форма партеногенеза, при котором яйцо содержит нередуцированный (диплоидный) набор хромосом … Генетика. Энциклопедический словарь

Гомологичные хромосомы (гомологи) - это парные хромосомы, аутосомы, по одной от каждого родителя в диплоидных клетках. Перед обычным митотическим делением каждый из пары гомологов удваивается, и две образовавшиеся копии остаются соединенными вместе в центромерной области. Эти копии называются сестринскими хроматидами. Гомологичные хромосомы конъюгируют между собой в процессе мейоза, т.е. сближаются и соединяются в пары. У них одинаковые локусы расположены в одной и той же линейной последовательности. Соответствующие локусы гомологичных хромосом могут нести как одинаковые, так и разные варианты (аллели) одних и тех же генов.

Диплоидный Набор Хромосом -совокупность хромосом, присущая соматическим клеткам, в которой все характерные для данного биологического вида хромосомы представлены попарно; у человека Д н х содержит 44 аутосомы и 2 половые хромосомы.

Диплоидный набор хромосом клетки называется кариотипом (от греч. karyon- ядро, typhe-форма). Этот термин введен в 1924 г. со­ветским цитологом Г. А. Левитским. Нормальный кариотип человека включает 46 хромосом, или 23 пары; из них 22 пары аутосом и одна па­ра- половых хромосом (гетерохромосом).

27.Гетерохроматин и эухроматин.

Хроматин, его классификация .

В ядре клеток обнаруживаются мелкие зернышки и глыбки материала, который окрашивается основными красителями и поэтому был назван хроматином (от греч. chroma – краска). Хроматин представляет собой дезоксирибонуклеопротеид (ДНП) и состоит из ДНК, соединённой с белка-ми-гистонами или негистоновыми белками.

Классификация хроматина . Различают два вида хроматина:

1 ) Эухроматин, активный хроматин - участки хроматина, сохраняющие деспирализованное состояние элементарных дезоксирибонуклеопротеидных нитей (ДНП) в покоящемся ядре, т. е. в интерфазе.

Эухроматин отличается от гетерохроматина также способностью к интенсивному синтезу рибонуклеиновой кислоты (РНК) и большим содержанием негистоновых белков. В нём, помимо ДНП, имеются рибонуклеопротеидные частицы (РНП-гранулы) диаметром 200-500, которые служат для завершения созревания РНК и переноса ее в цитоплазму. Эухроматин содержит большинство структурных генов организма

2) гетерохроматин - плотно спирализованная часть хроматина. Гетерохроматин соответствует конденсированным, плотно скрученным сегментам хромосом (что делает их недоступными для транскрипции). Гетерохроматин располагается ближе к оболочке ядра, более компактен, чем эухроматин и содержит “молчащие” гены, т.е. гены, которые в настоящий момент неактивны. Различают конститутивный и факультативный гетерохроматин. Конститутивный гетерохроматин никогда не переходит в эухроматин и является гетерохроматином во всех типах клеток. Факультативный гетерохроматин может превращаться в эухоматин в некоторых клетках или на разных стадиях онтогенеза организма.

28. Значение механизмов положительных и отрицательных обратных связей. Иммунитет.

Обратная связь характеризует системы регулирования и управления в живой природе, обществе и технике. Различают положительную и отрицательную обратную связь. Обратная связь классифицируют также в соответствии с природой тел и сред, посредством которых они осуществляются. Обратную связь в сложных системах рассматривают как передачу информации о протекании процесса, на основе которой вырабатывается то или иное управляющее воздействие.

Отрицательная обратная связь (ООС) – тип обратной связи, при котором входной сигнал системы изменяется таким образом, чтобы противодействовать изменению выходного сигнала. Отрицательная обратная связь делает систему более устойчивой к случайному изменению параметров. Отрицательная обратная связь широко используется живыми системами разных уровней организации – от клетки до экосистем – для поддержания гомеостаза. Например, в клетках на принципе отрицательной обратной связи основаны многие механизмы регуляции работы генов, а также регуляция работы ферментов (ингибирование конечным продуктом метаболического пути). В организме на этом же принципе основана система гипоталамо-гипофизарной регуляции функций, а также многие механизмы нервной регуляции, поддерживающие отдельные параметры гомеостаза (терморегуляция, поддержание постоянной концентрации диоксида углерода и глюкозы в крови и др.).Положительная обратная связь (ПОС) – тип обратной связи, при котором изменение выходного сигнала системы приводит к такому изменению входного сигнала, которое способствует дальнейшему отклонению выходного сигнала от первоначального значения.

Положительная обратная связь ускоряет реакцию системы на изменение входного сигнала, поэтому её используют в определённых ситуациях, когда требуется быстрая реакция в ответ на изменение внешних параметров. В то же время положительная обратная связь приводит к неустойчивости и возникновению качественно новых систем, называемых генераторы (производители).Положительная обратная связь рассогласует систему, и, в конечном счёте, существующая система трансформируется в другую систему, которая оказывается более устойчивой (то есть в ней начинают действовать отрицательные обратные связи).Действие механизма нелинейной положительной обратной связи ведёт к тому, что система начинает развиваться в режиме с обострением.Положительная обратная связь играет важную роль в макроэволюции. В целом, в макроэволюции положительная обратная связь приводит к гиперболическому ускорению темпов развития, что создает эффект равномерного распределения событий по логарифмической шкале времени.

Иммунитет (лат. immunitas - освобождение, избавление от чего-либо) - невосприимчивость, сопротивляемость организма к инфекциям и инвазиям чужеродных организмов (в том числе - болезнетворных микроорганизмов), а также воздействию чужеродных веществ, обладающих антигенными свойствами. Иммунные реакции возникают и на собственные клетки организма, измененные в антигенном отношении.

Иммунитет делится на врождённый и приобретенный.

    Врождённый (неспецифический, конституционный) иммунитет обусловлен анатомическими, физиологическими, клеточными или молекулярными особенностями, закрепленными наследственно. Как правило, не имеет строгой специфичности к антигенам, и не обладает памятью о первичном контакте с чужеродным агентом

Приобретенный иммунитет делится на активный и пассивный.

    Приобретенный активный иммунитет возникает после перенесенного заболевания или после введения вакцины.

    Приобретенный пассивный иммунитет развивается при введении в организм готовых антител в виде сыворотки или передаче их новорожденному с молозивом матери или внутриутробным способом.

Также иммунитет делится на естественный и искусственный .

    Естественный иммунитет включает врожденный иммунитет и приобретенный активный (после перенесенного заболевания)

    А также пассивный при передаче антител ребёнку от матери.

Вы никогда не задумывались о том, почему родившийся и подросший ребенок похож на своих родителей внешностью и привычками? "Генетика такая", - наверное, скажете вы. И многие знают, что у родителей и детей похожая ДНК. Вот ее и содержат хромосомы. "А это еще что такое?" - недоуменно воскликнут девять человек из десяти, столкнувшихся с данным понятием. Существует несколько их схем расположения. Сегодня мы рассмотрим гаплоидный и диплоидный набор хромосом. Но давайте сначала разберемся, что это такое.

Определение понятия

Хромосома является нуклеопротеидной структурой, одной из составляющих ядра эукариотической клетки. Она хранит, реализует и передает наследственную информацию. Хромосомы можно различить с помощью микроскопа только в то время, когда происходит митотическое или мейотическое деление клетки. Кариотип, как называется совокупность всех хромосом клетки - видоспецифичный признак с относительно низким уровнем индивидуальной изменчивости. Эти содержащие ДНК структуры у эукариотических организмов имеются в митохондриях, ядре и пластидах. У прокариотических - в клетках без ядра. А хромосомами вирусов является ДНК- или РНК-молекула, находящаяся в капсиде.

История понятия

По наиболее распространенной версии, хромосомы были открыты в 1882 году немецким анатомом Вальтером Флемингом. Хотя "открыл" - это громко сказано, им лишь была собрана и упорядочена вся информация о них. В 1888 году немецкий гистолог Генрих Вальдейер впервые предложил называть новые структуры хромосомами. Трудно ответить, когда и кем были сделаны первые их описания и рисунки. Через пару лет после того, как были открыты законы Менделя, предположили, что хромосомы играют важную генетическую роль. Хромосомная теория была подтверждена в 1915 году людьми, основавшими классическую генетику. Ими стали Г. Мёллер, К. Бриджес, А. Стёртевант и Т. Морган. Последним в 1933-м была получена Нобелевская премия в области физиологии и медицины за то, что он обосновал роль хромосом в наследственности.

Плоидность

Общее количество одинаковых хромосом указывает на их плоидность. Существует гаплоидный, полиплоидный и диплоидный набор хромосом. Сейчас мы поговорим о первом и третьем.

Гаплоидный набор хромосом

Начнем с гаплоидного. Он представляет собой скопление совершенно разных хромосом, т.е. в организме-гаплоиде есть несколько этих нуклеопротеидных структур, непохожих друг на друга (фото). Гаплоидный набор хромосом характерен для растений, водорослей и грибов.

Диплоидный набор хромосом

Этот набор является таким собранием хромосом, при котором у каждой из них есть двойник, т.е. эти нуклепротеидные структуры расположены попарно (фото). Диплоидный набор хромосом характерен для всех животных, в том числе и человека. Кстати, о последнем. У здорового человека их 46, т.е. 23 пары. Однако его пол определяют всего две, называемые половыми, - Х и Y. Их расположение определяется еще в утробе матери. Если схема таких хромосом ХХ - родится девочка, если же они расположены в виде XY - родится мальчик. Однако могут наблюдаться и нарушения плоидности, ведущие к негативным изменениям в физическом и психическом состоянии организма, такие, как:

Эти болезни носят генетический характер и являются неизлечимыми. Дети и взрослые с одним из таких или многих похожих хромосомных синдромов ведут неполноценный образ жизни, а некоторые и вовсе не доживают до зрелого возраста.

Заключение

Видите, до чего важны хромосомы для всех организмов. У различных видов животных и растений разное количество и число наборов этих нуклеопротеидных структур.

От родителей детям по наследству передается жилая площадь и другое личное имущество. Но унаследовать можно не только материальные ценности: в каждом ребенке имеются гены родителей, младшее поколение наследует от старшего нематериальные ценности (форма лица, рук, особенности головы, цвет волос и т.д.). За передачу характерных признаков от родителей детям в организме отвечает дезоксирибонуклеиновая кислота (ДНК). Это вещество содержит в себе биологическую информацию об изменчивости и записано в виде особого кода. Хранит этот код хромосома.

Так сколько у человека хромосом? Хромосом всего 46, и вот как они считаются: всего в клетке человека содержится 23 пары хромосом, в каждой паре находится 2 абсолютно одинаковые хромосомы, но пары отличаются между собой. Так, 45 и 46 являются половыми, причем эта пара одинаковая только у женщин, у мужчин они разные. Все хромосомы кроме половых называются аутосомами. Они больше чем на половину состоят из белков. По внешнему виду хромосомы отличаются: некоторые потоньше, другие покороче, но каждая имеет близнеца.

Хромосомный набор человека (или кариотип) представляет собой генетическую структуру, несущую ответственность за передачу наследственности. Увидеть их под микроскопом можно только во время деления клетки в стадии метафазы. Именно в этот момент хромосомы формируются из хроматина, приобретая плоидность: у каждого живого организма своя плоидность, клетка человека имеет 23 пары.

Гаплоидный и диплоидный набор хромосом

Плоидность – количество хромосомных наборов в ядрах клеток. В живых организмах они могут быть парными и непарными. Так уж определено, что у человека в клетках образуется диплоидный набор хромосом. Диплоидный (полный, двойной набор хромосом) присущ всем соматическим клеткам, у человека он представлен 44 аутосомами и 2 половыми хромосомами.

Гаплоидный набор хромосом – представляет собой одинарный набор непарных хромосом половых клеток. При таком наборе в ядрах содержится 22 аутосомы и 1 половая. Гаплоидный и диплоидный наборы хромосом могут присутствовать одновременно (при половом процессе). В это время происходит чередование гаплоидной и диплоидной фазы: из полного набора посредством деления образуется одинарный набор, затем два одинарных сливаются, образуя полный набор и так далее.

Нарушение хромосомного набора. Во время развития на клеточном уровне могут происходить свои сбои и нарушения. Изменения в кариотипе (хромосомном наборе) человека приводят к хромосомным заболеваниям. Самым известным из них является синдром Дауна. При таком заболевании сбой происходит в 21 паре, когда к двум одинаковым хромосомам прибавляется точно такая же, но третья лишняя (образуется триосомия).

Нередко при нарушении 21-ой пары хромосом плод не успевает развиться и погибает, но рожденный ребенок с синдромом Дауна обречен на сокращенную жизнь и отсталое умственное развитие. Это заболевание неизлечимо. Известны нарушения не только по 21-й паре, имеет место нарушение по 18-й (синдром Эдвардса), 13-й (синдром Патау) и 23-й (синдром Шерешевского-Тернера) паре хромосом.

Изменения развития на хромосомном уровне приводят к неизлечимым заболеваниям. Как следствие – сниженная жизнеспособность, особенно новорожденных детей, отклонения в интеллектуальном развитии. Дети, страдающие хромосомными болезнями, заторможены в росте, а половые органы не развиваются согласно возрасту. На сегодняшний день не существует методов защиты клеток от появления неправильного хромосомного набора.

Что же может послужить причиной генетического сбоя.