С памятного летнего дня 1909 года, когда русский гистолог Александр Максимов ввел термин «стволовые клетки», о них не утихают споры. Ученые каждый год раскрывают их секреты, что порождает новые загадки.

Итак, сстволовые клетки. Что это такое - панацея от всех недугов или величайшее заблуждение лучших умов медицинской науки? Опыты над животными подтверждают, что с помощью этих чудо-клеток можно лечить злокачественные опухоли, воспаления в суставах, болезни печени, сердца, желудка. Список городов России, где применяют такой прогрессивный метод, пополнил и Оренбург. Стволовые клетки здесь начали использовать для лечения суставов. Но есть ученые, которые весьма сдержанно высказываются об использовании стволовых клеток на нынешнем уровне знаний об их влиянии на организм и предлагают лечить ими только тех, у которых нет другого шанса спасти свою жизнь.

Стволовые клетки: что это такое

Уже и дети знают, что живой организм, будь то человек, животное или растение, получается после слияния мужской и женской половых клеток. В итоге образуется зигота. Это диплоидная структура, имеющая полный хромосомный набор и дающая начало абсолютно любым клеткам. Более простым языком зигота - это уникальное природное творение, из которого непостижимым пока для науки образом создаются все части живых тел.

Понятное дело, что зигота для этого должна образовать много клеточных структур, чтобы на все органы хватило. У млекопитающих она начинает делиться уже через сутки после своего образования. В результате получается 2 маленькие «дочки-зиготки», 100 % идентичные их «маме-зиготе». Еще через полтора суток «дочки» снова делятся надвое, образуя уже 4 близняшки - «внучки». К концу 5-го дня в зародыше находится около 30 клеток, точных копий первоначальной зиготе, только в несколько раз меньше ее по размеру. Называются они бластомерами. На этом этапе ДНК и белки в них активно синтезируются, но геном пока не задействован, а в ядрах не выполняется транскрипция, то есть, они еще незрелые. Надеемся, мы очень наглядно объяснили, стволовые клетки, что это такое. Утрировано можно назвать их просто тестом, а что из него вылепит природа, ручки, ножки или сердце и печенку, не знает никто. Стволовые клетки присутствуют в организмах не только на стартовом этапе их развития, но и тогда, когда все органы уже полностью формированы, то есть, до конца жизни. Они нужны для восстановления тканей после повреждения, только у пожилых людей стволовых клеток примерно в 50 раз меньше, чем у юных. Все они обладают двумя свойствами - способностью самообновляться без дифференциации и способностью производить клетки узкоспециализированные.

Эмбриональные стволовые клетки, что это такое

Сокращенно их именуют ЭСК. Они, как было сказано выше, образуются из зиготы и составляют клеточную массу эмбриона на самой первой стадии его жизни. Все они плюрипотентные, то есть могут превратиться в клетку любого органа. Важной отличительной чертой ЭСК является то, что они пока не умеют вырабатывать антигены, отвечающие за тканевую совместимость. Каждый из нас имеет индивидуальный набор таких антигенов, что приводит к непризнанию донорских стволовых клеток иммунной системой того, кому их вводят. С ЭСК эта проблема минимальна, поэтому их предложено использовать при терапевтических процедурах, например, проводить лечение суставов стволовыми клетками. Однако, у подопытных мышей с ослабленным иммунитетом, кому были трансплантированы ЭСК, наблюдалось появление злокачественных опухолей. Так что, точного ответа, что происходит с системами человеческого тела после введения в его органы ЭСК, пока нет. Вторым недостатком является то, что эмбрион после их изъятия погибает, поэтому аутогенный материал получить невозможно, только донорский.

Стволовые клетки фетальные, или ФСК

Этот материал получают из частей плода после аборта, если плоду не более 12 недель. На этом сроке первоначальные стволовые клетки или бластомеры уже определились со своей дальнейшей судьбой и начали дифференцировку. То есть они уже прошли определенное число делений. Вторая их особенность в том, что из ФСК нельзя сделать любые нужные нам клетки, а только что-то одно, например, ткани органов нервной системы, или сердечно-сосудистой, или костно-хрящевой. Это является их большим преимуществом, потому что врачи уже более целенаправленно могут их использовать и снизить риск осложнений. Именно на этих принципах основано, например, лечение артроза стволовыми клетками. В России пока этот метод проходит этап испытаний, так как ФСК имеют некоторые недостатки. Они заключаются в том, что в клетках плода уже могут присутствовать вирусы гепатита, СПИДа, микоплазмы и некоторые другие. Поэтому такой материал должен в обязательном порядке подвергаться дорогостоящему дополнительному обследованию и подготовке на специальном оборудовании. Второй проблемой в их использовании является юридический вопрос, который должен быть обязательно согласован.

Стволовые клетки постнатальные или ПСК

Понятие «постнатальный» означает «после рождения», то есть на протяжении всей жизни индивида. Считается, что на этом этапе не существует качественных стволовых клеток, но все-таки они есть, причем даже у пожилых людей, только обладают малой потентностью (потенциалом). Зато их можно использовать с большой эффективностью и безопасностью, так как ПСК являются аутогенными, а не донорскими. Взяв это за основу, начали в Оренбурге и других клиниках, практикующих подобную терапию. Она заключается в том, что у больного пункцией берут из его же собственные стволовые клетки, в лаборатории в специальных аппаратах их активизируют, выращивают до необходимого количества и снова вводят их хозяину. В его организме стволовые клетки направляются к поврежденному органу, где начинают восстановительный процесс.

Проблем у метода две:

1. Никогда достоверно неизвестно, отторгнет иммунная система свои родные стволовые клетки или примет.

2. Никто точно не знает, что именно происходит со стволовыми клетками, извлеченными из их привычной среды (костного мозга), и как они изменяются во время выращивания в лаборатории.

По этим причинам пока не дали 100 % гарантии ученые, проводившие эксперименты по трансплантации ПСК больным артрозом в таком городе, как Оренбург. Стволовые клетки, по их мнению, являются фантастическим прорывом в медицине, но еще они не до конца изученные.

Типы постнатальных клеток

Мы выяснили, что ЭСК все универсальны, то есть, могут стать чем угодно. ФСК более специфичны, но их можно использовать для создания разных органов в целых системах, например, в нервной. А ПСК имеют самую малую патентность, то есть максимально дифференцированы. Среди них выделяют такие :

Гемопоэтические, или ГСК;

Мультипотентные мезенхимальные стромальные, или ММСК;

Тканеспецифические;

Из ГСК получаются все лимфоциты, эритроциты, тромбоциты и другие кровеносные тельца.

Роль тканеспецифических прогениторных (предшествующих) стволовых клеток в замещении в тканях органов обычных клеток, по разным причинам погибших. Их отличительная черта - строго фиксированное число делений, благодаря чему их не всегда относят к истинным стволовым клеткам.

Возможности безоперационного лечения суставов

Установлено, что ММСК в результате дальнейших делений становятся остеобластами, хондроцитами, адипоцитами. Исследованиями именно в этом направлении ортопеды-травматологи прославили российский город Оренбург. Лечение артроза стволовыми клетками ММСК они провели пациентам, которые уже не могли ходить, такие серьезные в их суставах были разрушения. Стволовые клетки были взяты из жировой ткани этих пациентов, затем материал в условиях стерильности поместили в специальную среду, где две недели выращивали нужный тип клеток. Перед введением полученного препарата пациентам его тщательно протестировали на наличие всевозможных патогенов. На настоящий момент все, кто прошел такое лечение, чувствуют себя удовлетворительно, а признаки артроза у них значительно уменьшились. Но, как заявляют врачи, до окончательных выводов еще далеко, так как нужно провести дополнительные анализы и посмотреть, как будут обстоять дела у тестируемых пациентов через два года. Пока можно считать лишь первым удачным российским экспериментом работу, которую провел Оренбург. Стволовые клетки артроз, артрит, гемартроз и другие заболевания (если подтвердятся положительные результаты) смогут "лечить" без установки людям дорогостоящих и плохо приживающихся эндопротезов, что избавит пациентов от сложных и тяжелых операций. Еще одно направление использования ММСК - дифференцирование их в миоциты для восстановления мышечных тканей.

Пуповинная кровь

По статистике, больше половины населения Земли в той или иной степени поразил недуг суставов артроз. Стволовые клетки ММСК, возможно, тысячам людей подарят счастье безболезненного легкого движения, многим их них вернут работоспособность. Получают эти ММСК не только из костной и жировой ткани, но и из пуповинной крови. Ее забор производят после рождения младенца и перевязывания пуповины. В результате материала получается около 80 мл. Особенно высокий лечебный эффект дает трансплантат, в который входят совместно пуповинная кровь и костный мозг. Помимо артроза, по мнению врачей, эта кровь может быть применима при более чем 70 недугах, включая рак. Большие надежды возлагают исследователи на возможность использования пуповинной крови для эффективной помощи при неизлечимых другими методами недугов у детей, например, лейкоза, саркомы, рака мозга. Сейчас проводятся следования, как ведут себя стволовые клетки пуповинной крови при введении их больным шизофренией, ДЦП, болезнями Паркинсона и Альцгеймера. Этот материал собирают и хранят в банках крови. Они есть государственные и частные.

Растительные стволовые клетки

Все растения, поскольку они многоклеточные системы, также имеют стволовые клетки, которые сосредоточены в каллусе, в проростках, в почках, в молодых побегах. Исследования проводились с женьшенем, эдельвейсом, розой, гарденией и другими растениями. Но наиболее позитивные результаты показали стволовые клетки винограда красного или амурского. В Дальневосточном отделении РАН выяснили, что именно они помогают вылечить гепатит, а ученые из Крыма установили, что растительные, особенно виноградные, стволовые клетки возможно использовать при лечении рака. Большой интерес вызывает и вещество ресвератрол, первоначально обнаруженное во французском красном вине, а потом найденное в виноградных стволовых клетках. Оно является приоритетным помощником в борьбе за молодость кожи и тела. Это открытие использовали создатели антивозрастного крема «Либридерм». Стволовые клетки, полученные из винограда, не только способствуют разглаживанию морщин и убирают дряблость кожи, но и отлично ее увлажняют, делают мягкой, нежной, защищенной. Женщины, испробовавшие «Либридерм», выделяют у него такие плюсы:

Нежная текстура;

Легко наносится на тело;

Не вызывает аллергических реакций;

Увлажняет кожу практически на весь день;

Снимает раздражение.

Не понравились им в креме высокая цена и отсутствие за месяц применения заметного омоложения.

Лекарство из стволовых клеток своими руками

Считается, что стволовые клетки, взятые у растений, гораздо менее опасны, чем взятые у человека или животных, так как они несут меньше генетической информации и не оказывают такого мощного, а главное, непредсказуемого воздействия. Однако и они, особенно при введении их с помощью инъекций, способны вызвать нежелательные последствия. Но наружное применение, по мнению сотрудника МГУ им. Ломоносова Е. Родимина, идет только во благо. Он даже предлагает рецепт, как сделать в домашних условиях крем, стволовые клетки в котором будут выполнять работу по улучшению состояния кожи лица.

Сырьем могут служить почки и молодые виноградные побеги, но лучше всего нарезать с виноградных кустов черенки и нарастить у них каллус. Для этого веточки ставятся в воду на сутки-двое, после чего вынимаются, заворачиваются в смоченную водой ветошь (можно в мокрую газету), потом в целлофановый кулек, и кладутся в теплое место. Появившийся каллус нужно отделить, просушить и перемолоть. Далее ложку без горки (столовую) залить стопкой (100 гр) водки и настаивать 7 дней. Почки и ростки винограда нужно сложить в тару и тоже залить водкой. Полученный настой добавить в готовый нежирный крем, например, алоэ вера и тщательно перемешать. Принимать средство можно и вовнутрь, добавляя по несколько капель в чаи, соки.

Предмет и задачи биологии стволовой клетки. Основные свойства и классификация стволовых клеток

классификация стволовых

Происхождение термина «стволовая клетка» и история

открытия типов стволовых клеток

В общепринятом понимании термин «стволовая клетка» обозначает клетку, обладающую способностью к самовоспроизведению (самообновлению) и дающую начало дифференцированным потомкам.

Благодаря обнаружению стволовых клеток расширились возможности в области изучения механизмов, которые регулируют эмбриональное развитие, клеточную дифференцировку и сохранение целостности органов и тканей, т.е. гомеостаз. Помимо этого, учитывая уникальные свойства стволовых клеток, а именно, их способность к пролиферации, направленной

дифференцировке, разработка новых терапевтических подходов, основанных на клеточных технологиях, открывает широкие горизонты в различных областях медицины. В связи с таким повышенным интересом современных ученых и клиницистов к проблематике, связанной с изучением и практическим применением стволовых клеток, немаловажным является рассмотрение стволовых клеток в их историческом контексте.

Впервые термин «стволовая клетка» появился в научной литературе еще в 1868 г. в работе выдающегося немецкого зоолога и эволюциониста Эрнста Геккеля (1834-1919 гг.). Геккель использовал термин «Stammzelle» (oti нем. - «стволовая клетка») для описания L общего предка, некоего одноклеточного I организма, от которого, по его мнению, произошли все многоклеточные организмы. Позже, в 1877 г., перейдя от вопросов эволюции (филогенеза) к изучению проблем » эмбриологии (онтогенеза), Эрнст Геккель предложил назвать оплодотворенную яйцеклетку стволовой клеткой. Использование термина «стволовая клетка» для обозначения отдельной клетки в составе эмбриона, которая, способна давать начало множеству специализированных клеток, было введено несколько позже - в конце 19 века.

Опираясь на теорию «непрерывной зародышевой плазмы» Августа Вейсмана, предложенной в 1885 г., немецкий биолог Теодор Бовери (1862-1915), исследуя закономерности оогенеза и сперматогенеза, предложил называть «стволовыми клетками» все клетки зародышевой линии, начиная от оплодотворенной яйцеклетки и заканчивая предшественниками половых клеток.

Также в 1892 году при исследовании эмбриогенеза ракообразных семейства Cyclops Валентин Геккер идентифицировал крупную клетку, названную им «стволовой», которая подвергалась асимметричному делению, при этом одна из дочерних клеток этой стволовой предшественницы давала начало мезодерме, тогда как другая давала начало зародышевым (герминативным) клеткам. Таким образом, в этих ранних исследованиях термин «стволовая клетка» обозначает клетки, которые сейчас называют первичными половыми клетками (primordial germ cell), или зародышевыми (геримнативными) стволовыми клетками.

В 1896 г., Эдмунд Уилсон популяризировал термин «стволовая клетка» в своей книге "The Cell In Development and Inheritance" (Wilson, 1896). В свое время эта книга была очень популярна и имела огромное влияние на эмбриологов и генетиков конца 19 века, особенно в США. В связи с этим, во многих англоязычных источниках Эндмунд Уилсон упоминается, как автор термина «стволовая клетка». Тем не менее, Уилсон использовал термин «стволовая клетка» в том же значении, что Бовери и Геккер, то есть, обозначая этим термином неспециализированную материнскую клетку зародышевой линии.

Примерно в то же время велись активные исследования в области гемопоэза. Ученый мир раскололся на два лагеря. Часть ученых придерживалась дуалистической теории кроветворения, они предполагали, что клетки миелоидного и лимфоидного ряда происходят от различных предшественников, которые располагаются в различных гемопоэтических тканях, в костном мозге и лимфатических узлах/селезенке, соответственно.

Сторонники унитарной теории кроветворения предполагали существование одной единственной клетки, которая и является

родоначальницей всех клеток крови. В связи с этим, приверженцы унитарной теории кроветворения столкнулись с проблемой создания термина, который полностью бы отражал потенциал развития таких клеток.

В 1908 г. русский ученый Александр Максимов предложил называть такую материнскую гемопоэтическую клетку «стволовой клеткой».

Примерно в это же время термин «стволовая клетка» появился в работах Веры Данчакофф и Эрнста Нойманна, а также (1896) в работе Артура Паппенхайма. Все упомянутые исследователи использовали термин «стволовая клетка» для определения клеток-предшественников, способных к дифференцировке в зрелые клетки красной и белой крови. Уже ранние исследования в областях эмбриологии и гематологии выявили, что СК могут быть обнаружены в эмбрионе и в тканях взрослого организма.

В 1981 году американскому ученому Мартину Эвансу впервые удалось выделить недифференцированные плюрипотентные линии стволовых клеток из эмбриобласта (внутренней клеточной массы) бластоцисты мыши.

Первой успешной трансплантацией стволовых клеток, извлеченных из пуповинной крови, называют операцию, проведенную 5-ти летнему мальчику с анемией Фанкони в 1988 году. Без проведения операции по трансплантации стволовых клеток, изъятых из пуповинной крови, он имел нулевые шансы на выздоровление. После трансплантации он выздоровел, прошел необходимую реабилитацию и живет до сих пор.

В 1998 году Д. Томпсон и Д. Герхарт изолировали

бессмертную линию эмбриональных стволовых клеток, а в 1999 году журнал Science признал открытие эмбриональных стволовых клеток третьим по значимости событием в биологии после расшифровки двойной спирали ДНК и программы «Геном человека».

Существование гемопоэтических стволовых клеток (ГСК), являющихся родоначальниками всех кроветворных ростков, было подтверждено работами Джеймса Тилла, Эрнеста МакКаллока и других исследователей в 60-х гг. прошлого века. Дальнейшие исследования позволили обнаружить и охарактеризовать СК в других тканях взрослого организма, а также во внезародышевых тканях и органах новорожденного.

Таким образом, использование термина «стволовая клетка» началось во второй половине 19 века в контексте фундаментальных вопросов эмбриологии. Доказательства существования единой гемопоэтической стволовой клетки, достоверно полученные в 60-х годах прошлого столетия, сделали эти клетки прототипом всех стволовых клеток, а именно: клеток, способных к почти неограниченной пролиферации (самообновление) и способных давать специализированные клетки-потомки (дифференцировка).

Основные свойства и классификация стволовыхклеток

Классификация стволовых клеток по их способности к дифференциации:

1. Тотипотентные клетки способны формировать все эмбриональные и экстра-эмбриональные типы клеток. К ним относятся только оплодотворённый ооцит и бластомеры 2-8 клеточной стадии.

2. Плюрипотентные клетки способны формировать все типы клеток эмбриона. К ним относятся эмбриональные стволовые клетки, первичные половые клетки и клетки эмбриональных карцином.

3. Другие типы стволовых клеток локализуются в сформировавшихся тканях взрослого организма (adult stem cells). Они варьируют по способности к дифференцировке от мульти- до унипотентных.

Классификация стволовых клеток по источнику их выделения:

1. Эмбриональные стволовые клетки (ЭСК) - внутриклеточная масса раннего эмбриона (на этапе бластоцисты 4-7 день развития).

2. Фетальные стволовые клетки - клетки зародыша на 9 - 12 неделе развития, выделенные из абортивного материала.

3. Стволовые клетки взрослого организма:

- Гемопоэтические стволовые клетки (ГСК ) - мультипотентные стволовые клетки, дающие начало всем клеткам крови: крови -эритроцитам, В-лимфоцитам, Т-лимфоцитам, нейтрофилам, базофилам, эозинофилам, моноцитам, макрофагам и тромбоцитам Кроме костного мозга ГКС обнаружены в системном кровотоке и скелетных мышцах.

- Мезенхимные стволовые клетки мультипотентные региональные стволовые клетки, содержащиеся во всех мезенхимальных тканях (главным образом в костном мозге), способные к дифференцировке в различные типы мезенхимальных тканей, а так же в клетки других зародышевых слоев.

- Стромальные стволовые клетки - мультипотентные стволовые клетки взрослого организма, образующие строму костного мозга (поддерживающую гемопоэз), имеющие мезенхимальное происхождение.

- Тканеспецифичные стволовые клетки - располагаются в различных видах тканей и в первую очередь, отвечают за обновление их клеточной популяции, первыми активируются при повреждении. Обладают более низким потенциалом, чем стромальные клетки костного мозга.

На сегодняшний день обнаружены следующие виды тканеспецифичных стволовых клеток:

Нейрональные стволовые клетки в головном мозге - дают начало трем основным типам клеток: нервным клеткам (нейронам) и двум группам не нейрональных клеток астроцитам и олигодендроцитам.

Стволовые клетки кожи - размещенные в базальных пластах эпидермиса и возле основы волосяных фолликулов, могут давать начало кератоцитам, которые мигрируют на поверхность кожи и формируют защитный слой кожи.

Стволовые клетки скелетной мускулатуры - выделяют из поперечно полосатой мускулатуры, они способны к дифференцировке в клетки нервной, хрящевой, жировой и костной тканей, поперечнополосатой мускулатуры. Однако последние исследования показывают, что клетки скелетной мускулатуры, это не что иное, как мезенхимные стволовые клетки, локализованные в мышечной ткани.

Стволовые клетки миокарда - способны дифференцироваться в кардиомиоциты и эндотелий сосудов.

Стволовые клетки жировой ткани обнаружены в 2001 году, проведенные с тех пор дополнительные исследования показали, что эти клетки могут превращаться и в другие типы тканей, из них можно выращивать клетки нервов, мышц, костей, кровеносных сосудов, или по крайней мере, клетки, имеющие свойства вышеперечисленных.

Стромальные клетки спинного мозга (мезенхимальные стволовые клетки) дают начало разным типам клеток: костным клеткам (остеоцитам), хрящевым клеткам (хондроцитам), жировым клеткам (адипоцитам), а также другим типам клеток соединительной ткани.

Эпителиальные стволовые клетки пищеварительного тракта расположены в глубоких складках оболочек кишечника и могут давать начало разным типам клеток пищеварительного тракта.

Кроме того, в начале прошлого года американские ученые из университета в Северной Каролине сообщили, что после семилетних исследований ими разработана технология получения стволовых клеток из околоплодных вод, не нанося вреда зародышу.

Для Ск характерны следующие основные функции:

1. Возможность деления и самообновления. В отличие от мышечных клеток, клеток крови и нервных клеток, которые обычно не могут воспроизводить сами себя, стволовые клетки могут воспроизводить себя многократно -пролиферировать. Начальная популяция стволовых клеток, которая пролиферирует в течение многих месяцев, может дать миллион подобных клеток. Если эти стволовые клетки продолжают оставаться неспециализированным, говорят, что они обладают способностью длительного самообновления.

2. Стволовые клетки неспециализированны. Они не имеют специфичных структур, позволяющих выполнять специализированные функции. Например, стволовые клетки не могут перекачивать кровь по организму, как клетки миокарда сердца, не могут переносить в себе кислород как это делают эритроциты. Однако, неспециализированные стволовые клетки могут трансформироваться в специализированные клетки, включая клетки миокарда сердца, клетки крови или нервные клетки.

3. Стволовые клетки могут давать начало другим специализированным клеткам. Когда неспециализированные стволовые клетки дают начало специализированным клеткам, этот процесс называется дифференцировкой. В процессе дифференцировки клетки обычно проходят несколько этапов, при этом на каждом этапе они становятся более специализированными.

Ученые только начали понимать сигналы внутри и вне клеток, которые запускают каждый этап процесса дифференцировки. Внутренние сигналы контролируются генами клеток. Это участки ДНК, несущие какую-либо целостную информацию и контролирующие развитие определённого признака или свойства. Внешние сигналы для клеточной дифференцировки - это химические вещества, секретируемые другими клетками, физический контакт с соседними клетками и некоторые молекулы в микросреде. Взаимодействие сигналов во время процесса дифференцировки приводит к тому, что клеточная ДНК приобретает эпигенетические отметки, которые ограничивают экспрессию ДНК в клетках.

4. СК способны к асимметричному делению, в результате которого образуется две дочерних клетки, одна их которых коммитирована к дифференцировке в специализированную(ые) клетку(и), а вторая сохраняет все признаки СК, что предохраняет пул СК от полного истощения. Коммитированная к дифференцировке клетка, формирующаяся в результате ассиметричного деления СК, зачастую называют транзитной амплифицирующейся клеткой - ТАК.

ТАК не способны к самообновлению, однако обладают значительным пролиферативным потенциалом. Фактически способность к самообновлению и продукции коммитированных к дифференцировке дочерних клеток за счет асимметричного деления является определяющим свойством СК любого происхождения.

5. Механизмы поддержания генетического гомеостаза в СК функционируют более эффективно в сравнении с дифференцированными соматическими клетками.

Основные направления и перспективы использования стволовых клеток в биологии и медицине.

СК являются наиболее подходящим объектом для исследований в фундаментальной биологии и в патологии клетки, в особенности при изучении механизмов клеточной дифференцировки и специализации в процессе онтогенеза, а также путей и механизмов клеточной и тканевой регенерации. Изучение и осмысление этих процессов поможет понять причины патологии развития, генетических дефектов и многих заболеваний, включая онкологические. Для широкомасштабного проведения подобного рода экспериментальных работ в первую очередь требуются доступные источники СК.

Особо значительные успехи практического применения СК уже достигнуты в трёх областях:

1) лечении ожогов и заживлении ран;

2) терапии острого инфаркта миокарда;

3) лечении онкологических больных.

Лечение ожогов и ран - создание искусственной кожи, выращенной методами тканевой инженерии. При трансплантации такой кожи обеспечивается уменьшение общей площади раневой поверхности и, как следствие - быстрое заживление ран, существенно снижается опасность развития осложнений. Эта методика применяется с 1989 года, выполнено более 600 трансплантаций культивированных аллофибробластов больным с обширными пограничными ожогами IIIA степени и длительно незаживающими остаточными ранами.

Лечение онкологических больных -ауто- и аплотрансплантация стволовых клеток костного, позволяет восстановить его кроветворную активность, которая частично утрачивается после применения интенсивной химио- и радиотерапии. Благодаря использованию трансплантации костного мозга в Белорусском Центре гематологии и трансплантологии удалось повысить выживаемость за 3-5 лет с 50% (без трансплантации) до 70-90% .

Терапия острого инфаркта миокарда - проводится с целью восстановления тканей сердца после инфаркта миокарда (ИМ), что достигается за счёт регенерации кардиомиоцитов и образования новых капилляров. По мнению многих исследователей, наилучшим потенциалом для восстановления функции сердца после инфаркта миокарда обладают СК костного мозга: их трансплантация индуцирует мио- и ангиогенез, улучшает гемодинамику.

В клеточной терапии инфаркта миокарда основными являются такие два метода:

1. Хирургический - непосредственная доставка СК к ткани миокарда (так в одной работе, посвященной клиническим результатам этого метода лечения ИМ говориться об использовании инъекции 1500000 аутологичных СК костного мозга в периинфарктную зону).

2. Терапевтический - создание в крови высокой концентрации С К, путём стимуляции костного мозга введением специфических ростовых факторов.

Весьма перспективным, также

представляется методов клеточной терапии в следующих областях медицины:

Неврология - лечение последствий травм головного и

спинного мозга, инсульта, коматозных состояний, нейродегенеративных заболеваний, болезней Паркинсона, Альцгеймера и др.;

Эндокринология - лечение инсулинзависимого диабета;

Болезни опорно-двигательного аппарата - репарация

костей, костная пластика, лечение миопатий, последствий травм и т.д.;

Гепатология - лечение гепатитов, цирроза печени;

Гематология и офтальмология;

Стоматология - использование СК для выращивания "своих собственных" зубов;

Косметология - лечение косметических дефектов;

Геронтология - использование СК для омоложения организма (ревитализация).

Гномика вирусов и фагов. Вирусы как объектов молекулярной генетики.

Основные свойства вирусов

Вирусы - субмикроскопические ДНК- или РНК-содержащие объекты,

репродуцирующиеся только в живых клетках, заставляя их

синтезировать так называемые вирионы, которые содержат геном вируса и способны перемещать его в другие клетки.

Это определение отражает два главных качества вирусов:

Наличие у вируса собственного генетического материала, который внутри клетки-хозяина ведет себя как часть клетки;

Существование внеклеточной инфекционной фазы, представленной специализированными частицами, или вирионами, которые служат для 5 введения генома вируса в другие клетки.

Вирусы имеют ряд свойств, которые не укладываются в представления о них как о живых объектах, а именно:

Вирусы не дышат;

Не проявляют раздражимости;

Не способны самостоятельно двигаться; -

Не растут и не делятся;

Способны (по крайней мере, некоторые) в очищенном состоянии кристаллизоваться.

Согласно традиционным зоологическим и ботаническим критериям, вирусы не являются живыми организмами. В то же время все вирусы обладают главными свойствами живых организмов – способностью реплицироваться, изменяться и передавать эти изменения потомкам, т.е. эволюционировать. Другими словами, вирусы имеют собственную эволюционную историю.

Ни один из известных вирусов не имеет биохимических или генетических потенций для генерирования энергии, необходимой для осуществления своих биологических процессов. В этом отношении они абсолютно зависят от клетки-хозяина.

Размеры вирусов

Размеры вирусных частиц также существенно варьируют. Наиболее "худые" имеют диаметр около 10 нм, а их длина у самых протяженных достигает 2 мкм. Диаметр сферических вирионов колеблется от-20 до 300 нм. Самые крупные из известных вирусов - родственники вируса оспы, их вирионы могут иметь длину до 450 нм и 260 нм в ширину и толщину.

Формы существования вирусов

Для нуклеопротеидных вирусных молекул характерны две формы существования: внеклеточная, корпускулярная, покоящаяся, и внутриклеточная, репродуцирующаяся, вегетативная.

Внеклеточные вирусы представляют собой корпускулы частицы сферической, кубической, нитевидной формы, которые называют элементарными тельцами, вирусными частицами, а чаще вирионами. Размеры вирионов колеблются от 15-30 до 200-500 нм.

Строение вирусов

Все вирионы содержат геномную нуклеиновую кислоту, покрытую снаружи белковой оболочкой - капсидом. По химическому составу вирусы -нуклеопротеиды, а по структуре - нуклеокапсиды. В состав многих вирусов, кроме белка и нуклеиновой кислоты, входят" углеводы, липиды и некоторые другие соединения.

Одноцепочечные вирусные РНК разделяют на две группы. К одной группе относят РНК, которые способны в клетке-хозяине транслироваться рибосомами, т.е. играть роль мРНК. Такие РНК обозначают как (+)РНК, а геном, который они представляют, называют позитивным.

У другой группы РНК-содержащих вирусов РНК не узнается рибосомным

аппаратом клетки, и поэтому она не способна выполнять функцию мРНК. В клетке такая РНК служит матрицей для синтеза мРНК. Данный тип РНК обозначают как (-)РНК, а соответствующий геном носит название негативного.

Капсид состоит из одинаковых по строению субъединиц - капсомеров, которые располагаются согласно двум основным типам симметрии -кубической (икосаэдрической) или спиральной.

Капсомеры - это морфологические единицы капсида, которые, в свою очередь, могут состоять из одной или нескольких молекул белка -структурных единиц. Комплекс капсида и вирусной нуклеиновой кислоты обычно обозначают термином нуклеокапсид. Он может обладать кубической (икосаэдрической) или спиральной симметрией. Вирионы простых вирусов представлены только капсидом. Вирионы сложных вирусов дополнительно имеют двухслойные липидные мембраны, в которые включены белки (почти всегда - гликопротеиды), имеющие форму шипов. Такие вирионы обычно имеют слой негликозилированного белка (матрикс), примыкающего к капсиду.

Простые вирусы, как правило, состоят только из вирусоспецифических компонентов. Изредка такие вирусы могут «уносить» из клетки-хозяина ее компоненты, такие, например, как полиамины и гистоны - поликатионы, служащие для нейтрализации зарядов на вирусной нуклеиновой кислоте, что облегчает упаковку ее в капсид.

Сложные вирусы содержат ферменты, а также могут включать в состав вириона белки - компоненты мембраны клетки-хозяина.

Закономерен вопрос: почему у всех вирусов капсид имеет субъединичную структуру? Такое строение капсида, по-видимому, обусловлено необходимостью экономии генетического материала. В противном случае, как показывают расчеты, у многих вирусов его бы хватило для кодирования белков, способных покрыть не более 15% нуклеиновой кислоты. Очевидно также, что при наличии одного или немногих морфологических компонентов

значительно облегчается самосборка капсида. Иначе вероятность ошибок в процессе самосборки резко бы возросла.

Существуют своего рода «технические» ограничения, которые снижают прочность упаковки на основе, скажем, тетраэдра или октаэдра. В этих вариантах промежутки между субъединицами будут слишком большими, а частица в результате - непрочной. Расчеты и опыт свидетельствуют, что чем больше число субъединиц и чем больше контактов их друг с другом, тем более стабильной получается структура и тем крупнее может быть капсид, в который, в свою очередь, может быть помещен более крупный и сложный геном.

Инкапсулирование генома необходимо вирусам, прежде всего, для физической защиты лабильной по своей химической природе нуклеиновой кислоты от воздействия на внеклеточной стадии существования жестких факторов окружающей среды (таких, как экстремальные значения рН и температуры, УФ-облучение и т.д.).

Другой важнейшей функцией капсида является обеспечение адсорбции вируса на клетке-хозяине через взаимодействие с клеточными рецепторами.

У некоторых вирусов геном фрагментирован, и оболочка просто необходима для того, чтобы собрать его в единое целое.

У сложных вирусов наличие внешней липидной оболочки из-за сродства ее с мембраной клетки-хозяина способствует проникновению нуклеокапсида внутрь клетки. Кроме того, за счет включения в эту оболочку белков клетки-хозяина, вирус получаем возможность успешнее преодолевать хозяйский

иммунологический барьер.

Типы взаимодействия вируса с клеткой

При проникновении вируса в клетку образуется новый биологический комплекс «вирус-клетка». Этот комплекс содержит генетический аппарат клетки и генетический аппарат вируса, функции которых могут генетический

функции которых могут переплетаться самым причудливым образом. По сути дела - это «химера», гибрид двух организмов.

Несмотря на огромное разнообразие клеток и вирусов, можно выделить несколько основных типов их взаимодействия.

1. Клетка гибнет и при этом образуется новое поколение вирусных частиц. Такой тип взаимодействия вируса и клетки называется продуктивным или литическим. Вирусы, вызывающие лизис клеток-хозяев, носят название вирулентных. Так протекает большинство вирусных инфекций независимо от того, являются ли вирусы крупными и сложно устроенными ли мелкими.

2. Инфекционный процесс носит абортивный характер - клетка выживает, вирус не образуется. Иногда погибают оба партнера - и вирус, и клетка.

3. Возникает интеграция двух геномов, которые сосуществуют более или менее мирно на протяжении многих поколений. Такой тип взаимодействия называется вирогенией. Вирусы, способные вызывать вирогению, называются умеренными. В случае бактериофагов, такое встраивание генома вируса в ДНК клетки-хозяина носит наименование лизогении, а сами фаги, способные к такому взаимодействию с клеткой, именуются лизогенными.

Кроме лизогенных фагов интегративный процесс характерен для ретровирусов, многих ДНК-содержащих онкогенных вирусов (у них может происходить интеграция не только всего генома, но и его части), а также некоторых других вирусов. Интегративный процесс часто приводит к трансформации клетки - приобретению ею новых гено- и фенотипических признаков.

В зависимости от степени антагонизма двух геномов - вирусного и клеточного - возможны несколько типов инфекции. Феноменологически различают персистентные инфекции, при которых вирус выделяется из организма-хозяина в течение значительно большего времени, чем при обычных литических инфекциях, завершающихся гибелью клеток хозяев. При латентной инфекции вирус находится в организме хозяина в скрытой форме и выделяется в периоды рецидивов болезни. Медленные вирусные инфекции характеризуются очень длительным инкубационным периодом, который может длиться годами.

Обновить клеточный состав повреждённого органа без оперативного вмешательства, решить сложнейшие задачи, которые раньше были под силу только органной трансплантации – эти задачи решаются сегодня с помощью стволовых клеток.

Для пациентов – это шанс получить новую жизнь. Важным здесь является то, что технология применения стволовых клеток доступна практически для каждого пациента и даёт поистине удивительный результат, расширяя возможности трансплантации.

Стволовые клетки способны превращаться, в зависимости от окружения, в клетки тканей самых различных органов. Одна стволовая клетка даёт множество активных, функциональных потомков.

Исследования генетических модификаций стволовых клеток проводятся во всём мире, интенсивно исследуются методы их наращивания.

Существует множество болезней, которые практически не лечатся или их лечение не эффективно медикаментозным способом. Именно такие болезни стали объектом самого пристального внимания исследователей

Стволовые клетки, регенерация, восстановление тканей. От Адама до атома

Что такое – стволовые клетки?

При оплодотворении яйцеклетки одна зигота (оплодотворённая клетка) делится и даёт начало клеткам, главной задачей которых является передача генетической информации следующим поколениям клеток.

Эти клетки ещё не имеют своей специализации, механизмы такой специализации ещё не включены и именно поэтому такие эмбриональные стволовые клетки и дают возможность использовать их для создания любых органов.

Стволовые клетки есть у каждого из нас. Их обнаружили первоначально в тканях костного мозга. Легче всего стволовые клетки обнаружить и выделить у молодых людей, детей. Но и у людей старшего возраста они есть, правда в гораздо меньшем количестве.

Сравните: у человека в возрасте 60 – 70 лет на пять – восемь миллионов клеток имеется только одна стволовая, а у эмбриона – одна стволовая клетка на десять тысяч.

Возможности стволовых клеток взрослого организма – Сергей Киселев

В чем секрет стволовых клеток?

Секрет стволовых клеток состоит в том, что, будучи сами незрелыми клетками, они могут превращаться в клетку любого органа.

Как только стволовые клетки организма получают сигнал о повреждении тканей, любых органов, они направляются в очаг поражения. Там они превращаются именно в те клетки тканей человека или его органов, которые нуждаются в защите.

Стволовые клетки могут превратиться и стать любыми клетками: печёночными, нервными, гладкомышечными, слизистыми . Такая стимуляция организма приводит к тому, что он сам начинает активно регенерировать свои же ткани и органы.

Взрослый человек имеет совсем небольшой запас стволовых клеток. Поэтому, чем больше возраст человека, тем сложнее и с большими осложнениями идет процесс регенерации и восстановления организма после повреждений или во время болезни. Особенно, если повреждения организма обширны.

Организм не может самостоятельно восстанавливать потерянные стволовые клетки. Развитие в области современной медицины сегодня позволяют вводить стволовые клетки в организм и, главное, направлять их в нужном направлении. Таким образом, впервые появляется возможность лечения таких опасных заболеваний как цирроз, диабет, инсульт.

Гаряев, Пётр Петрович - Как управлять стволовыми клетками

Источники стволовых клеток

Источником стволовых клеток в организме является костный мозг, прежде всего. Некоторое, но совсем небольшое, их количество содержится в других тканях и органах человека, в периферической крови. Много стволовых клеток содержит кровь из пупочной вены новорождённых.

Пуповинная кровь в качестве источника стволовых клеток, имеет ряд несомненных преимуществ.

Прежде всего, её собрать намного легче и безболезненней, чем периферическую кровь. Такая кровь дает генетически идеальные стволовые клетки в случае необходимости её использования близкими родственниками – матерью и ребенком, братьями и сестрами.

При проведении трансплантации, иммунная система, вновь созданная из донорских стволовых клеток, начинает бороться с иммунной системой пациента. Это очень опасно для жизни больного. Состояние человека бывает в таких случаях крайне тяжелым, до смертельных исходов. Использование пуповинной крови при трансплантации значительно снижает такие осложнения.

Кроме того, существуют ещё ряд несомненных преимуществ использования пуповинной крови.

  1. Это инфекционная безопасность реципиента. От донора через пуповинную кровь не передаются инфекционные заболевания (цитомегаловирус и прочие).
  2. Если её собрали в момент рождения человека, то он сможет её использовать в любой момент для восстановления здоровья.
  3. Использование крови из пупочной вены новорождённых не вызывает этических проблем, так как затем она утилизируется.

Применение стволовых клеток

Для лечения анемии в 1988 году во Франции были впервые применены стволовые клетки

Высокоэффективное лечение стволовыми клетками опухолей, инсультов, инфарктов, травм, ожогов, заставило создавать в развитых странах специальные учреждения (банки) для хранения замороженных стволовых клеток в течение долгого времени.

В такой коммерческий именной банк крови уже сегодня возможно, по заказу родственников, поместить пуповинную кровь ребенка, с тем, чтобы в случае его травмы, болезни, была возможность использовать собственные стволовые клетки.

Пересадка внутренних органов восстанавливает здоровье человека только в том случае, если она проведена своевременно, и не произошло отторжение органа иммунной системой пациента.

Примерно 75 % пациентов, нуждающихся в пересадке органов, погибает в период ожидания. Стволовые клетки могут стать идеальным источником «запасных частей» для человека.

Уже сегодня – спектр применения стволовых клеток в лечении самых тяжелых заболеваний очень широк.

Восстановление нервных клеток позволяет восстановить капиллярное кровообращение и вызвать рост капиллярной сети на месте поражения. Для лечения повреждённого спинного мозга используют введение нервных стволовых клеток, либо чистые культуры, которые затем превратятся на месте в нервные клетки.

Некоторые формы лейкозов у детей стали излечимы благодаря достижениям биомедицины. Трансплантация гемопоэтических стволовых клеток применяется в современной гематологии, а трансплантация стволовых клеток костного мозга – в широкой клинике.

Исключительно сложны в лечении системные заболевания, вызванные нарушением функций иммунной системы: артриты, рассеянный склероз, красная волчанка, болезнь Крона. Гемопоэтические стволовые клетки применимы и при лечении этих заболеваниях

Имеется практический клинический опыт в применении нейральных стволовых клеток при лечении болезни Паркинсона. Результаты превосходят всякие ожидания.

Мезинхимальные (стромальные) стволовые клетки уже используют в ортопедической клинике несколько последних лет. С их помощью восстанавливают разрушенные суставные хрящи, костные дефекты после переломов.

Кроме того, эти же клетки в последние два-три года используют методом прямого введения в клинике восстановления сердечной мышцы после инфаркта.

С каждым днем пополняется список болезней, которые поддаются лечению стволовыми клетками. И это даёт надежду на жизнь неизлечимым больным.

Список заболеваний, при лечении которых используются стволовые клетки

Доброкачественные заболевания:

  • адренолейкодистрофия;
  • анемия Фанкони;
  • остеопороз;
  • болезнь Гюнтера;
  • синдром Харлера;
  • талассемия;
  • идиопатическая апластическая анемия;
  • рассеянный склероз;
  • синдром Леш-Нихана;
  • амегакариоцитозная тромбоцитопения;
  • синдром Костмана;
  • волчанка;
  • резистентный ювенильный артрит;
  • иммунодефицитные состояния;
  • болезнь Крона;
  • синдром Бара;
  • коллагенозы.

Злокачественные заболевания:

  • неходжкинская лимфома;
  • миелодиспластический синдром;
  • лейкемия;
  • рак молочных желёз;
  • нейробластома.

Чудеса медицинской и эстетической косметологии

Желание человека выглядеть молодо, подтянуто на протяжении десятков лет обусловлено современным темпом жизни. Возможно ли в пятьдесят лет выглядеть так же хорошо как в сорок?

Медицинская косметика, при применении современных биотехнологий, дает такую возможность. Сегодня возможно значительно улучшить тургор, эластичность кожи, избавить человека от экзем и дерматитов.

Стволовые клетки, которые вводят во время мезотерапии, устраняют кожную пигментацию, рубцы, последствий воздействия химических веществ, лазера. Исчезают морщины, пятна после акне, улучшаются тонус кожи.

Кроме того, с помощью мезотерапии решаются проблемы волос, ногтей. Они приобретают здоровый вид, восстанавливается их рост.

Однако, используя высокоэффективные косметологические препараты, следует остерегаться мошенников, рекламирующих препараты, якобы содержащие стволовые клетки.

Стоимость лечения стволовыми клетками

Лечение стволовыми клетками проводится во многих странах, в России в том числе. Здесь она колеблется от 240 000 до 350 000 рублей.

Высокую цену оправдывают высокотехнологичным процессом выращивания стволовых клеток.

В медицинских центрах за такую стоимость вводят пациенту сто миллионов клеток на курс. Если человек более чем зрелого возраста – возможно введение такого количества за одну процедуру.

В стоимость процедур, как правило, не входят манипуляции по получению стволовых клеток. При введении стволовых клеток во время операции – придётся заплатить отдельно за этот вид медицинских услуг.

Мезотерапия сегодня более доступна. Для желающих получить ярко выраженный косметический эффект примерная стоимость одной процедуры обойдется в России от 15 000 до 30 000 рублей. Всего на курс их надо сделать от пяти до десяти.

Предупрежден – значит вооружен

Осознавая блестящее будущее применения новых медицинских технологий, тем не менее, хотелось бы предостеречь от излишнего оптимизма и напомнить о следующем:

  1. Стволовые клетки являются необычным лекарственным средством, действие которого трудно устранить. Дело в том, что стволовые клетки, в отличие от других лекарств, не выводятся из него так же как привычные лекарственные средства. Они содержат живые клетки, и их поведение не всегда бывает предсказуемо. В случае причинения вреда организму пациента, врачам невозможно остановить процесс;
  2. Учёные-медики надеются на то, что побочные эффекты при лечении стволовыми клетками будут минимальными. Но нельзя даже предполагать, что побочного эффекта при лечении не будет. Как любое лекарство, даже аспирин, стволовые клетки в своём применении имеют ограничения и побочные эффекты;
  3. Клинические испытания в ведущих медицинских центрах подтвердили только то, что трансплантация костного мозга пока является единственным методом клеточной терапии;
  4. Применение стволовых клеток не является панацеей для лечения абсолютно всех болезней, хотя и действительно обладают большим потенциалом в лечении многих травм, ожогов, повреждений и заболеваний;
  5. Даже если многие знаменитые люди, спортсмены, политики применяют лечение стволовыми клетками, это не обозначает, что такой метод лечения подойдет всем. Необходимо доверять практикующим врачам.
Бессмертие возможно?

Бессмертие человека возможно – в этом нас убеждают достижения современной медицины.

Фантастические идеи о синтезе человеческих органов уже превращаются в реальность ближайшего будущего. Пройдет десяток лет и искусственные почки, сердце, печень станут доступны каждому человеку. Простые уколы восстановят кожу, омолодят. Главным заслуга в этом будет принадлежать стволовым клеткам.

Мезенхимальные стволовые клетки (МСК) являются предшественниками всех клеток соединительной ткани. МСК были изолированы из костного мозга и других тканей у взрослых множества видов позвоночных. Они размножались в культуре и диффренцировались в несколько ткань – образующих клеток, таких, как кость, хрящ, жир, мускулатура, сухожилие, печень, почки, сердце, даже клетки мозга. Последние достижения в практическом применении МСК при регенерации человеческого суставного мыщелока синовиального сустава являются примерами их функциональности и многосторонности.

Таким образом, мезенхимальные клетки при дифференцировке образуют различные клетки соединительной ткани.

3.4 Стромальные стволовые клетки

Созданы линии человеческих мезенхимальных стволовых клеток, которые могут дифференцироваться в различные тканевые клетки, включая кость, нервные клетки, стромальные клетки костного мозга, поддерживать рост гемопоэтических стволовых клеток и так называемых “стромальных опухолевых клеток”, смешанных с опухолевыми клетками. Обладающие теломеразой человеческие стромальные клетки из костного мозга обладают повышенной продолжительностью жизни и поддерживают рост гемопоэтических клоногенных клеток. Перенос гена индийского ежа (дикобраза) существенно увеличил экспансию гемопоэтических стволовых клеток, поддерживаемую человеческими стромальными клетками костного мозга. Генномодифицированные мезенхимальные стволовые клетки полезны, как терапевтические инструменты для лечения повреждения мозговых тканей (например, в результате инфаркта мозга) и злокачественных мозговых неоплазм. Трансплантация мезенхимальных стволовых клеток защищает мозг от острого ишемического повреждения при окклюзии среднемозговой артерии на животной модели. Полученный из мозга нейротропный фактор (BDNF)-генной трансдукции еще больше увеличил протективную эффективность против ишемического повреждения. Мезенхимальные стволовые клетки обладают отличной способностью к миграции и оказывают ингибиторный эффект на клетки глиомы. Генная модификация мезенхимальных стволовых клеток терапевтическими цитокинами увеличивает антиопухолевый эффект и пролонгирует выживание животных с опухолями. Генная терапия, использующая мезенхимальные стволовые клетки, как тканепротективный и направленный цитореагент является многообещающим подходом.

Этот обзор посвящен стволовым клеткам костного мозга. Методы индентификации, культивирования, накопления клеточной массы и пересадки стволовых клеток описаны, включая выделение линий гемопоэтических и мезенхимальных линий стволовых клеток и детальный анализ, использующий многочисленные CD и другие маркеры для идентификации малых субпопуляций стволовых клеток. За секцией, посвященной стволовым клеткам крови пуповины, следует детальное обсуждение современной ситуации в клиническом использовании стволовых клеток, его последние неудачи, связанные с эпигенетическими факторами, различные подходы к открытию высокомультипотентных стволовых клеток костного мозга, и краткое описание эмбриологических подходов к идентификации базовых стволовых клеток костного мозга на самых ранних стадиях развития эмбрионов млекопитающих.

Костный мозг взрослых млекопитающих содержит не одну, а две отдельные популяции взрослых стволовых клеток. Первой и наиболее хорошо охарктеризованной является популяция гемопоэтических стволовых клеток, ответственная за поддержание продукции в течение всей жизни клеток крови. Биологические характеристики и свойства второй резидентной популяции стволовых клеток костного мозга, называемых стромальными клетками костного мозга или мезенхимальными стволовыми клетками, значительно менее понятны. In vitro культуры, произошедшие из суспензии разделенного на отдельные клетки костного мозга различных видов млекопитающих, образуют колонии стромальных клеток костного мозга, каждая из которых происходит от одной клетки – предшественника, называемой колониеобразующий фибробласт. Были разработаны условия культивирования для выращивания стромальных клеток костного мозга in vitro, которые сохраняли способность дифференцироваться в кость, жир и хрящ. Значительная доля современных знаний об этой популяции клеток базируется на анализе свойств этих культур клеток, а не на свойствах первичных инициирующих рост колонии клеток. Современные данные заставляют предположить, что стромальные прогениторы в костном мозге in situ ассоциированы с внешней поверхностью сосудов и могут делить идентичность с сосудистыми перицитами.

Таким образом, стромальные стволовые клетки костного мозга являются одним из видов мезенхимальных стволовых клеток.

3.5 Тканеспецифичные стволовые клетки

Полагают, что стволовые клетки важны для регенерации нескольких взрослых тканей. В последнее время были идентифицированы взрослые стволовые клетки с очень широким потенциалом дифференцировки, хотя не известно представляют ли они примитивные стволовые клетки или продукты исключительно редких событий дедифференцировки, включающие тканевоспецифичные стволовые клетки. Была также продемонстрирована трансдифференцировка тканевоспецифичных стволовых клеток за границы линии, но относительная неэффективность процесса in vivo, даже в присутствии тканевого повреждения, подвергает сомнению физиологическое значение такого механизма. Интересно, что среди взрослых стволовых клеток. которые культивируются ex vivo продолжительные периоды времени, способность изменять линию наибольшая. Если решения о судьбе нормальных разнообразных стволовых клеток могут быть изменены с высокой частотой in situ, могут быть представлены возможные регенеративные терапии для большого разнообрзия болезней. Интегральное понимание транкрипционной регуляторной сети, которая включает различные взрослые стволовые клетки, также, как и сигнальных путей, управляющих их дифференцировкой в терапевтически полезные клеточные типы, будет способствовать клиническому приложению этих волнующих открытий.

Таким образом, тканевоспецифичные стволовые клетки способны дифференцироваться в другие типы клеток, но in vivo этот процесс малоэффективен. Тем не менее сейчас разрабатываются подходы, сделающие возможным использования этого источника стволовых клеток.

Стволовая клетка - это незрелая клетка, способная к самообновлению и развитию во все специализированные типы клеток организма. Самое существенное свойство стволовых клеток заключается в том, что они могут самоподдерживаться в течение длительного времени и при этом производить дифференцированные клетки, которые выполняют в организме специфические функции. Таким образом, все клетки нашего организма возникают из стволовых клеток. Стволовые клетки обновляют и замещают клетки, утраченные в результате каких-либо повреждений во всех органах и тканях. Но так как. в процессе взросления человека наблюдается катастрофическое снижение количества стволовых клеток (при рождении - 1 стволовая клетка встречается на 10 тысяч, к 20-25 годам - 1 на 100 тысяч, к 30-1 на 300 тысяч) регенерация тканей и органов за их счет весьма ограничена.

Термин "стволовая клетка" был введен в биологию Александром Максимовым в 1908 году на съезде гематологического общества в Берлине. Однако, родоначальником клеточной терапии общепринято считать русского врача-эмигранта С. Воронцова, который в 20-30-е годы в Париже пытался пересаживать фетальные ткани в случаях преждевременного старения. Несмотря на это, статус большой науки эта область клеточной биологии получила в последнее десятилетие XX века.

Существует несколько классификаций стволовых клеток:

По их способу к дифференциации:

Тотипотентные клетки способны формировать все эмбриональные и экстраэмбриональные типы клеток клетки. К ним относятся только эмбриональный ооцит и бластомеры 2 -8 клеточной стадии.

Плюрипотентные клетки способны формировать все типы клеток эмбриона. К н6им относятся эмбриональные стволовые клетки, первичные половые клетки и клетки эмбриональных карцином.

Другие типы стволовых клеток локализуются в сформировавшихся тканях взрослого организма. Они варьируют по степени дифференцировки от мульти- до унипотентных.

По источнику их выделения:

Эмбриональные стволовые клетки – внутриклеточная масса раннего эмбриона (на этапе бластоцисты 4 -7 день развития)

Фетальные стволовые клетки – клетки зародыша на 9 – 12 развития, выделенные из абортивного материала.

Стволовые клетки взрослого организма:

Гемопоэтические стволовые клетки(ГСК) – мультипотентные стволовые клетки, дающие начало всем клеткам крови – эритроцитам, В-лимфоцитам, Т-лимфоцитам, нейтрофилам, базофилам, эозинофилам, моноцитам, макрофагам и тромбоцитам. Кроме костного мозга ГСК обнаружены в системном кровотоке и скелетных мышцах.

Мезенхимные стволовые клетки – мультипотентные региональные стволовые клетки содержащиеся во всех мезенхимальных тканей (главным образом в костном мозге) способные в дифференцировке в различные типы мезинхимальных тканей, а также в клетки других зародышевых слоев.

Стромальные стволовые клетки – мультипотентные стволовые клетки взрослого организма, образующие строму костного мозга, имеющие мезинхимальное происхождение.

Тканеспецефичные стволовые клетки – располагаются в различных видах тканей и в первую очередь отвечают за обновление их клеточной популяции, первыми активируются при повреждении. Обладают более низким потенциалом, чем стромальные клетки костного мозга.

Виды тканеспецефичных стволовых клеток:

Нейрональные стволовые клетки в головном мозге – дают начало трем основным типам клеток: нервным клеткам (нейронам) и двум другим группам не нейрональных клеток - астроцистам и олигодендроцистам

Стволовые клетки кожи – размещены в базальных пластах эпидермиса и возле основы волосяных фолликулов, которые могут давать начало кератоцитам, которые мигрируют на поверхность кожи и формирую защитный слой кожи

Стволовые клетки скелетной мускулатуры – выделяют из поперечно полосатой мускулатуры, они способны к дифференцировке в клетки нервной, хрящевой, жировой и костной ткани, поперечнополосатой мускулатуры. Однако последние исследования показывают, что клетки скелетной мускулатуры, это не что иное, как мезинхимные стволовые клетки, локализованные в мышечной ткани.

Стволовые клетки миокарда – способны дифференцироваться в кардиомиоциты и эндотелий сосудов.

Стволовые клетки жировой ткани – обнаружены в 2001 году, поведенные с тех пор дополнительные исследования показали, что эти клетки могут превращаться в другие типы тканей, из них можно выращивать клетки нервов, мышц, костей, кровеносных сосудов или, по крайней мере, клетки, имеющие свойства выше перечисленных.

Стромальные клетки спинного мозга (мезинхимальные стволовые клетки): дают начало разным типам клеток.

Актуальность проблемы стволовых клеток не вызывает сомнений, ведь потенциал стволовых клеток только начинает использоваться наукой. Ученые надеются в ближайшем будущем создавать из них ткани и целые органы, необходимые больным для трансплантации взамен донорских органов. Их преимущество в том, что их можно вырастить из клеток самого пациента, и они не будут вызывать отторжения. Потребности медицины в таком материале практически неограниченны.

5. Список литературы

Эмбриональные стволовые клетки (ЭСК) являются классическими стволовыми клетками, поскольку они способны к бесконечному самообновлению и имеют мультипотентный дифференцировочный потенциал. Их источником обычно являются первичные половые клетки, внутренняя клеточная масса бластоцисты или отдельные бластомеры зародышей 8-клеточной стадии, а также клетки морулы более поздних стадий.

Эмбриональным стволовым клеткам свойственна самая большая из всех категорий стволовых клеток теломеразная активность, которая обеспечивает им способность к беспрецедентному самообновлению (больше 230 клеточных удвоений в пробирке; тогда как дифференцированные клетки делятся примерно 50 раз в течение жизни).

В лабораторных условиях эти клетки способны дифференцироваться в различные типы как эмбриональных клеток, так и клеток взрослого организма. Они обладают нормальным кариотипом и в контролируемых условиях могут быть клонированы и многократно воспроизведены без изменения их свойств.

Исследования показали, что трансплантация ЭСК эффективна для лечения патологий, в основе которых лежит нарушение функций или гибель специализированных типов клеток. Так, болезнь Паркинсона, вызываемая прогрессивной дегенерацией и утратой дофамин-продуцирующих нейронов определенной зоны головного мозга, может успешно лечиться при помощи интрацеребральной инъекции эмбриональных нейронов. Также при сахарном диабете I типа (вызываемом нарушением работы островковых клеток поджелудочной железы) имплантация в печень островковых клеток поджелудочной железы приводит к нормализации уровня глюкозы. С помощью трансплантации ЭСК поддаются лечению и другие трудноизлечимые заболевания - например, мышечная дистрофия Дюшенна, дегенерация клеток Пуркинье. Трансплантация ЭСК эффективна и в случае травм - в частности, травм спинного мозга.

На первый взгляд, ЭСК наиболее подходят для использования в репаративной медицине. Однако хорошо известно, что при трансплантации в организм ЭСК способны порождать новообразования - тератомы. Поэтому перед применением ЭСК в клеточной терапии необходимо провести их дифференцировку в нужном направлении и убрать из популяции ЭСК клетки, потенциально способные привести к образованию тератом. Еще одна проблема, которую приходится преодолевать при использовании ЭСК - необходимость так или иначе обеспечить их гистосовместимость с организмом реципиента. Наконец, трудно оставить без внимания этическую сторону использования клеток эмбрионов человека для получения ЭСК.

Стволовые клетки взрослого организма

Стволовые клетки присутствуют во многих органах и тканях взрослых млекопитающих: в костном мозге, крови, скелетных мышцах, зубной пульпе, печени, коже, желудочно-кишечном тракте, поджелудочной железе. Большинство этих клеток слабо охарактеризованы. По сравнению с ЭСК, стволовые клетки взрослого организма имеют меньшую способность к самоподдержанию, и хотя они дифференцируются во множество клеточных линий, но не обладают мультипотентностью. Теломеразная активность и, соответственно, пролиферативный потенциал у стволовых клеток взрослого организма высоки, но все же ниже, чем у ЭСК.

Предполагается, что наименее дифференцированные стволовые клетки находятся в организме в состоянии покоя. В случае необходимости запускается необратимый процесс их поэтапного созревания в определенном направлении дифференцировки.

Стволовые кроветворные клетки

Из стволовых клеток взрослого организма наиболее хорошо охарактеризованы стволовые кроветворные клетки (СКК). Это клетки мезодермального происхождения. Они дают начало всем видам кроветворных и лимфоидных клеток. В норме кроветворение в организме, по-видимому, поддерживается в основном за счет постоянно сменяемого небольшого числа относительно короткоживущих клеточных клонов. In vitro стволовые кроветворные клетки при определенных условиях способны к самоподдержанию и могут быть простимулированы к дифференцировке в направлении тех же клеточных линий, что и in vivo.

Уже несколько десятков лет ткани костного мозга успешно применяют для лечения различных заболеваний крови (например, лейкозов), а также радиационных поражений организма, восстанавливая с их помощью нарушенные функции кроветворных и лимфоидных органов. Для этого обычно проводится трансплантация костного мозга; в последнее время используется и пуповинная кровь. Популяция СКК служит потенциальным источником для предшественников эндотелиальных клеток, что делает возможным применение СКК для лечения ишемической болезни и инфаркта миокарда.

Стволовые клетки нервной ткани

Еще одна категория клеток, которая в настоящее время интенсивно изучается, - это стволовые клетки нервной ткани (СКНТ). Эти клетки первоначально были найдены в субвентрикулярной зоне эмбрионального головного мозга. До недавнего времени считалось, что головной мозг взрослого организма не содержит стволовых клеток. Однако эксперименты на грызунах и приматах, а также клинические испытания с привлечением волонтеров показали, что СКНТ продолжают присутствовать и во взрослом головном мозге. In vitro стволовые клетки нервной ткани могут быть «нацелены» как на пролиферацию, так и на дифференцировку в различные типы нейронов и клетки глии (опорные и защитные клетки нервной ткани). Как эмбриональные СКНТ, так и СКНТ взрослого организма, трансплантированные в головной мозг, могут генерировать нейрональные и глиальные клетки. Хотя неизвестно, какова продолжительность самообновления стволовых клеток нервной ткани, в лабораторных условиях их можно культивировать в течение длительного периода.

Стромальные клетки-предшественники и мезенхимальные стволовые клетки

Стромальные клетки-предшественники и мезенхимальные стволовые клетки (МСК) были открыты около 30 лет назад. Это своего рода универсальные клетки, которые содержатся в костном мозге, в своеобразном депо, где они хранятся «про запас». Они способны к интенсивной пролиферации, могут дифференцироваться во многие клеточные типы и трансплантабельны in vivo. При необходимости они поступают в поврежденный орган или ткань и превращаются в нужные специализированные клетки.

In vitro численность мезенхимальных стволовых клеток может увеличиваться в 100000 раз в течение 6–8 недель, при этом они остаются в недифференцированном состоянии. Каждая колония стромальных клеток является клоном, то есть образуется путем пролиферации одной клетки, которая была названа колонеобразующей клеткой фибробластов (КОК-Ф). У животных и человека в физиологических условиях величина эффективности клонирования КОК-Ф колоний остается относительно стабильной и является важным параметром скелетного статуса, что указывает на роль КОК-Ф в патофизиологии дефектов кости и костного мозга.

Получено много данных о том, что в противоположность кроветворным стволовым клеткам костномозговые КОК-Ф представляют собой местную популяцию, то есть не мигрируют из одной части организма в другую и, соответственно, не приживаются при инфузии. Жаль, если эта проблема не найдет своего решения - ведь для лечения таких распространенных костных заболеваний, как остеопороз или незавершенный остеогенез, когда нельзя трансплантировать генетически измененные стромальные клетки во все области поражений, возможность их доставки через циркулирующую систему выглядит очень желательной. В целом же, вопрос о возможности миграции стромальных клеток, а также о факторах, благоприятствующих ей, остается открытым.

Стромальные клетки-предшественники выполняют также очень важную роль, обеспечивая специфическое микроокружение, необходимое для пролиферации и дифференцировки гемопоэтических и иммунокомпетентных клеток на территории кроветворных и лимфоидных органов. Таким образом, «корректировка» нарушений микроокружения в принципе может проводиться именно через эту категорию клеток.

Значительный интерес для клинического применения представляют мезенхимальные стволовые клетки, которые входят в состав популяции стромальных клеток-предшественников (или колонеобразующих клеток стромальных фибробластов - КОК-Ф) костного мозга. Их использование началось с успешного лечения несросшихся костных переломов размноженными в культурах аутологическими стромальными клетками костного мозга. До сих пор репарация костной и хрящевой ткани остается одной из наиболее важных областей применения МСК. С помощью трансплантации этих клеток удалось добиться успехов в лечении тяжелого контингента больных с ложными суставами, несросшимися переломами и хроническим остеомиелитом, остеоартритом. Принципы применяемых при этом биотехнологичеких методов являются универсальными и могут использоваться также для лечения больных с дефектами костной ткани различной локализации (травматология, ортопедия, нейрохирургия, черепно-лицевая хирургия, стоматология-имплантология).

Как возможные носители рекомбинантной ДНК, мезенхимальные стволовые клетки также представляют собой весьма привлекательный объект для генной инженерии, для лечения ряда дегенеративных и наследственных заболеваний.

Клетки костного мозга и МСК могут быть использованы и в терапии ишемической болезни сердца, поражений конечностей и головного мозга, а также для лечения инфарктов миокарда. Это еще одна область применения МСК, которая находится на стадии предклинических испытаний. В лабораторных исследованиях, проведенных на животных, и при лечении инфарктов миокарда у людей, костномозговые СК трансплантировались в область инфаркта либо прямой инъекцией, либо посредством их внутрисосудистого введения. В результате удалось достичь реального уменьшения зоны инфаркта. Однако прежде, чем терапия СК взрослого организма будет осуществляться в полном объеме, необходимо дополнительное проведение клинических испытаний и хорошо спланированных клинических исследований, которые позволят сделать окончательное заключение о безопасности и эффективности предложенного метода.

Особый интерес представляют первые данные, показывающие возможность использования костномозговых стромальных клеток при репарационных процессах в коже. В частности, исследования показывают, что после внутрикожного введения стромальных клеток костного мозга регенерация поврежденной кожной ткани шла более упорядоченно с меньшими нежелательными последствиями, к которым относится образование рубца.

Надо отметить, что для успеха лечения ключевым моментом остается и правильный выбор метода трансплантации СК. В ряде лабораторий сейчас работают также над улучшением способов очистки популяций СК и обогащения их ранними предшественниками, чтобы создать условия для более эффективной клеточной терапии. Согласно общему мнению, требуются также дальнейшие лабораторные исследования для изучения феномена пластичности стволовых клеток, а также многих других аспектов.

Как видим, со стволовыми клетками связано много надежд и ожиданий. Возможно, уже не за горами время, когда открытые свойства стволовых клеток и те, которые находятся сегодня для нас пока за семью печатями, создадут новые перспективы для лечения ряда серьезных заболеваний.

Чем уникальны стволовые клетки

В процессе развития эмбриона человека происходит ряд ключевых событий: за оплодотворением яйцеклетки следует т. н. дробление, суть которого сводится к быстрому накоплению тотипотентного (т. е. способного к созданию целого организма, повторению эмбриогенеза из одной клетки) клеточного материала.

Примерно после 12 клеточных делений этот процесс резко замедляется, и нарушается синхронность делений. Начинается транскрипция генома зародыша, то есть реализация наследственной информации. Это изменение, известное как переход к средней бластуле, по всей вероятности, отражает истощение определенного компонента материнского происхождения, который используется для связывания с вновь синтезируемой ДНК.

Транскрипция завершается тем, что в цитоплазме этих уникальных первичных клеток накапливается информация в форме матричных РНК, которая определяет дальнейшее внутриутробное развитие. Реализация информации осуществляется в конечном итоге путем миграции, специализации клеток и формирования основных зародышевых листков - эктодермы (источник клеток кожи, ЦНС и пр.), мезодермы (источник клеток мышц, костей, крови и пр.) и энтодермы (источник клеток желез, ЖКТ и пр.), что происходит в процессе т. н. гаструляции.

Начиная с этого момента, в каждой ткани сохраняются ограниченные количества неспециализированных клеток. Такие клетки называют стволовыми клетками или клетками-предшественниками, их основная функция - управление процессом создания организма в целом, перенос и реализация наследственных программ.

Стволовые клетки - это недифференцированные, незрелые клетки эмбриона, плода, новорожденного или взрослого организма, способные к самообновлению и дифференцировке в различные типы тканей и органов. В организме взрослого человека они исполняют роль «машин регенерации», их цель - поддержание морфофункционального постоянства ткани, они имеют меньший потенциал, чем в самом начале эмбриогенеза, но способны эффективно замещать поврежденные элементы специализированной ткани в необходимом объеме. Практически для каждого типа тканей существуют свои собственные клетки-предшественники (предифференцированные клетки). Истинные плюрипотентные (способные к дифференцировке в клетки разных тканей разных зародышевых листков) клетки в нормальных условиях в организме встречаются крайне редко, их выделение из взрослого организма в настоящий момент без применения методик клонирования не представляется возможным.

В процессе старения количество изначально заложенной регенерационной информации в клетках стремительно снижается, уменьшается количество самих стволовых клеток. Истощенная репарационная система становится малоэффективной - возникает ряд заболеваний, ассоциированных со старением: увядает кожа, снижается эластичность хрящей, плотность костей, повреждается эндотелий сосудов - ухудшается кровоснабжение, постепенно все ткани организма попадают в условия сниженного снабжения кислородом, ускоряются процессы замещения функционально активных тканей на неполноценные соединительные стромальные ткани. Воздействие ряда инфекций, реализация врожденных, наследственных и мультифакториальных заболеваний, хронические интоксикации (в том числе, алкогольные), травмы также приводят к подобным последствиям - организм оказывается неспособным справиться с нарастающим потоком проблем и постепенно погибает.

Успех трансплантации органов и тканей человека открыл новую эру в медицине - продемонстрирована принципиальная возможность замены дефектных тканей и органов пациента на донорские, здоровые. К сожалению, трансплантация органов остается малодоступной, сопровождается сложными оперативными вмешательствами и требует постоянной иммуносупрессии в большом объеме.

Ученые всего мира интенсивно работают над проблемой лабораторного получения клеток-предшественников с целью их последующей имплантации для замещения погибших тканей, что, по мнению медицинского научного сообщества, может послужить альтернативой трансплантации органов. В 1998 году американским ученым Джону Герхарту и Джеймсу Томпсону впервые в лабораторных условиях удалось получить и нарастить культуры эмбриональных стволовых клеток и половых прогениторных клеток, способных полностью повторить эмбриогенез. Таким образом, у человечества появилась реальная возможность в лабораторных условиях выращивать необходимое количество «запчастей» для организма и тем самым корригировать последствия ряда хронических и острых заболеваний. Дм. Шаменков, к.м.н.

Пластичность стволовых клеток

До недавнего времени считалось, что органоспецифические стволовые клетки могут дифференцироваться только в клетки соответствующих органов. Однако, по ряду данных, это не так: существуют органоспецифические стволовые клетки взрослых животных, которые способны к дифференцировке в клетки органов, отличных от органов происхождения стволовых клеток, даже если они онтогенетически принадлежат к разным зародышевым листкам. Это свойство стволовых клеток получило название пластичности. Так, существует много данных, что МСК костного мозга обладают широкой пластичностью и способны давать начало некоторым элементам нервной ткани, кардиомиоцитам, эпителиальным клеткам, гепатоцитам.

Альтернативная гипотеза феномена пластичности заключается в том, что мультипотентные стволовые клетки и после рождения присутствуют в различных органах и стимулируются к специфической пролиферации и дифференцировке в ответ на локальные факторы, представленные тем органом, в который рекрутированы стволовые клетки. Также есть предположение, что стволовые клетки рекрутируются в поврежденные органы и уже там реализуют свои свойства пластичности, т. е. дифференцируются в нужном для их восстановления направлении.

Вместе с тем нельзя не отметить, что ряд ученых подвергает сомнению саму концепцию пластичности стволовых клеток, указывая на то, что соответствующие эксперименты были выполнены на чистых популяциях тканевоспецифических стволовых клеток.

Словарь

Диплоидная клетка (от греч. diplуos - двойной и еidos - вид) - клетка с двумя гомологичными (подобными) наборами хромосом. Диплоидны все зиготы и, как правило, клетки большинства тканей животных и растений, кроме половых клеток.

Дифференцировочный потенциал - способность к превращению в разнообразные клетки организма.

Кариотип (от греч. kаryon - орех и typos - отпечаток, форма) - типичная для вида совокупность морфологических типов хромосом (форма, размер, детали строения, число и т. д.). Важная генетическая характеристика вида, лежащая в основе. Для определения кариотипа используют микрофотографию хромосом делящихся клеток.

Мезодерма - средний зародышевый листок у большинства многоклеточных животных и человека. Из него развиваются органы крово– и лимфообразования, органы выделения, половые органы, мышцы, хрящи, кости и др.

Мультипотентность - способность к дифференцировке в пределах одного зародышевого листка.

Плюрипотентность - способность к дифференцировке разных тканей разных зародышевых листков.

Полипотентность - способность генома стволовых клеток взрослого организма изменять профиль дифференцеровки при трансплантации в новую ткань реципиента.

Строма (от греч. stroma - подстилка) - основная опорная структура органов, тканей и клеток живых организмов и растений.

Стромальные клетки - клетки соединительнотканной опорной структуры органа.

Теломеры - специализированные ДНК-белковые структуры, которые находятся на концах линейных хромосом эукариот.

Теломеразная активность - активность теломеразы, фермента, который с помощью особого механизма синтезирует теломерную ДНК, и тем самым влияет на рост клеток. Высокая активность теломеразы свойственна половым и стволовым клеткам. Как только стволовые клетки начинают дифференцироваться, теломеразная активность падает, а их теломеры начинают укорачиваться.

Тератома (от греч. tеratos - урод) - доброкачественная опухоль, вызванная нарушением эмбрионального развития. Как правило, состоит из мышечной, нервной и др. тканей.

Тотипотентность - способность к созданию целого организма, повторению эмбриогенеза из одной клетки.

Фибробласты (от лат. fibra - волокно и blastуs - росток) - основная клеточная форма соединительной ткани животных и человека. Фибробласты образуют волокна и основное вещество этой ткани. При травме кожи они участвуют в закрытии ран и образовании рубцов.

Эктодерма - наружный зародышевый листок многоклеточных животных. Из эктодермы образуются кожный эпителий, нервная система, органы чувств, передний и задний отделы кишечника и т. д.

Энтодерма - внутренний зародышевый листок многоклеточных животных. Из энтодермы образуются эпителий кишечника и связанные с ним железы: поджелудочная железа, печень, легкие и т. д.