- один из самых важных анализаторов, т.к. дает более 90% сенсорной информации.

Зрительное восприятие начинается с проекции изображения на сетчатку глаза и возбуждения фоторецепторов, затем информация последовательно обрабатывается в подкорковых и корковых зрительных центрах, в результате чего возникает зрительный образ, который благодаря взаимодействию зрительного анализатора с другими анализаторами правильно отражает объективную реальность.

Зрительныйанализатор- совокупность структур, воспринимающих световое излучение (электромагнитные волны с длиной 390-670нм) и формирующих зрительные ощущения.

Он позволяет различать освещенность предметов, их цвет, форму, размеры, характеристики передвижения, пространственную ориентацию в окружающем мире.

Орган зрения состоит из глазного яблока, зрительного нерва и вспомогательных органов глаза. Глаз состоит из оптической и фоторецепторной частей и имеет три оболочки: белочную, сосудистую и сетчатую.

Оптическая система глаза обеспечивает светопреломляющую функцию и состоит из светопреломляющих (рефракционных) сред (преломление – с целью фокусировки лучей в одной точке на сетчатке): Прозрачной роговицы (сильная рефракционная способность);

жидкость передней и задней камер;

хрусталика, окруженного прозрачной сумкой , реализует аккомодацию- изменение рефракции;

стекловидного тела, занимающего большую часть глазного яблока (слабая рефракц. способность).

Глазное яблоко имеет шаровидную форму. В нем выделяют передний и задний полюс. Передний полюс - наиболее выступающая точка роговицы, задний полюс расположен латерально от места выхода зрительного нерва. Соединяющая оба полюса условная линия – наружная ось глаза, она равна 24мм и находится в плоскости меридиана глазного яблока. Глазное яблоко состоит из ядра (хрусталик, стекловидное тело), покрытого тремя оболочками: наружной(фиброзная или белочная), средней (сосудистой),внутренней(сетчатой).

Роговица – прозрачная выпуклая пластинка блюдцеобразной формы, лишена кровеносных сосудов. Различное количество и качества пигмента меланина на пигментном слое радужной оболочки обуславливает цвет глаза - карий, черный (при наличии большого количества меланина), голубой и зеленоватый, если его мало. У альбиносов нет пигмента вообще, у них радужная оболочка не окрашена, сквозь нее просвечивают кровеносные сосуды и поэтому радужка кажется красной.

Хрусталик – прозрачная двояковыпуклая линза (т.е. увеличительное стекло) диаметром около 9мм, имеющая переднюю и заднюю поверхности. Передняя поверхность более плоская. Линия, соединяющая наиболее выпуклые точки обеих поверхностей, называется осью хрусталика. Хрусталик как бы подвешен на ресничном пояске, т.е. на цинновой связке.

Кривизна хрусталика зависит от цилиарной мышцы, она напрягается. При чтении, при смотрении вдаль эта мышца расслабляется, хрусталик становится плоским. При смотрении вдаль – менее выпуклый хрусталик.

Т.о. при натяжении связки, т.е. расслаблении ресничной мышцы хрусталик уплощается(установка на дальнее видение), при расслаблении связки, т.е. при сокращении ресничной мышцы, выпуклость хрусталика увеличивается (установка на ближнее видение) Это и называется аккомодацией.

Хрусталик имеет форму двояковыпуклой линзы. Его функция заключается в преломлении проходящих через него лучей света и фокусировке изображения на сетчатке.

Стекловидное тело – прозрачный гель, состоящий из внеклеточной жидкости с коллагеном и гиалуроновой кислотой в коллоидном растворе. Заполняет пространство между сетчаткой сзади, хрусталиком и задней стороной ресничного пояска спереди. На передней поверхности стекловидного тела имеется ямка, в которой располагается хрусталик.

В задней части глаза его внутренняя поверхность выстлана сетчаткой. Промежуток между сетчаткой и плотной склерой, окружающее глазное яблоко, заполнен сетью кровеносных сосудов – сосудистой оболочкой. У заднего полюса глаза человека в сетчатке есть небольшое углубление - центральная ямка – место, где острота зрения при дневном освещении максимальна.

Сетчатка представляет собой внутреннюю (светочувствительная) оболочку глазного яблока, на всем протяжении прилежит изнутри к сосудистой оболочке.

Состоит из 2-х листков: внутреннего – светочувствительного, наружного пигментного. Сетчатка делится на две части: заднюю - зрительную и переднюю- (ресничную) которая не содержит фоторецепторов.

Место выхода зрительного нерва из сетчатки - называют диском зрительного нерва или слепым пятном . Оно не содержит фоторецепторов, нечувствительно к свету. Со всей сетчатки к зрительному пятну сходятся нервные волокна, образующие зрительный нерв.

Латеральнее, на расстоянии около 4 мм от слепого пятна выделяют особый участок наилучшего видения – желтое пятно (имеются каротиноиды).

В области желтого пятна отсутствуют кровеносные сосуды. В его центре находится так называемая центральная ямка, которая содержит колбочки.

Она является местом наилучшего видения глаза. По мере удаления от центральной ямки количество колбочек уменьшается, а палочек увеличивается

В сетчатке различают 10 слоев.

Рассмотрим основные слои: наружный - фоторецепторный(слой палочек и колбочек);

пигментный, самый внутренний, плотно примыкающий непосредственно к сосудистой оболочке;

слой биполярных и ганглиозных (аксоны составляют зрительный нерв) клеток. Над слоем ганглиозных клеток находятся их нервные волокна, которые, собираясь вместе, образуют зрительный нерв.

Световые лучи проходят через все эти слои.

Восприятие света осуществляется с участием фоторецепторов, которые относятся ко вторичночувствующим рецепторам. Это означает, что они представляют собой специализированные клетки, передающие информацию о квантах света на нейроны сетчатки, вначале на биполярные нейроны, затем на ганглиозные клетки, информация затем поступает на нейроны подкорковых (таламус и передние бугры четверохолмия) и корковые центры (первичное проекционное поле 17, вторичные проекционные поля 18 19) зрения. Кроме того, в процессах передачи и переработке информации в сетчатке участвуют горизонтальные и амокриновые клетки.

Все нейроны сетчатки образуют нервный аппарат глаза, который не только передает информацию в зрительные центры мозга, но и участвует в ее анализе и переработке. Поэтому ее называют частью мозга, вынесенной на периферию.

Рецепторный отдел зрительного анализатора состоит из фоторецепторных клеток: палочек и колбочек. В сетчатке каждого глаза человека находится 6-7 млн. колбочек и 110-125 млн. палочек. Они распределены в сетчатке неравномерно.

Центральная ямка сетчатки содержит только колбочки. По направлению от центра к периферии сетчатки их число уменьшается, а число палочек возрастает. Колбочковый аппарат сетчатки функционирует в условиях больших освещенностей, они обеспечивают дневное и цветовое зрение; палочковый аппарат ответственен за сумеречное зрение. Колбочки воспринимают цвет, палочки – свет.

В фоторецепторных клетках содержатся светочувствительные пигменты: в палочках – родопсин, в колбочках – йодопсин.

Поражение колбочек вызывает светобоязнь: человек видит при слабом свете, но слепнет при ярком. Отсутствие одного из видов колбочек приводит к нарушению цветоощущения, т.е к дальтонизму. Нарушение функции палочек, возникающее при недостатке в пище витамина А вызывает расстройства сумеречного зрения- куриную слепоту: человек слепнет в сумерках, но днем видит хорошо.

Совокупность фоторецепторов, посылающих свои сигналы к одной ганглиозной клетке, образует ее рецептивное поле.

Цветовое зрение – способность системы зрения реагировать на изменение длины световой волны с формированием цветоощущения.

Цвет воспринимается при действии света на центральную ямку сетчатки, где расположены исключительно колбочки. По мере удаления от центра сетчатки восприятие цвета становится хуже. Периферия сетчатки, где находятся палочки, не воспринимает цвет. В сумерках из-за резкого понижения «колбочкового» зрения и преобладания «периферического» зрения мы не различаем цвет. Поле зрения – это пространство, которое видит один глаз при неподвижном взоре.

Нейроны сетчатки.

Фоторецепторы сетчатки синаптически связаны с биполярными нейронами.

Биполярные нейроны – первый нейрон проводникового отдела зрительного анализатора. При действии света уменьшается выделение медиатора (глутамат) из пресинаптического окончания фоторецептора, что приводит к гиперполяризации мембраны биполярного нейрона. От него нервный сигнал передается на ганглиозные клетки,аксоны которых являются волокнами зрительного нерва. Передача сигнала с фоторецепторов на биполярный нейрон, так и от него на ганглиозную клетку происходит безимпульсным путем. Биполярный нейрон не генерирует импульсов, в виду предельно малого расстояния, на который он передает сигнал.

Аксоны ганглиозных клеток образуют зрительный нерв. Импульсы от многих фоторецепторов сходятся (конвергируют) через биполярные нейроны к одной ганглиозной клетке.

Фоторецепторы, соединенные с одной ганглиозной клеткой, образуют ее рецептивное поле этой клетки.

Т.О. каждая ганглиозная клетка суммирует возбуждение, возникающее в большом числе фоторецепторов. Это повышает световую чувствительность, но ухудшает пространственное разрешение. В центре сетчатки, в районе центральной ямки, каждая колбочка соединена с одной карликовой биполярной клеткой, с которой соединена одна ганглиозная клетка. Это обеспечивает здесь высокое пространственное разрешение, резко уменьшает световую чувствительность.

Взаимодействие соседних нейронов сетчатки обеспечивается горизонтальными и амакриновыми клетками, через отростки которых распространяются сигналы, меняющие синаптическую передачу между фоторецепторами и биполярными клетками (горизонтальные) и между биполярными и ганглиозными клетками (амакриновые клетки). Горизонтальные(звездчатые) и амакринные клетки играют важную роль в процессах анализа и синтеза в нейронах сетчатки. На одну ганглиозную клетку конвергируют до сотни биполярных клеток и рецепторов.

ИЗ сетчатки (биполярные клетки предают сигнализацию на ганглиозные клетки сетчатки, аксоны которых идут в составе правого и левого зрительных нервов) зрительная информация по волокнам зрительного нерва (2-ая пара черепных нервов) устремляется в мозг. Зрительные нервы от каждого глаза встречаются у основания мозга, где формируется их частичный перекрест или хиазма. Здесь часть волокон каждого зрительного нерва переходит на противоположную сторону от своего глаза сторону. Частичный перекрест волокон обеспечивает каждое полушарие мозга информацией от обоих глаз. В затылочную долю правого полушария поступают сигналы от правых половин каждой сетчатки, а в левое полушарие - от левых половин сетчаток.

После зрительного перекреста зрительные нервы называю ЗРИТЕЛЬНЫМИ ТРАКТАМИ. Они проецируются в ряд мозговых структур. В каждом зрительном тракте содержатся нервные волокна, идущие от внутреннего региона сетчатки глаза одноименной стороны и от наружной половины сетчатки другого глаза. После перекреста волокна зрительного тракта направляются к наружным коленчатым телам таламуса , где импульсы переключаются на нейроны, аксоны которых направляются к коре большого мозга в первичную проекционную область зрительной зоны коры(стриарная кора или 17-ое поле по Бродману), затем во вторичную проекционную зону(поле18 и 19, престиарная кора), а в затем – в ассоциативные зоны коры. Корковый отдел зрительного анализатора расположен в затылочной доле (17,18,10-е поля по Бродману). Первичная проекционная область (17-е поле) осуществляет специализированную, но более сложную, чем в сетчатке и в наружных коленчатых телах, переработку информацию. В каждом участке коры сконцентрированы нейроны, которые образуют функциональную колонку. Часть волокон от ганглиозных клеток идут к нейронам верхних бугорков и крыше среднего мозга, в претектальную область и подушку в таламусе (из подушки передается на область 18-ого и 19-ого полей коры).

Претектальная область ответственна за регуляции диаметра зрачка, а передние бугры четверохолмия связаны с глазодвигательными центрами и высшими отделами зрительной системы. Нейроны передних бугров обеспечивают реализацию ориентировачных(сторожевых) зрительных рефлексов. Из передних бугров импульсы идут в ядра глазодвигательного нерва, иннервирующие мышцы глаза, ресничную мышцу и мышцу, суживающую зрачок. Благодаря этому, в ответ на попадание световых волн в глаз зрачок суживается., глазные яблоки поворачиваются в направлении пучка света.

Часть информации от сетчатки по зрительному тракту поступает к супрахиазматическим ядрам гипоталамуса, обеспечивая реализацию околосуточных биоритмов.

Цветовое зрение.

Большинство людей способно различать основные цвета и их многочисленные оттенки. Это объясняется воздействием на фоторецепторы различных по длине волны электромагнитных колебаний.

Цветовое зрение – способность зрительного анализатора воспринимать световые волны различной длины. Цвет воспринимается при действии света на центральную ямку сетчатки, где расположены исключительно колбочки(воспринимают в синем, зеленом, красном диапазоне). По мере удаления от центра сетчатки восприятие цвета становится хуже. Периферия сетчатки,где находятся палочки не воспринимает цвет. В сумерках из-за резкого понижения «колбочкового» зрения и преобладания «периферического» зрения мы не различаем цвет.

Человек, имеющий все три вида колбочек(красный, зеленый, синий) , т.е. трихромат, обладает нормальным цветовосприятием. Отсутствие одного из типа колбочек приводит к нарушению цветоощущения. В сумерках из-за резкого понижения «колбочкового» зрения и преобладания «периферического» зрения, мы не различаем цвет.

Дальтонизм выражается в выпадении восприятия одного из компонентов трехцветного зрения. Возникновение его связывают с отсутствием определенных генов в половой непарной у мужчин Х хромосоме. (таблицы Рабкина- полихроматические таблицы). Ахромазия – это полная цветовая слепота, возникающая вследствие поражения колбочкового аппарата сетчатки. При этом все предметы видятся человеком лишь в разных оттенка серого цвета.

Протанопия « краснослепые»- не воспринимают красного цвета, сине-голубые лучи кажутся бесцветными. Дейтеранопия – « зеленослепые» - не отличают зеленых цветов от темно- красных и голубых; Тртанопия –фиолетовослепые, не воспринимают синего и фиолетового цвета.

Бинокулярное зрение – это одновременное видение предметов двумя глазами, которое дает более выраженное ощущение глубины пространства по сравнению с монокулярным зрением (т.е. зрением одним глазом). Обусловлено симметричным расположением глаз.

Аккомодация – настройка оптического аппарата глаза на определенное расстояние, в результате которой изображение предмета фокусируется на сетчатке.

Аккомодация – приспособление глаза к ясному видению объектов, удаленных на разном расстоянии от глаза. Именно это свойство глаза позволяет одинаково хорошо видеть предметы, находящиеся вблизи или вдали. У человека аккомодация осуществляется за счет изменения кривизны хрусталика - при рассмотрении далеких предметов кривизна уменьшается до минимума, а при рассмотрении близко расположенных предметов – его кривизна увеличивается (выпуклый).

Аномалии рефракции.

Отсутствие необходимого фокусирование изображения на сетчатке глаза мешает нормальному видению.

Миопия (близорукость ) - это вид нарушения рефракции, при котором лучи от предмета после прохождения через светопреломляющий аппарат фокусируются не на сетчатке, а впереди ней - в стекловидном теле, т.е. главный фокус находится перед сетчаткой вследствие увеличения продольной оси. Продольная ось глаза слишком длинная. В этом случае у человека нарушено восприятие далеких предметов. Коррекция такого нарушения проводится с помощью с двояковогнутыми линзами, которые отодвинут сфокусированные изображение на сетчатке.

При гиперметропии (дальнозоркость) - лучи от далеко расположенных предметов в силу слабой преломляющей способности глаза или малой длины глазного яблока фокусируются за сетчаткой, т.е. главный фокус находится за сетчаткой вследствие короткой продольной оси глаза. В дальнозорком глазу продольная ось глаза укорочена. Этот недостаток рефракции может быть компенсирован увеличением выпуклости хрусталика. Поэтому дальнозоркий человек напрягает аккомодационную мышцу, рассматривая не только близкие, но и далекие объекты.

Астигматизм (неодинаковое преломление лучей в разных направлениях) – это такой вид нарушения рефракции, при котором отсутствует возможность схождения лучей в одной точке сетчатки, вследствие различной кривизны роговицы на разных ее участках (в различных плоскостях), в результате чего главный фокус в одном месте может попадать на сетчатку, в другом находиться перед ней или за ней, что искажает воспринимаемое изображение.

Дефекты оптической системы глаза компенсируются в совмещении главного фокуса преломляющих сред глаза сетчаткой.

В клинической практике используют очковые линзы: при миопии – двояковогнутые (рассеивающие) линзы; при гиперметропии – двояковыпуклые (собирательные) линзы; при астигматизме – цилиндрические линзы с различной преломляющей силой в разных их участках.

Аберрация – искажение изображения на сетчатке, вызванное особенностями преломляющих свойств глаза для световых волн различной длины (дифракционная, сферическая, хроматическая).

Сферическая аберрация - неодинаковое преломление лучей в центральном и периферическом участках роговицы и хрусталика, что введет к рассеиванию лучей и резкому изображению.

Острота зрения – способность видеть две максимально близко расположенные точки как различные, т.е. наименьший угол зрения, при котором глаз способен видеть две точки отдельно. Угол между падениями лучей = 1(секунда). В практической медицине остроту зрения обозначают в относительных единицах. При нормальном зрении острота зрение = 1. Острота зрения зависит от количества возбудимых клеток.

Слуховой анализатор

- это совокупность механических, рецепторных и нервных структур, воспринимающих и анализирующих звуковые колебания. Звуковые сигналы представляют собой колебания воздуха с разной частотой и силой. Они возбуждают слуховые рецепторы, находящиеся в улитке внутреннего уха. Рецепторы активируют первые слуховые нейроны, после чего сенсорная информация передается в слуховую область коры большого мозга.

У человека слуховой анализатор представлен периферическим отделом (наружное, среднее, внутреннее ухо), проводниковым отделом, корковым (височная слуховая кора)

Бинауральный слух – способность слышать одновременно двумя ушами и определять локализацию источника звука.

Звук – колебательные движения частиц упругих тел, распространяющиеся в виде волн в самых различных средах включая, воздушную, и воспринимающиеся ухом. Звуковые волны характеризуются частотой и амплитудой. Частота звуковых волн определяет высоту звука. Ухо человека различает звуковые волны с частотой от 20 до 20000 Гц. Звуковые волны, имеющие гармонические колебания называют тоном. Звук, состоящий из не связанных между собой частот – шум. При большой частоте звуковых волн тон высокий, при малой – низкий.

Звуки разговорной речи имеют частоту 200- 1000Гц. Малые частоты составляют басовый певческий голос, высокие частоты – сопрано.

Единицей измерения громкости звука является децибел. Гармоническое сочетание звуковых волн формирует –тембр звука. По тембру можно различать звуки одинаковой высоты и громкости, на чем основано узнавание людей по голосу.

Периферическая часть у человека морфологически объединена с периферической частью вестибулярного анализатора и поэтому называют орган слуха и равновесия.

Наружное ухо представляет собой звукоулавливающий аппарат. Оно состоит из ушной раковины и наружного слухового прохода, который отделяется барабанной перепонкой от среднего.

Ушная раковина обеспечивает улавливание звуков, их концентрацию в направлении наружного слухового прохода и усиление их интенсивности.

Наружный слуховой проход проводит звуковые колебания к барабанной перепонке, отделяющая наружное ухо от барабанной полости или среднего уха. Колеблется при действии звуковых волн.

Наружный слуховой проход и среднее ухо разделены барабанной перепонкой.

С физиологической точки зрения – слаборастяжимая мембрана. Назначение его- передавать дошедшие до нее по наружному слуховому проходу звуковые волны, точно воспроизводя их силу и частоту колебаний.

Среднее ухо

состоит из барабанной полости (заполненная воздухом), в которой расположены три слуховые косточки: молоточек, наковальня, стремечко.

Рукоятка молоточка сращена с барабанной перепонкой, другая его часть имеет сочленение с наковальней, которая воздействует на стремечко, передающее колебание на мембрану овального окна. К стремечку передаются колебания барабанной перепонки уменьшенной амплитуды, но увеличенной силы. Площадь овального окна в 22 раз меньше барабанной перепонки, во столько же раз усиливает его давление на мембрану овального окна. Даже слабые волны, действующие на барабанную перепонку,способны преодолеть сопротивление мембраны овального окна преддверия и привести к колебаниям овального окна жидкости в улитке.

В полости среднего уха давление равно атмосферному. Это достигается благодаря наличию евстахиевой трубы, соединяющей барабанную полость с глоткой. При глотании евстахиева труба открывается, и давление в среднем ухе уравнивается с атмосферным. Это важно при резком перепаде давления- при взлете и посадке самолета, в скоростном лифте и т. Своевременное раскрытие евстахиевой трубы способствует выравниванию давления, снимает неприятные ощущения и предупреждает разрыв барабанной перепонки.

Внутреннее ухо.

Содержит рецепторный аппарат 2-х анализаторов: вестибулярного (преддверие и полукружные каналы) и слухового, к которому относится улитка с кортиевым органом. Внутреннее ухо расположено в пирамиде височной кости.

Во внутреннем ухе находится улитка , содержащая слуховые рецепторы. Улитка - спирально закрученный костный канал, имеющий 2,5 завитка, почти до самого конца улитки, костный канал разделен 2-мя перепонками: более тонкой – преддверной (вестибулярной) мембраной (мембраной Рейснера) и плотной и упругой - основной мембраной. На вершине улитки обе эти мембраны соединяются, и в них имеются овальное отверстие улитки – геликотрема. Вестибулярная и основная мембрана разделяют костный канал улитки на 3 хода: верхний, средний, нижний. Верхний канал улитки соединяется с нижним каналом (барабанная лестница) Верхний и нижний каналы улитки заполнены перилимфой. Между ними находится средний канал, полость этого канала не сообщается с полостью других каналов и заполнена эндолимфой. Внутри среднего канала улитки на основной мембране расположен звуковоспринимающий аппарат – спиральный (кортиев) орган, содержащий рецепторные волосковые клетки. Над волосками рецепторных клеток располагается текториальная мембрана. При прикосновении к ней (в результате колебаний основной мембраны)волоски деформируются и это приводит к возникновению рецепторного потенциала. Эти клетки трансформируют механические колебания в электрические потенциалы.

Звуковые волны вызывают колебания барабанной перепонки, которые через систему слуховых косточек среднего уха и мембрану овального окна передаются на перилимфу вестибулярной и барабанной лестниц. Это приводит к колебаниям эндолимфы и определенных участков основной мембраны. Звуки высокой частоты вызывают колебание мембраны, расположенных ближе к основанию улитки. В рецепторных клетках возникает рецепторный потенциал, под влиянием которого в окончаниях волокон слухового нерва генерируются ПД, передающиеся далее по проводящим путям.

Т.о.восприятие звука осуществляется с участием фонорецепторов. Их возбуждение под влиянием звуковой волны приводит к генерации рецепторного потенциала, который вызывает возбуждение дендритов биполярного нейрона спирального ганглия.

Рассмотрим, каким образом осуществляется кодирование частоты и сила звук?

Впервые 1863г Г.Гельмгольц пытался дать объяснение процессам кодирования частоты звукового сигнала во внутреннем ухе. Он сформулировал резонансную теорию слуха, в основе которого лежит так называемый принцип места.

Согласно Гельмгольцу, поперечные волокна базилярный мембраны отвечают на звуки неодинаковой частоты по принципу резонанса. Базилярная мембрана может действовать как набор поперечно натянутых эластичных резонирующих полос, подобно струнам рояля(самые короткие из них в узкой части близ основания улитки резонируют в ответ на высокие частоты, а те, что лежат ближе к вершине, в расширенной части базилярной мембраны,- на самые низкие частоты). Соответственно этим участкам возбуждаются и фонорецепторы.

Однако 50-60г20 века исходные предпосылки резонансной теории Гельмгольца были отвергнуты Г.Бекеши. Не отвергая исходный принцип места, Бекеши сформулировал теорию бегущей волны, согласно которой при колебаниях мембраны волны бегут от ее основания к вершине. Согласно Бекеши, бегущая волна имеет наибольшую амплитуду на строго определенном участке мембраны в зависимости от частоты.

При действии тонов определенной частоты колеблется не одно волокно основной мембраны(как предполагал Гельмгольц), а целый участок этой мембраны. Резонирующим субстратом служит не волокно основной мембраны, а столб жидкости определенной длины: чем выше звук, тем меньше длина колеблющегося столба жидкости в каналах улитки и тем ближе к основанию улитки и овальному окну максимальная амплитуда колебания и наоборот.

При колебаниях жидкости в каналах улитки реагируют не отдельные волокна основной мембраны, а большие или меньшие ее участки, и следовательно, возбуждаются разное количество рецепторных клеток, расположенных на мембране.

Ощущение звука возникает и тогда, когда колеблющийся предмет, например камертон, помещен непосредственно на череп, в этом случае основная часть энергии передается костям последнего (костная проводимость). Для возбуждения рецепторов внутреннего уха необходимо движение жидкости типа вызываемого колебаниями стремени при распространении звука через воздушную среду. Звук,передаваемый через кости черепа вызывает такое движение двумя путями: во – первых, волны сжатия и разрежения,проходя по черепу,вытесняют жидкость из объемистого вестибулярного лабиринта в улитку, а затем обратно (компрессионная теория). Во – вторых, масса тимпанально- косточкового аппарата и связанная с ней инерция приводят к отставанию его колебаний от свойственных костям черепа. В результате стремя движется относительно каменистой кости, возбуждая внутреннее ухо(массоинерционная теория).

Проводниковый отдел слухового анализатора начинается с периферического биполярного нейрона, расположенного в спиральном ганглии улитки. Волокна слухового нерва заканчиваются на клетках ядер кохлеарного комплекса продолговатого мозга (второй нейрон). Затем после частичного перекреста волокна идут в медиальное коленчатое тело таламуса, где опять происходит переключение на третий нейрон, от которого информация поступает в кору. Корковый отдел слухового анализатора расположен в верхней части височной извилины большого мозга (поля 41, 42 по Бордману) – это высший акустический центр, где совершается корковый анализ звуковой информации.

Наряду с восходящими путями есть и нисходящие, обеспечивающие контроль высших акустических центров над получением и обработкой информации в периферическом и проводниковом отделах слухового анализатора.

Эти пути начинаются от клеток слуховой коры, переключаются последовательно в медиальных коленчатых телах, задних буграх четверохолмия, верхнеоливарном комплексе, от которого идет оливокохлеарный пучок Расмуссена, достигающий волосковых клеток улитки.

Кроме этого имеются эфферентные волокна, идущие от первичной слуховой зоны т.е. от височной области, к структурам к экстрапирамидной двигательной системы (базальным ганглиям, ограде, верхним буграм четверохолмия, красному ядру, черной субстанции, некоторым ядрам таламуса, РФ ствола мозга) и пирамидной системы.

Эти данные указывают на участие слуховой сенсорной системы в регуляции двигательной активности человека.

Эхолокация- вид акустической ориентации, характерно для животных, у которых функции зрительного анализатора ограничены или полностью исключаются. У них имеются специальные органы – биосонары для генерации звука. У летучих мышей – это лобный выступ- мелон.

У слепых людей имеется аналог эхолокационной способности животных. В основе его лежит чувство препятствия. Она основана на том, что у слепого человека очень обострен слух. Поэтому он подсознательно воспринимает звуки, отражающиеся от предметов, которые сопутствуют его движению. При закрытых ушах эта способность у них пропадает.

Методы исследования слухового анализатора.

Речевая аудиометрия предназначена для исследования чувствительности слухового анализатора(остроты слуха) шепотной речью- исследуемый находится на расстоянии 6 м, повернувшись к исследователю открытым ухом, он должен повторять слова, произносимые исследователем шепотом. При нормальной остроте слуха шепотная речь воспринимается на расстоянии 6-12м.

Камертональная аудиометрия.

(проба Ринне и проба Вебера) предназначена для сравнительной оценки воздушной и костной проводимости звука путем восприятия звучащего камертона. У здорового человека воздушная проводимость выше костной.

В пробе Ринне ножку звучащего камертона устанавливают на сосцевидном отростке. По окончанию восприятия звука бранши камертона подносят к звуковому проходу – здоровый человек продолжает воспринимать звучание камерт она. У человека при использовании С128время воздушной проводимости 75с,а костной-35.

Обонятельный анализатор.

Обонятельный анализатор позволяет определять в присутствии в воздухе пахучих веществ. Он способствует ориентации организма в окружающей среде и совместно с другими анализаторами формированию ряда сложных форм поведение (пищевого, оборонительного, полового).

Поверхность слизистой носа увеличен за счет носовых раковин- гребней, выступающих с боков в просвет носовой полости. Обонятельная область, содержащая большинство сенсорных клеток, ограничена здесь верхней носовой раковиной.

Рецепторы обонятельной системы расположены в области верхних носовых ходов. Обонятельный эпителий находится в стороне от главного дыхательного пути, имеет толщину 100-150мкм и содержит рецепторные клетки, расположенные между опорными клетками. На поверхности каждой обонятельной клетки имеется сферическое утолщение – обонятельная булава, из которой выступает по 6-12 тончайших волосков (ресничек), в мембранах которых находятся специфические белки – рецепторы. Эти реснички не способны активно двигаться, т.к. погружены в слой слизи, покрывающий обонятельный эпителий. Пахучие вещества, приносимые вдыхаемым воздухом, вступают контакт с их мембраной, что приводит к формированию рецепторного потенциала в дендрите обонятельного нейрона, а затем возникновению в нем ПД. Обонятельные реснички погружены в жидкую среду, вырабатываемую обонятельными (боуменовы) железами. Во всей слизистой находятся еще свободные окончания тройничного нерва, некоторые реагируют на запах.

В глотке обонятельные стимулы способны возбуждать волокна языкоглоточного и блуждающего нервов.

Обонятельный рецептор – это первичная биполярная сенсорная клетка, от которой отходят два отростка: сверху- дендрит, несущий реснички, а от основания отходит безмиелиновый аксон. Аксоны рецепторов образуют обонятельный нерв, который пронизывает основание черепа и вступает в обонятельную луковицу (в коре вентральной поверхности лобной доли). Обонятельные клетки постоянно обновляются. Продолжительность их жизни – 2 мес. Запах воспринимается только тогда, когда слизистая носа увлажнена. Импульсация передается по обонятельному нерву в обонятельный луковицы (первичный центр), где уже формируется образ.

Молекулы пахучих веществ попадают в слизь, вырабатываемые обонятельными железами, с постоянным током воздуха или из ротовой полости во время еды. Принюхивание ускоряет приток пахучих веществ к слизи. В слизи молекулы пахучих веществ на короткое время связываются нерецепторными белками. Некоторые молекулы достигают ресничек обонятельного рецептора и взаимодействуют с находящимися в них обонятельным рецепторным белком. Обонятельный белок активирует ГТФ – связывающий белок, и тот в свою очередь активирует фермент аденилатциклазу, синтезирующую ц АМФ. Повышение в цитоплазме концентрации ц АМФ вызывает открывание в плазматической мембране рецепторной клетки натриевых каналов и как следствие -генерацию деполяризационного рецепторного потенциала. Это приводит к импульсному разряду в аксоне (волокно обонятельного нерва).

Каждая рецепторная клетка способна ответить физиологическим возбуждением на характерный для нее спектр пахучих веществ.

Каждая обонятельная клетка имеет только один тип мембранного рецепторного белка. Сам же этот белок способен связывать множество пахучих молекул.

Каждый обонятельный рецептор отвечает не на один, а на многие пахучие вещества, отдавая « предпочтение » некоторым из них.

Афферентные волокна не переключаются в таламусе и не переходят на противоположную сторону мозга.

Один обонятельный рецептор может быть возбужден одной молекулой пахучего вещества, а возбуждение небольшого числа рецепторов приводит к возникновению ощущения . При низких концентрациях пахучего вещества человек лишь ощущает запах и не может определить его качество (порог обнаружения). При более высоких концентрациях запах вещества становится опознаваемым и человек может его определить (порог опознание). При длительном действии запахового стимула ощущение ослабевает, наступает адаптация. В обонятельном восприятии у человека присутствует эмоциональный компонент. Запах может вызвать ощущения удовольствия или отвращения и при этом меняется состояние человека.

Влияние обоняния на другие функциональные системы.

Прямая связь с лимбической системой объясняет выраженный эмоциональный компонент обонятельных ощущений. Запахи могут вызывать удовольствие или отвращение, влияя соответствующим образом на аффективное состояние организма. Обонятельные стимулы имеют значение обонятельных стимулов в регуляции полового поведения.

У человека встречается следующие виды нарушений обоняния : аносмия – отсутствие обонятельной чувствительности; гипосмия – понижение обоняние; гиперосмия – его повышение; паросмия – неправильное восприятие запахов; обонятельная агнозия – человек ощущает запах, но не узнает его. Обонятельные галлюцинации возникают обонятельные ощущения в отсутствии пахучих веществ. Это может быть при травмах головы, аллергических ринитах, при шизофрении.

Электроольфактограмма – суммарный электрический потенциал, регистрируемый от поверхности обонятельного эпителия.

Вкусовой анализатор.

Вкусовой анализатор обеспечивает возникновение вкусовых ощущений. Его главное назначение заключается как в оценке вкусовых свойств пищи, так и в определении ее пригодности к употреблению, а так же в формировании аппетита, влияют на процесс пищеварения. Они влияют на секрецию пищеварительных желез.

В формировании вкусовых ощущений важная роль принадлежит хеморецепции. Вкусовые рецепторы несут информацию о характере и концентрации веществ, поступающих в рот.

Рецепторы вкуса (вкусовые почки) расположены на языке, задней стенке глотки, мягком небе, миндалинах и надгортаннике. Больше всего их на кончике, краях и задней части языка. Вкусовая почка имеет колбовидную форму. Вкусовая почка не достигает поверхности слизистой оболочки языка и соединена с полостью рта через вкусовую пору. Железы, расположенные между сосочками, выделяют омывающую вкусовые почки жидкость.

У взрослых сенсорные вкусовые клетки расположены на поверхности языка. Вкусовые клетки – наиболее коротко живущие эпителиальные клетки организма: в среднем через 250 ч старая клетка сменяется молодой. В узкой части вкусовой почки находятся микроворсинки рецепторных клеток, на которых расположены хеморецепторы. Они контактируют с жидким содержанием ротоглотки через небольшое отверстие в слизистой оболочке, называемое вкусовой порой.

Вкусовые клетки генерируют при стимуляции рецепторный потенциал. Это возбуждение синаптически передается афферентным волокнам ЧМ-ых нервов, которые проводят его в мозг в виде импульсов.

Афферентные волокна (биполярные нейроны), проводящие возбуждение от вкусовых рецепторов, представлены нервами – барабанной струной (ветвь лицевого нерва,VII),который иннервирует переднюю и боковые части языка, также языкоглоточным нервом, иннервирующим заднюю часть языка. Афферентные вкусовые волокна объединяются в солитарный тракт, который заканчивается в соответствующем ядре продолговатого мозга.

В нем волокна образуют синапсы нейронами второго порядка, аксоны которых направляются к вентральному таламусу (здесь расположены третьи нейроны проводникового отдела вкусового анализатора), а так же центрам слюновыделения, жевание, глотание в стволе мозга. Четвертые нейроны вкусового анализатора локализуются в коре большого мозга в нижней части соматосенсорной зоны в области представительства языка (постцентральной извилине коры большого мозга). В результате обработки информации на перечисленных уровнях число нейронов с высокоспецифичной вкусовой чувствительностью возрастает. Ряд корковых клеток реагируют только на вещества с одним вкусовым качеством. Расположение таких нейронов указывает на высокую степень пространственной организации вкусового чувства.

Большинство этих нейронов мультиполярны. Они реагируют на вкусовые, температурные, механические и ноцицептивные раздражители т.е. реагируют не только на вкус, но и на температурную и механическую стимуляцию языка.

Вкусовая чувствительность человека.

Человек различает четыре основных вкусовых качеств: сладкое, кислое, горькое, соленое.

У большинства людей, отдельные участки языка обладают неодинаковой чувствительностью к веществам различного вкусового качества: кончик языка наиболее чувствителен к сладкому, боковые поверхности - к соленому и кислому, корень (основание)– к горькому.

Чувствительность к горьким веществам существенно выше. Поскольку, они часто ядовиты, это особенность предостерегает нас от опасности, даже их концентрация в воде и пище очень низкая. Сильные горькие раздражители легко вызывают рвоту или позывы на нее. Поваренная соль в низкой концентрации кажется сладкой, чисто соленой становится только при ее повышении. Т.О. воспринимаемое качество вещества зависит от его концентрации.

Вкусовое восприятие зависит от ряда факторов. В условиях голода отмечается повышенная чувствительность вкусовых рецепторов к различным вкусовым веществам, при насыщении, после приема пищи снижается. Такая реакция является результатом рефлекторных влияний от рецепторов желудка, и получила название ГАСТРОЛИНГВАЛЬНОГО РЕФЛЕКСА. В этом рефлексе вкусовые рецепторы выступают в роли эффекторов.

Биологическая роль вкусовых ощущений заключается не только в проверке съедобности пищи; также влияют на процессы пищеварения. Связи с вегетативными эфферентами позволяют вкусовым ощущениям влиять на секрецию пищеварительных желез, причем не только на ее интенсивность, но и на состав, в зависимости,н-р, от того, сладкие и соленые вещества преобладают в пище.

Вкусовое восприятие изменяется при эмоциональном возбуждении, при ряде заболеваниях.

С возрастом способность к различению вкуса снижается. К этому же ведут потребление биологически активных веществ типа кофеина и интенсивное курение.

Выделяют расстройства вкусового восприятия: агевзия – потеря или отсутствие вкусовой чувствительности; гипогевзия – ее понижение; гипергевзия- ее повышение; дисгевзия –расстройство тонкого анализа вкусовых ощущений.

Вестибулярный (статокинетический) анализатор.

Для оценки направления действия гравитационного поля т.е для определения положения организма в трехмерном пространстве и возник вестибулярный анализатор.

Обеспечивает восприятие информации о прямолинейных и вращательных ускорениях движения тела и изменениях положения головы в пространстве, а также о действии земного тяготения. Важную роль принадлежит в пространственной ориентации человека при активном и пассивном движении, поддержании позы и регуляции движений.

При активных движениях вестибулярная система получает, передает, анализирует информацию об ускорениях и замедлениях, возникающих процессе прямолинейного и вращательного движения, при изменении головы и пространстве.

При пассивном движении корковые отделы запоминают направление движения, повороты, пройденное расстояние.

В нормальных условиях пространственная ориентировка обеспечивается совместной деятельностью зрительной и вестибулярной систем.

При равномерном движении или в условиях покоя рецепторы вестибулярной сенсорной системы не возбуждаются.

В целом, вся информация, идущая от вестибулярного аппарата в мозг, используется для регуляции позы и локомоций, т.е. в управлении скелетной мускулатурой.

У человека его периферический отдел представлен вестибулярным аппаратом.

Периферический (рецепторный) отдел анализатора представлен двумя типами рецепторных волосковых клеток вестибулярного органа. Он расположен вместе с улиткой в лабиринте височной кости и состоит из преддверия и трех полукружных каналов. В улитке располагаются слуховые рецепторы.

Преддверие включает два мешочка:сферический (саккулюс) и эллиптический или маточку(утрикулюс).Полукружные каналы расположены в трех взаимно перпендикулярных плоскостях. Они в своими устьями открываются в преддверие. Один из концов каждого канала расширен (ампула). Все эти структуры образуют перепончатый лабиринт, заполненной эндолимфой. Между перепончатым и костным лабиринтом находится перилимфа.В мешочках преддверия находится оттолитовый аппарат: скополение рецепторных клеток (вторично- чувствующие механорецепторы) на возвышения или пятнах.В ампулах полукружных каналов имеются гребешки (кристы).Пятна и гребешки содержат рецепторные эпителиальные клетки, имеющие на свободной поверхности тонкие многочисленные (40-60 штук) волоски (стереоцилии) и один более толстый и длинный волосок (киноцилию).

Рецепторные клетки преддверия покрыта отолитовой мембраной – желеобразной массой из мукополисахароидов, содержащей значительное количество кристалликов карбоната кальция (отолитов). В ампулах желеобразная масса не содержит отолитов, называется листовидной мембраной. Волоски (реснички) рецепторных клеток погружены в эти мембраны.

Возбуждение волосковых клеток происходит при изгибании стереоцилий в сторону киноцилий, что приводит к открытию механочувствительных ионных (калиевых) каналов (ионы К из эндолимфы по градиенту концентрации поступают в цитоплазму). Результатом такого входа ионов К является деполяризация мембраны. Возникает рецепторный потенциал, который приводит к выделению АХ в синапсах, существующие между волосковыми клетками и дендритами афферентных нейронов. Это сопровождается увеличением частоты нервных импульсов, идущих к вестибулярным ядрам продолговатого мозга.

При смещении стереоцилий в противоположную сторону от киноцилий происходит закрытие ионных каналов, гиперполяризация мембраны и понижение активности волокно вестибулярного нерва.

Адекватным раздражителем для рецепторных клеток преддверия являются линейные ускорения и наклоны головы или всего тела, приводящие к скольжению отолитовых мембран под действием силы тяжести и изменению положения (изгибанию) волосков. Для рецепторных клеток ампул полукружных каналов адекватным стимулом являются угловые ускорения в разных плоскостях при поворотах головы или вращения тела.

Проводниковый отдел вестибулярного анализатора представлен афферентными и эфферентными волокнами.

Первым нейроном, воспринимающими возбуждение волосковых клеток вестибулярного аппарата, являются биполярные нейроны, составляют основу вестибулярного узла(ганглия Скарпе), который залегает на дне внутреннего слухового прохода. Их дендриты, контактируют с волосковыми клетками в ответ на возбуждения этих клеток- рецепторов генерируют ПД, которые передаются по аксону в ЦНС по аксонам. Аксоны биполярных клеток образуют вестибулярную или преддверную часть 8пары ЧМН. В вестибулярном нерве и в покое наблюдается спонтанная электрическая активность. Частота разрядов в нерве повышается при поворотах головы в одну сторону и тормозится при повороте в другую сторону.

Афферентные волокна(волокна вестибулярной части нерва ) направляются к вестибулярным ядрам продолговатого мозга, от них – к таламусу, в котором происходит переключение импульсов на следующий афферентный нейрон,проводящий импульсацию непосредственно к нейронам коры большого мозга.

Вестибулярные ядра продолговатого мозга связаны со всеми отделами ЦНС: спинным мозгом, мозжечком, РФ ствола мозга, глазодвигательными ядрами, корой головного мозга, вегетативной НС. Выделяют 5 проекционных систем.

У человека есть удивительный дар, который он не всегда ценит, — возможность видеть. Человеческий глаз способен различать мелкие предметы и малейшие оттенки, при этом видеть не только днем, но и ночью. Специалисты утверждают, что с помощью зрения мы узнает от 70 до 90 процентов всей информации. Многие произведения искусства не были бы возможны при отсутствии глаз.

Поэтому разберемся подробнее, зрительный анализатор – что это такое, какие он выполняет функции, какое имеет строение?

Составляющие зрения и их функции

Начнем с рассмотрения строения зрительного анализатора, состоящего из:

  • глазного яблока;
  • проводящих путей — по ним картинка, зафиксированная глазом, подается в подкоровые центры, а потом и в кору мозга.

Поэтому в целом выделяют три отдела зрительного анализатора:

  • периферическая – глаза;
  • проводниковая – зрительный нерв;
  • центральная – зрительная и подкорковая зоны коры головного мозга.

Зрительный анализатор еще называют зрительной секреторной системой. Глаз включает в себя глазницу, а также вспомогательный аппарат.

Центральная часть находится в основном в затылочной части мозговой коры. Вспомогательный аппарат глаза представляет собой систему защиты и движения. В последнем случае внутренняя часть век имеет слизистую оболочку, называемую конъюнктивой. Защитная система включает нижнее и верхнее веко с ресницами.

Пот с головы спускается вниз, но не попадает в глаза за счет существования бровей. В слезах есть лизоцим, который убивает вредоносные микроорганизмы, попадающие в глаза. Моргание век способствует регулярному увлажнению яблока, после чего слезы спускаются ближе к носу, где попадают в слезной мешок. Дальше они переходят в полость носа.

Глазное яблоко двигается постоянно, для чего предусмотрено 2 косые и 4 прямые мышцы. У здорового человека оба глазных яблока перемещаются в одном направлении.

Диаметр органа составляет 24 мм, а его масса – около 6-8 г. Яблоко располагается в глазнице, сформированной костями черепа. Есть три оболочки: сетчатка, сосудистая и наружная.

Наружная

Внешняя оболочка имеет роговицу и склеру. В первой нет кровеносных сосудов, однако имеет множество нервных окончаний. Питание осуществляется благодаря межклеточной жидкости. Роговица пропускает свет, а также выполняет защитную функцию, предотвращая повреждение внутренности глаза. Она имеет нервные окончания: в результате попадания на нее даже небольшой пыли появляются режущие боли.

Склера имеет либо белый, либо голубоватый цвет. К ней фиксируются глазодвительные мышцы.

Средняя

В средней оболочке можно выделить три части:

  • сосудистая оболочка, находящаяся под склерой, имеет множество сосудов, поставляет кровь для сетчатки;
  • ресничное тело контактирует с хрусталиком;
  • радужка – зрачок реагирует на интенсивность света, который попадает на сетчатку (расширяется при слабом, сужается при сильном освещении).

Внутренняя

Сетчатка – мозговая ткань, которая позволяет реализовать функцию зрения. Она выглядит как тонкая оболочка, прилегающая по всей поверхности к сосудистой оболочке.

Глаз имеет две камеры, заполненные прозрачной жидкостью:

  • переднюю;
  • заднюю.

В итоге можно выделить факторы, которые обеспечивают выполнение всех функций зрительного анализатора:

  • достаточное количество света;
  • фокусировка картинки на сетчатке;
  • аккомодационный рефлекс.

Глазодвигательные мышцы

Они являются частью вспомогательной системы органа зрения и зрительного анализатора. Как отмечалось, есть две косые и четыре прямые мышцы.

  • нижняя;
  • верхняя.
  • нижняя;
  • латеральная;
  • верхняя;
  • медиальная.

Прозрачные среды внутри глаз

Они необходимы, чтобы пропускать лучи света к сетчатке, а также их преломлять в роговице. Дальше лучи попадают в переднюю камеру. Затем преломление осуществляется хрусталиком – линзой, меняющей силу преломления.

Можно выделить два основных нарушения зрения:

  • дальнозоркость;
  • близорукость.

Первое нарушение образуется при снижении выпуклости хрусталика, близорукость – наоборот. В хрусталике нет нервов, сосудов: развитие воспалительных процессов исключено.

Бинокулярное зрение

Чтобы получить одну картинку, сформированную двумя глазами, картинка фокусируется в одной точке. Такие линии зрения расходятся при взгляде на удаленные объекты, сходятся – близкие.

Еще благодаря бинокулярному зрению можно определить нахождение объектов в пространстве по отношению друг к другу, оценивать их удаленность, прочее.

Гигиена зрения

Мы рассмотрели строение зрительного анализатора, а также определенным образом разобрались, как ведется работа зрительного анализатора. А напоследок стоит узнать, как же правильно следить за гигиеной органов зрения, чтобы обеспечить их эффективную и бесперебойную работу.

  • необходимо защищать глаза от механического воздействия;
  • читать книги, журналы и прочую текстовую информацию необходимо с хорошим освещением, держать объект чтения на должном расстоянии – около 35 см;
  • желательно, чтобы свет падал слева;
  • чтение на коротком расстоянии способствует развитию близорукости, поскольку хрусталику длительное время приходится пребывать в выпуклом состоянии;
  • нельзя допускать воздействия излишне яркого освещения, которое способно разрушить световоспринимающие клетки;
  • не стоит читать в транспорте или лежа, поскольку в этом случае постоянно меняется фокусное расстояние, снижается эластичность хрусталика, ослабевает ресничная мышца;
  • нехватка витамина А может спровоцировать снижение остроты зрения;
  • частые прогулки на свежем воздухе – хорошая профилактика многих заболеваний глаз.

Подведение итогов

Следовательно, можно отметить, что зрительный анализатор представляет собой непростой, но весьма важный инструмент для обеспечения качественной жизни человека. Не зря изучение органов зрения переросло в отдельную дисциплину – офтальмологию.

Кроме определенной функции, глаза играют еще и эстетическую роль, украшая человеческое лицо. Поэтому зрительный анализатор – очень важный элемент организма, очень важно соблюдать гигиену органов зрения, периодически приходить на осмотр к врачу и правильно питаться, вести здоровый образ жизни.

Зрительные ощущения получаются при воздействии на глаз световых лучей. Светочувствительность присуща всему живому. Она проявляется у бактерий и простейших, достигая совершенства в зрении человека. Имеется структурное сходство наружного сегмента фоторецептора, как сложного мембранного образования, с хлоропластами или митохондрией, т. е. со структурами, в которых совершаются сложные биоэнергетические процессы. Но в отличие от фотосинтеза, где энергия аккумулируется, при фоторецепции квант света тратится только на «нажатие спускового курка».

Свет - изменение электромагнитного состояния среды. Поглощенный молекулой зрительного пигмента, он запускает в фоторецепторной клетке неизвестную еще цепь фотоэнзимохимических процессов, которая приводит в конечном счете к возникновению и передаче сигнала следующему нейрону сетчатки. А мы знаем, что сетчатка имеет три нейрона: 1) палочки и колбочки, 2) биполярные и 3) ганглиозные клетки.

В сетчатке 7-8 млн. колбочек и 130-160 млн. палочек. Палочки и колбочки - это высокодифференцированные клетки. Они состоят из наружного и внутреннего сегмента, которые соединены ножкой. Наружный сегмент палочек содержит зрительный пигмент родопсин, а колбочки - йодопсин и представляют окруженную наружной мембраной стопку дисков, наложенных друг на друга. Каждый диск образован двумя мембранами, состоящими из биомолекулярного слоя липидных молекул, «вставленных» между слоями белковых. Внутренний сегмент имеет скопление плотно упакованных митохондрий. Наружный сегмент и часть внутреннего находятся в контакте с пальцевыми отростками клеток пигментного эпителия. В наружном сегменте и происходят фотофизические, фотохимические и ферментативные процессы трансформации энергии света в физиологическое возбуждение.

Какая же схема фоторецепции известна в настоящее время? Под действием света светочувствительный пигмент изменяется. А зрительный пигмент - это сложные окрашенные белки. Та часть, которая поглощает свет, называется хромофором, ретиналем (альдегид витамина «А»). Ретиналь связан с белком, который называется опсином. Молекула ретиналя имеет различную конфигурацию, называемую цис- и транс- изомерами. Всего 5 изомеров, но только 11-цис-изомер изолированно участвует в фоторецепции. В результате поглощения кванта света изогнутый хромофор выпрямляется и нарушается связь между ним и опсином (до этого прочно связаны). На последней стадии трансретиналь полностью отрывается от опсина. Наряду с разложением идет синтез, т. е. свободный опсин соединяется с ретиналем, но 11-цисретиналем. Опсин образуется в результате выцветания зрительного пигмента. Транс-ретиналь восстанавливается с помощью фермента ретининредуктазы в витамин «А», который превращается в альдегидную форму, т.е. в ретиналь. В пигментном эпителии находится специальный фермент - ретиненизомераза, который обеспечивает переход молекулы хромофора из трас- в 11-цис-изомерную форму. А ведь к опсину подходит только 11-цис-изомер.

Все зрительные пигменты позвоночных и беспозвоночных построены по общему плану: 11 цис-ретиналь + опсин. Но прежде, чем свет будет поглощен сетчаткой и вызовет зрительную реакцию, он должен пройти через все среды глаза, где разное поглощение в зависимости от длины волны может исказить спектральный состав светового стимула. Практически вся энергия света с длиной волны более 1400 нм поглощается оптическими средами глаза, преобразуется в тепловую энергию и, таким образом, не достигает сетчатки. В некоторых случаях это может вызвать даже повреждение роговицы и хрусталика. Поэтому лицам определенных профессий для защиты от инфракрасного излучения необходимо носить специальные очки (например, литейщикам). При длине волны менее 500 нм электромагнитная энергия может свободно проходить через водные среды, но и здесь поглощение все-таки произойдет. Роговица и хрусталик не пропускают в глаз лучи с длиной волны менее 300 нм. Поэтому следует носить защитные очки при работе с источниками ультрафиолетового (УФ) излучения (например, дуговая сварка).

Это позволяет, в основном в дидактических целях, выделить пять основных зрительных функций. В процессе филогенеза зрительные функции развивались в следующем порядке: светоощущение, периферическое, центральное зрение, цветоощущение, бинокулярное зрение.

Зрительная функция - чрезвычайно широка по диапазону и в смысле многообразия, и в смысле количественной выраженности каждой из ее разновидностей. Выделяют: абсолютную, различительную, контрастную, световую чувствительность; центральное, периферическое, цветовое, бинокулярное глубинное, дневное, сумеречное и ночное зрение, а также зрение вблизи и вдаль. Кроме того, зрение может быть фовеальное, парафовеальное - эксцентрическое и периферическое в зависимости от того, какой участок сетчатки подвергается световому раздражению. Но простая световая чувствительность является обязательным компонентом любой разновидности зрительной функции. Без нее невозможно никакое зрительное ощущение. Она измеряется световым порогом, т.е. минимальной силой раздражителя, способного при определенном состоянии зрительного анализатора вызвать световые ощущения.

Светоощущение (световая чувствительность глаза) - это способность глаза к восприятию световой энергии и света различной яркости.

Светоощущение отражает функциональное состояние зрительного анализатора и характеризуется возможностью ориентации в условиях пониженного освещения.

Световая чувствительность глаза проявляется в виде: абсолютной световой чувствительности; различительной световой чувствительности .

Абсолютная световая чувствительность - это абсолютный порог световой энергии (порог раздражения, способный вызвать зрительные ощущения; порог этот ничтожно мал и соответствует 7-10 квантам света).

Различительная световая чувствительность глаза (т.е. различие минимальной разницы в освещении) также чрезвычайно высока. По диапазону светоощущение глаз превосходит все известные в технике измерительные приборы.

При различном уровне освещенности функциональные способности сетчатки неодинаковы, так как функционируют либо колбочки, либо палочки, что обеспечивает определенный вид зрения.

В зависимости от освещенности принято выделять три разновидности зрительной функции: дневное зрение (фотопическое - при больших интенсивностях освещения); сумеречное (мезопическое - при малой и очень малой освещенности); ночное (скотопическое - при минимальных освещенностях).

Дневное зрение - характеризуется высокой остротой и полноценным цветовосприятием.

Сумеречное - низкой остротой и цветослепотой. При ночном зрении дело сводится к светоощущению.

Более 100 лет назад анатом Макс Шульц (1866) сформулировал двойственную теорию зрения, что дневное зрение осуществляется колбочковым аппаратом, а сумеречное - палочковым, на том основании, что сетчатка дневных животных состоит преимущественно из колбочек, а ночных - из палочек.

В сетчатке курицы (дневная птица) - в основном колбочки, в сетчатке совы (ночная птица) - палочки. У глубоководных рыб колбочки отсутствуют, у щуки, окуней, форели - много колбочек. У рыб с водно-воздушным зрением (рыба-прыгун) нижняя часть сетчатки содержит только колбочки, верхняя - палочки.

Позже Пуркинье и Крис независимо друг от друга, не зная о работе Шульца, пришли к тому же заключению.

В настоящее время доказано, что колбочки принимают участие в акте зрения при малых освещенностях, а особая разновидность палочек участвует в осуществлении восприятия синего света. Глазу приходится постоянно приспосабливаться к переменам внешней среды, т.е. менять свою светочувствительность. Прибор чувствительнее, чем на меньшее воздействие он реагирует. Световая чувствительность высока, если глаз видит очень слабый свет, и низка, если сравнительно сильный. Чтобы вызвать изменение в зрительных центрах, надо чтобы возникли фотохимические процессы в сетчатке. Если концентрация светочувствительного вещества в сетчатке больше, то и фотохимические процессы будут более интенсивные. По мере воздействия света на глаз запас светочувствительных веществ уменьшается. При переходе в темноту происходит обратный процесс. Изменение чувствительности глаза при световом раздражении называется световой адаптацией, изменение чувствительности по мере пребывания в темноте - темновой адаптацией.

Начало исследования темновой адаптации было положено Аубертом (1865). Исследование темновой адаптации проводится адаптометрами, основанными на феномене Пуркинье. Феномен Пуркинье состоит в том, что в условиях сумеречного зрения происходит перемещение максимума яркости в спектре в направлении от красного к сине-фиолетовому. Надо найти ту минимальную интенсивность, которая вызывает у испытуемого человека ощущение света при данных условиях.

Светочувствительность весьма изменчива. Увеличение световой чувствительности идет непрерывно, сначала быстро (20 минут), потом медленнее и достигает максимума через 40-45 минут. Практически после 60-70 минутного пребывания больного в темноте световая чувствительность устанавливается на более или менее постоянном уровне.

Существует два основных типа нарушений абсолютной световой чувствительности и зрительной адаптации: гипофункция колбочкового аппарата сетчатки, или дневная слепота, и гипофункция палочкового аппарата сетчатки, или ночная слепота - гемералопия (Шамшинова А.М., Волков В.В., 1999).

Дневная слепота характерна для колбочковой дисфункции. Симптомами ее являются некорригируемое снижение остроты зрения, снижение фоточувствительности, или нарушение адаптации от темноты к свету, то есть световой адаптации, нарушение цветоощущения в различных вариациях, улучшение зрения в сумерках и ночью.

Характерными симптомами являются нистагм и светобоязнь, ослепление и изменения в колбочковой макулярной ЭРГ, более высокая, чем в норме, скорость восстановления световой чувствительности в темноте. Среди наследственных форм колбочковой дисфункции, или дистрофии, выделяют врожденные формы (ахроматопсия), голубой колбочковый монохроматизм. Изменения в макулярной области обусловлены атрофическими или дегенеративными изменениями. Характерным признаком является врожденный нистагм.

Изменения света и цветоощущения наблюдаются и при приобретенных патологических процессах в макулярной области, обусловленных токсическими макулопатиями, вызванными длительным применением хлорохина (гидроксихлорохин, делагил), нейролептиками фенотиазинового ряда.

При гипофункции палочкового аппарата (гемералопия) выделяют прогрессирующую форму, обусловленную мутацией родопсина, и врожденную стационарную. К прогрессирующим формам относят пигментный ретинит, колбочко-палочковую дистрофию, синдром Ушера, М. Бидля, Лебера и др., fundus punctata albescenc.

К стационарным относятся:

1) стационарная ночная слепота с нормальным глазным дном, при которой отсутствуют скотопическая ЭРГ, негативная ЭРГ и негативная ЭРГ полная и неполная. Форма стационарной ночной слепоты, сцепленная с полом (тип II), сочетается с миопией тяжелой и средней степени;

2) стационарная ночная слепота с нормальным глазным дном:

А) болезнь «Огуши» ;

Б) феномен Мизуо;

В) plick retina of Kandory.

В основе этой классификации лежат изменения в ЭРГ, которая отражает функцию колбочкового и палочкового аппаратов сетчатки.

Врожденная стационарная ночная слепота с патологическими изменениями на глазном дне, болезнь «Огуши» , характеризуется своеобразной серо-белой дисколорацией сетчатки в заднем полюсе и экваториальной зоне, макулярная область при этом темная в контрасте с окружающим фоном. Вариацией этой формы является известный феномен Мизуо, который выражается в том, что после длительной адаптации необычная окраска глазного дна исчезает, и дно выглядит нормальным. После пребывания на свету она медленно возвращается к своему оригинальному металлическому цвету.

Большую группу составляют и разнообразные виды ненаследственной гемералопии, обусловленные общими нарушениями обмена веществ (при дефиците витамина «А», при хроническом алкоголизме, заболеваниях желудочно-кишечного тракта, гипоксии и начальном сидерозе).

Одним из ранних признаков многих приобретенных заболеваний глазного дна может быть нарушение зрения в условиях сниженной освещенности. При этом светоощущение нередко нарушается по смешанному колбочко - палочковому типу, как бывает при отслойке сетчатки любого генеза.

При любой патологии зрительно-нервного пути, сопровождающейся нарушением в поле зрения, вероятность снижения темновой адаптации в функционирующей его части тем выше, чем дистальнее локализованы основные нарушения.

Так, адаптация нарушается при миопической болезни, глаукоме и даже при трактусовых гемианопсиях, а при амблиопии центрального характера и корковой гемианопсии адаптационных нарушений обычно не обнаруживают. Нарушения светоощущения могут быть не связаны с патологией зрительно-нервного пути. В частности, порог светочувствительности возрастает при ограничении поступления света внутрь глаза в случаях резкого миоза или помутнения оптических сред. Особую форму нарушения ретинальной адаптации представляет эритропсия.

При афакии, когда сетчатка подвержена воздействию яркого света без фильтрации хрусталиком коротковолновых лучей, пигмент «синих» и «зеленых» колбочек выцветает, чувствительность колбочек к красному цвету увеличивается и красночувствительные колбочки отвечают суперреакцией. Эритропсия может сохраняться в течение нескольких часов после засвета высокой интенсивности.

Световоспринимающие элементы сетчатки - палочки и колбочки - распределяются в различных отделах неодинаково. В fovea centralis - только колбочки. В парафовеальной области к ним присоединяется небольшое количество палочек. В периферических отделах нейроэпителий сетчатки состоит почти исключительно из палочек, количество колбочек невелико. Область желтого пятна, особенно fovea centralis, обладает наиболее совершенным, так называемым центральным форменным зрением. Центральная ямка устроена своеобразно. Здесь более прямые связи от каждой колбочки к биполярным и ганглиозным клеткам, чем на периферии. Кроме того, колбочки в этой области гораздо теснее упакованы, имеют более вытянутую форму, биполярные и ганглиозные клетки смещены к краям центральной ямки. У ганглиозных клеток, собирающих информацию из этой области, очень небольшие рецептивные поля. Поэтому центральная ямка - это область максимальной остроты зрения. Зрение периферических частей сетчатки в отношении различать мелкие объекты значительно уступает центральному. Уже на расстоянии 10 градусов от fovea centralis острота зрения в 5 раз меньше, а дальше к периферии еще более ослабевает. Основным мерилом зрительной функции является центральная острота зрения.

Центральное зрение - это способность глаза различать детали и форму предметов. Оно характеризуется остротой зрения.

Острота зрения - это способность глаза воспринимать раздельно две светлые точки на темном фоне, находящиеся на минимальном расстоянии друг от друга. Для ясного и раздельного восприятия двух светящихся точек необходимо, чтобы расстояние между их изображениями на сетчатке было не меньше известной величины. А величина изображения на сетчатке зависит от угла, под которым виден данный предмет

Острота зрения измеряется в угловых единицах. Угол зрения измеряется в минутах. Острота зрения находится в обратной зависимости от угла зрения. Чем больше угол зрения, тем меньше острота зрения, и наоборот. При исследовании остроты зрения определяется минимальный угол, под которым могут быть раздельно восприняты два световых раздражения сетчатой оболочки глаза. Такому углу на сетчатке соответствует линейная величина в 0,004 мм, равная поперечнику одной колбочки. Острота зрения глаза, могущего воспринимать раздельно две точки под углом в 1 минуту, считается нормальной остротой зрения, равной 1,0. Но зрение может быть и выше - это норма. И зависит это от анатомического устройства колбочек.

На распределение световой энергии на сетчатке оказывают влияние: дифракция (при узком зрачке меньше 2 мм), аберрация - смещение фокусов лучей, проходящих через периферические отделы роговицы и хрусталика, из-за перепадов в преломляющей силе этих отделов (относительно центральной области) - это сферическая аберрация.

Геометрические аберрации (сферическая, астигматизм, дисторсия, кома) особенно ощутимы при зрачке более 5 мм, поскольку в этом случае увеличивается доля лучей, поступающих через периферию роговицы и хрусталика.

Хроматическая аберрация ,обусловленная различиями в силе преломления и расположения фокусов лучей разной длины волны, в меньшей степени зависит от ширины зрачка.

Рассеивание света - часть света рассеивается в микроструктурах оптических сред глаза. С возрастом выраженность этого феномена возрастает и это может послужить причиной слепимости от ярких засветов глаза. Имеет значение и абсорбция, о которой уже говорилось.

Также способствует зрительному восприятию мельчайшей структуры окружающего пространства гексагональное строение ретинальных рецептивных полей, которых образуется множество.

Для зрительного опознания важную роль играет система фильтров различной пространственной частоты, ориентации и формы. Они функционируют на уровне ганглиозных клеток сетчатки, наружных коленчатых тел и в зрительной коре. Пространственная дифференциация находится в тесной зависимости от световой. На остроту зрения, кроме функции светоощущения, оказывает влияние адаптация к длительной экспозиции объекта. Для нормального зрительного восприятия окружающего мира необходимы не только высокая острота зрения, но и полноценные пространственно - частотные каналы контрастной чувствительности, которые обеспечивают фильтрацию высоких частот, информирующих о мелких, низких деталях объекта, без которых невозможно восприятие целостного образа, даже при различимости мелких деталей и средних, особенно чувствительных к контрастам и создающих предпосылки для качественного высокочастотного анализа контуров предметов.

Контрастная чувствительность - это способность улавливать минимальные различия в освещенности двух соседних областей, а также дифференцировать их по яркости. Полноту информации во всем диапазоне пространственных частот дает визоконтрастометрия (Шамшинова A.M., Волков В.В., 1999). Для проверки остроты зрения вдаль широко используют таблицы Сивцева, Снеллена, которые равномерно освещаются спереди (70 ватт.).

Наилучшим тестом остается тест в виде колец Ландольта. Таблицы Снеллена, которые применяются у нас, были одобрены на втором международном конгрессе в Париже в 1862 году. Позже появилось множество новых таблиц с различными видоизменениями и добавлениями. Несомненным шагом вперед для уточнения исследования остроты зрения явились выпущенные в свет на стыке двух веков метрические таблицы Мануайе.

В России общим признанием пользуются таблицы Головина С.С. и Сивцева Д.А., построенные по системе Мануайе.

Исследования остроты зрения вдаль проводят с расстояния 5 м., за рубежом чаще с расстояния 6 м, при остроте зрения, не позволяющей видеть самые крупные знаки таблиц, прибегают к показу одиночных знаков или пальцев врача на темном фоне. Если больной считает пальцы с расстояния 0,5 м, то остроту зрения обозначают как 0,01, если с 1 м - 0,02 и т.д. Эти расчеты ведут по формуле Снеллена vis = d / Д, где d - расстояние, с которого больной считает пальцы или читает первый ряд таблицы; Д - это первый ряд таблицы, который должен в норме видеть исследуемый. Если больной не может сосчитать пальцы, находящиеся у самого лица, то перед глазом перемещают руку врача, чтобы выяснить, удается ли пациенту определить направление перемещаемой перед глазом руки врача.

Если результат положительный, то зрение обозначают как 0,001.

Если пациент при направлении зеркала офтальмоскопа ощущает свет со всех сторон правильно, то зрение обозначается как правильная проекция света.

Если пациент не ощущает света, то его зрение равно 0 (нулю). Высокая острота зрения вдаль может быть без высокой остроты зрения вблизи и наоборот. Для более детальной оценки изменений остроты зрения предложены таблицы с уменьшенным «шагом» между рядами (Розенблюм Ю.З., 1961).

Снижение центрального зрения только вдаль, корригируемое стеклами, бывает при аметропиях, а вблизи - вследствие нарушения аккомодации при возрастных изменениях. Снижение центрального зрения вдаль при одновременном улучшении его вблизи связано с миопизацией в связи с набуханием хрусталика.

Снижение, не устранимое оптическими средствами, при наличии на хуже видящем глазу гиперметропии, астигматизма, косоглазия, говорит об амблиопии. Если выявлены патологические процессы в макулярной области, снижается центральное зрение. У больных, предъявляющих жалобы на центральную скотому и нарушение цветоощущения, а также снижение контрастной чувствительности на одном глазу, нужно исключить неврит или ретробульбарный неврит, если эти изменения выявляются на обоих глазах, то необходимо исключить оптохиазмальный арахноидит или проявления осложненного застойного диска.

Стойкое снижение центрального и периферического зрения с ослаблением рефлекса с глазного дна может быть следствием нарушения прозрачности преломляющих сред глаза.

При нормальной остроте зрения снижение контрастной чувствительности с нарушениями в парацентральной области поля зрения является начальным проявлением глаукомы.

Изменения пространственной контрастной чувствительности (ПКЧ) зрительного анализатора, которая определяет минимальный контраст, необходимый для обнаружения изображения различных размеров, при многих патологических состояниях могут быть первым признаком заболевания зрительной системы. Для уточнения поражения исследование дополняется другими методами. Современные компьютерные игровые программы для исследования ПКЧ позволяют определить ее у детей.

На остроту зрения оказывают влияние различные побочные раздражения: слуховые, состояние ЦНС, двигательный аппарат глаза, возраст, ширина зрачка, утомление и т. д.

Периферическое зрение Если фиксировать какой-нибудь предмет, то помимо отчетливого видения этого предмета, изображение которого получается в центральной части желтого пятна сетчатки, мы замечаем и другие объекты, которые находятся на разном расстоянии (справа, слева, сверху или снизу) от фиксируемого предмета. Следует отметить, что изображения этих объектов, проецирующихся на периферию сетчатки, распознаются хуже, чем фиксируемого предмета, и тем хуже, чем дальше они от него отстоят.

Острота периферического зрения во много раз меньше центрального. Это объясняется тем, что количество колбочек по направлению к периферическим отделам сетчатой оболочки значительно уменьшается. Оптические элементы сетчатки в ее периферических отделах представлены главным образом палочками, которые в большом количестве (до 100 палочек и более) соединены с одной биполярной клеткой, поэтому возбуждения, идущие от них, менее дифференцированы и изображения получаются менее четкими. Однако периферическое зрение в жизнедеятельности организма играет не меньшую роль, чем центральное. Отличие центрального зрения от периферического красочно описал в своей книге академик Авербах М.И.: «Я вспоминаю двух больных, адвокатов по профессии. Один из них страдал атрофией зрительного нерва обоих глаз, с центральным зрением равным 0,04-0,05, и почти нормальными границами поля зрения. Другой был болен пигментным перерождением сетчатки, имея нормальное центральное зрение (1,0), а поле зрения резко суженное - почти до точки фиксации. Оба они приходили в здание судебных учреждений, в котором был длинный темный коридор. Первый из них, не будучи в состоянии прочесть ни одной бумаги, совершенно свободно бегал по коридору, ни на кого не наталкиваясь и не нуждаясь в посторонней помощи; второй же, беспомощно останавливался, ожидая, пока кто-нибудь не возьмет его под руку и не проведет через коридор в светлый зал заседаний. Несчастье сблизило их, и они помогали друг другу. Атрофик провожал своего товарища, а тот читал ему газету».

Периферическое зрение - это то пространство, которое воспринимает глаз при неподвижном (фиксированном) состоянии.

Периферическое зрение расширяет наш кругозор, необходимый для самосохранения и практической деятельности, служит для ориентировки в пространстве, дает возможность свободного перемещения в нем. Периферическое зрение более, чем центральное, восприимчиво к прерывистым раздражениям, в том числе к впечатлениям всякого движения; благодаря этому можно быстро заметить перемещающихся со стороны людей и транспорт.

Периферические части сетчатки, представленные палочками, особенно чувствительны к слабому свету, что играет большую роль в условиях пониженного освещения, когда на первый план выступает не потребность в остроте центрального зрения, а способность ориентироваться в пространстве. Вся сетчатка, содержащая в себе фоторецепторы (палочки и колбочки), участвует в периферическом зрении, котороя характеризуется полем зрения. Наиболее удачное определение этого понятия дано Богословским И.А.: «Все поле, которое одновременно видит глаз, фиксируя неподвижным взором и при неподвижном положении головы определенную точку в пространстве, и составляет его поле зрения». Размеры поля зрения нормального глаза имеют определенные границы и определяются границей оптически деятельной части сетчатки, расположенной до зубчатой линии.

Для исследования поля зрения существуют определенные объективные и субъективные методы, включающие: кампиметрию; контрольный метод; обычную периметрию; статическую квантитативную периметрию, при которой тестируемый объект не перемещают и не меняют в размерах, а предъявляют в заданных по той или иной программе точках поля зрения с переменной яркостью; кинетическую периметрию, при которой тестируемый объект с постоянной скоростью смещают по поверхности периметра от периферии к центру и определяют границы поля зрения; цветовую периметрию; мерцательную периметрию - исследование поля зрения с помощью мелькающего объекта. Метод заключается в том, что определяют критическую частоту слияния мельканий в разных участках сетчатки для белых и цветных объектов разной интенсивности. Критической частотой слияния мельканий (КЧСМ) называется наименьшее число световых мельканий, при котором наступает феномен слияния. Имеются и другие методы периметрии.

Наиболее простым субъективным методом является контрольный метод Дондерса, но он пригоден только для обнаружения грубых дефектов поля зрения. Пациент и врач садятся друг против друга на расстоянии 0,5 м, причем пациент садится спиной к свету. При исследовании правого глаза пациент закрывает левый глаз, а врач - правый, при исследовании левого глаза - наоборот. Пациента просят открытым правым глазом смотреть прямо в левый глаз врача. При этом можно заметить самое легкое нарушение фиксации во время исследования. На середине расстояния между собой и пациентом врач держит палочку с белой меткой, ручку или кисть своей руки. Помещая объект вначале вне своего поля зрения и поля зрения пациента, врач постепенно приближает его по направлению к центру. Когда пациент увидит перемещаемый объект, он должен сказать «да». При нормальном поле зрения пациент должен увидеть объект одновременно с врачом, при условии, что у врача границы поля зрения нормальные. Этот метод позволяет составить представление о границах поля зрения у пациента. При этом методе измерение границ поля зрения производят в восьми меридианах, что позволяет судить только о грубых нарушениях границ поля зрения.

На результаты исследования поля зрения большое влияние оказывают размер используемых тест-объектов, их яркость и контраст с фоном, поэтому эти величины должны быть точно известны и для получения сравнительных результатов должны сохраняться постоянными не только в процессе одного исследования, но и при повторной периметрии. Для определения границ поля зрения надо пользоваться белыми тест-объектами диаметром 3 мм, а для исследования изменений внутри этих границ - тест-объектами диаметром 1 мм. Цветные тест-объекты должны иметь диаметр 5 мм. При пониженном зрении можно применять тест-объекты и большего размера. Лучше пользоваться круглыми объектами, хотя форма объекта при одинаковой площади и яркости не влияет на результаты исследования. Для цветной периметрии тест-объекты должны предъявляться на нейтральном сером фоне и быть равно яркими с фоном и между собой. Пигментные объекты различного диаметра, изготовленные из белой и цветной бумаги или нитроэмали, должны быть матовыми. В периметрах могут быть использованы также самосветящиеся объекты в виде лампочки, помещенной в корпус с отверстием, которое закрывается цветными или нейтральными светофильтрами и диафрагмами. Самосветящиеся объекты удобно использовать при исследовании лиц с пониженным зрением, так как они могут обеспечить большую яркость и контрастность с фоном. Скорость передвижения объекта должна быть приблизительно 2 см за 1 секунду. Испытуемый во время исследования должен находиться в удобной позе, при постоянной фиксации взора на фиксационную точку. В течение всего времени исследования необходимо следить за положением глаз и взора исследуемого. Границы поля зрения равны: кверху - 50, книзу - 70, кнутри - 60, кнаружи - 90 градусов. На размеры границ поля зрения оказывают влияние многие факторы, зависящие как от самого больного (ширина зрачка, степень внимания, утомляемость, состояние адаптации), так и от метода исследования поля зрения (величина и яркость объекта, скорость движения объекта и др.), а также от анатомического строения орбиты, формы носа, ширины глазной щели, наличия экзофтальма или энофтальма.

Наиболее точно измеряется поле зрения методом периметрии. Границы поля зрения исследуются для каждого глаза отдельно: глаз, который не подвергается исследованию, выключается из бинокулярного зрения наложением на него не давящей повязки.

Дефекты в границах поля зрения разделяют по их моно- или бинокулярности (Шамшинов A.M., Волков В.В., 1999).

Монокулярное зрение (греч. monos - один + лат. oculus - глаз) - это зрение одним глазом.

Оно не позволяет судить о пространственном расположении предметов, дает представление лишь о высоте, ширине, форме предмета. При сужении части нижнего поля зрения без четкой квадрантной или гемианопической локализации с жалобой на ощущение пелены снизу и медиально, ослабевающей после постельного режима, - это свежая отслойка сетчатки с разрывом в верхненаружной или верхней части глазного дна.

При сужении части верхнего поля зрения с ощущением нависающей пелены, усиливающейся при физической активности, - это свежие отрывы или разрывы сетчатки в нижних отделах. Постоянное выпадение верхней половины поля зрения бывает при старых отслойках сетчатки. Клиновидные сужения в верхневнутреннем или нижневнутреннем квадранте наблюдаются при развитой или далеко-зашедшей глаукоме и можут быть даже при нормальном офтальмо-тонусе.

Конусовидное сужение поля зрения, вершиной связанное со слепым пятном, а расширяющимся основанием уходящее к периферии (скотома Йенсена), возникает при юкстапапиллярных патологических очагах. Чаще при хроническом продуктивном воспалении хориоидеи. Выпадение на одном глазу всей верхней или нижней половины поля зрения характерно для ишемической оптической нейропатии.

Бинокулярное зрение (лат. bin [i] - по два, пара + oculus - глаз) - это способность человека видеть окружающие предметы двумя глазами и получение при этом единого зрительного восприятия.

Для него характерно глубинное, рельефное, пространственное, стереоскопическое зрение.

При выпадении нижних половин поля зрения с четкой горизонтальной линией характерно для травмы, в особенности огнестрельных ранений черепа с повреждением обеих затылочных долей коры больших полушарий головного мозга в области клина. При выпадении гомонимно правых или гомонимно левых половин поля зрения с четкой границей по вертикальному меридиану - это поражение зрительного тракта, противоположного гемианопическому дефекту. Если сохраняется при этом выпадении реакция зрачка на очень слабый свет - то это поражен центральный нейрон одной из гемисфер зрительной коры. Выпадение на обоих глазах и правых и левых половин поля зрения с сохранением островка в центре поля зрения в пределах 8-10 градусов у людей преклонного возраста может явиться следствием обширной ишемии обеих половин затылочной коры атеросклеротического генеза. Выпадение гомонимных (правых и левых, верхних и нижних квадрантов) полей зрения, при верхне-квадрантной гомонимной гемианопсии является признаком поражения пучка Грациолле при опухоли или абсцессе в соответствующей височной доле. При этом зрачковые реакции не нарушены.

Гетеронимное выпадение либо половин, либо квадрантов поля зрения характерно для хиазмальной патологии. Биназальная гемианопсия часто сочетается с концентрическим сужением поля зрения и центральными скотомами и характерна для оптохиазмального арахноидита.

Битемпоральная гемианопсия - если дефекты появляются в нижненаружных квадрантах - это субселлярные менингиомы бугорка турецкого седла, опухоли III желудочка и аневризмы этой области.

Если прогрессируют верхненаружные дефекты - это аденома гипофиза, аневризма внутренней сонной артерии и ее ветвей.

Периферический дефект поля зрения моно- и бинокулярный может быть следствием давления на зрительный нерв в орбите, костном канале или полости черепа опухоли, гематомы, обломков кости.

Так может начинаться пре- или постхиазмальный процесс, либо проявляться периневрит зрительного нерва, он может лежать в основе изменений в поле зрения и корковых изменений.

Повторные измерения поля зрения должны проводиться при одинаковых условиях освещения (Шамшинова А.В., Волков В.В., 1999).

Объективными методами исследования поля зрения являются:

1. Пупилломоторная периметрия.

2. Периметрия по реакции остановки альфаритма.

По реакции остановки альфаритма судят об истинных границах периферического поля зрения, в то время как по реакции испытуемого - о субъективных границах. Важное значение объективная периметрия приобретает в экспертных случаях.

Различают фотопическое, мезопическое и скотопическое поле зрения.

Фотопическое - это поле зрения в условиях хорошей яркости. При таком освещении преобладает функция колбочек, а функция палочек в какой-то мере заторможена. При этом наиболее четко выявляются те дефекты, которые локализуются в макулярной и парамакулярной областях.

Мезопическое - исследование поля зрения в условиях пониженной яркости после небольшой (4-5 мин) сумеречной адаптации. И колбочки, и палочки работают почти в одинаковых режимах. Протяженность поля зрения, полученная в этих условиях, почти не отличается от нормального поля зрения; особенно хорошо выявляются дефекты и в центральной части поля зрения, и на периферии.

Скотопическое - исследование поля зрения после 20-30- минутной темновой адаптации в основном дает информацию о состоянии палочкового аппарата.

В настоящее время цветная периметрия является обязательным исследованием главным образом при трех категориях заболеваний: заболеваниях зрительного нерва, отслойке сетчатки и при хориоидитах.

1. Цветная периметрия важна при ряде неврологических заболеваний, для доказательства начальных стадий туберкулезной атрофии зрительного нерва, при ретробульбарных невритах и других заболеваниях зрительного нерва. При этих заболеваниях наблюдаются ранние нарушения способности распознавать красный и зеленый цвета.

2. Цветовая периметрия имеет важное значение при оценке отслойки сетчатки. При этом нарушается способность распознавать синий и желтый цвета.

3. При свежих очагах поражения сосудистой оболочки и сетчатки выявляются абсолютная центральная скотома и относительная скотома в периферической части поля зрения. Наличие скотом на различные цвета является ранним диагностическим признаком многих серьезных заболеваний.

Изменения поля зрения могут проявляться в виде скотом.

Скотома - это ограниченный дефект в поле зрения. Скотомы могут быть физиологические и патологические, положительные и отрицательные, абсолютные и относительные.

Положительная скотома - это скотома, которую ощущает сам больной, а отрицательная обнаруживается с помощью специальных методов исследования.

Абсолютная скотома - депрессия чувствительности к свету и не зависит от интенсивности поступающего света.

Относительная скотома - невидимая при стимулах слабой интенсивности и видна при стимулах более высокой интенсивности.

Физиологические скотомы - это слепое пятно (проекция диска зрительного нерва) и ангиоскотомы (проекция сосудов сетчатки).

Шамшинова A.M. и Волков В.В. (1999) так характеризуют скотомы.

Центральная зона - монокулярная центральная положительная скотома, нередко с метаморфопсией, бывает при монокулярном отеке, дистрофии Фукса, кистах, вплоть до разрыва сетчатки в макуле, геморрагии, экссудате, опухоли, лучевом ожоге, сосудистых мембранах и др. Положительная скотома с микропсией характерна для центральной серозной хориопатии. Отрицательная скотома бывает при аксиальном неврите, травмах и ишемии зрительного нерва. Бинокулярная отрицательная скотома выявляется либо сразу на обоих глазах, либо с небольшим временным интервалом, что бывает при оптико-хиазмальном арахноидите.

Зона слепого пятна - монокулярная: расширение слепого пятна более 5 градусов в поперечнике, субъективно не замечаемое, бывает при застойном диске, друзах диска зрительного нерва, при глаукоме.

Центральная зона и зона слепого пятна (центроцекальная скотома)

Монокулярная, ремиттирующая скотома (врожденная «ямка» диска зрительного нерва с серозной отслойкой сетчатки).

Бинокулярная: токсическая, Леберовская и другие формы оптической нейропатии.

Парацентральная зона (по окружности в пределах 5-15 градусов от точки фиксации).

Монокулярная: при глаукоме (скотома Бьерума), возможны зрительный дискомфорт, снижение контрастной чувствительности и темновой адаптации.

Парацентральные боковые зоны (гомонимно правосторонние, гомонимно левосторонние).

Бинокулярная: создает затруднение при чтении.

Парацентральные горизонтальные зоны (верхние или нижние).

Монокулярные: при наличии чувства «срезания» верхней или нижней части рассматриваемого объекта (ишемическая нейропатия).

Срединная зона (между центром и периферией в виде кольца, кольцевидная скотома, в поздних стадиях заболевания кольцо сжимается к центру до 3-5 градусов).

Монокулярная: при далекозашедшей глаукоме и др.

Бинокулярная: при тапеторетинальной дистрофии, медикаментозной дистрофии сетчатки и др. Обычно сопровождается снижением темновой адаптации. Островковые скотомы (в различных участках периферии поля зрения).

Монокулярные, реже бинокулярные, часто остаются незамеченными. Встречаются при патологических хориоретинальных очагах, сопоставимых по диаметру с диском зрительного нерва (кровоизлияния, опухоли, воспалительные фокусы).

Увеличение скотом на различные цвета является ранним диагностическим признаком многих серьезных заболеваний, позволяющим заподозрить заболевание на ранних стадиях. Так, наличие скотомы на зеленый цвет является симптомом опухоли лобной доли головного мозга.

Наличие лилового или синего пятна на светлом фоне - это скотома гипертоника.

«Я вижу через стекло» - так называемая стеклянная скотома, свидетельствует о спазме сосудов как проявлении вегетоневроза.

Мерцательная скотома (глазная мигрень) у пожилых людей является ранним признаком опухоли или кровоизлияния в мозг. Если пациент не различает красный и зеленый цвет - это проводниковая скотома, если желтый и синий, то поражены сетчатая и сосудистая оболочки глаза.

Цветоощущение - одна из важнейших составляющих зрительной функции, позволяющая воспринимать предметы внешнего мира во всем разнообразии их хроматической окраски - это цветовое зрение, которое в жизни человека играет большую роль. Оно помогает лучше и полнее познавать внешний мир, оказывает немалое влияние на психофизическое состояние человека.

Разные цвета по-разному сказываются на частоте пульса и дыхания, на настроении, тонизируют их или угнетают. Недаром в своем исследовании о цветах Гете писал: «Все живое стремится к цвету... Желтый цвет радует глаз, расширяет сердце, бодрит дух и мы сразу ощущаем тепло, синий цвет, наоборот, представляет все в печальном свете». Правильное восприятие цветов имеет значение в трудовой деятельности (на транспорте, в химической и текстильной промышленности, врачей при работе в медицинском учреждении: хирургов, дерматологов, инфекционистов). Без правильного восприятия цветов не могут работать художники.

Цветоощущение - способность органа зрения различать цвета, то есть воспринимать световую энергию различной длины волны от 350 до 800 нм.

Длинноволновые лучи, воздействуя на сетчатку человека, вызывают ощущение красного цвета - 560 нм, коротковолновые - синего, имеют максимальную спектральную чувствительность в диапазоне - 430-468 нм, у зеленых колбочек максимум поглощения находится на уровне 530 нм. Между ними - остальные цвета. В то же время цветоощущение есть результат воздействия света на все три типа колбочек.

В 1666г. в Кембридже Ньютон с помощью призм наблюдал «знаменитые явления цветов». Образование разных цветов при прохождении света через призму было к тому времени известно, но объяснялось это явление неправильно. Свои опыты он начал с того, что поместил призму перед отверстием в ставне затемненной комнаты. Луч солнечного света проходил через отверстие, затем через призму и падал на лист белой бумаги в виде цветовых полос - спектра. Ньютон был убежден, что эти цвета изначально присутствовали в исходном белом свете, а не появились в призме, как считалось в то время. Чтобы проверить это положение, он собирал вместе цветные лучи, образованные призмой, с помощью двух различных методов: сначала линзой, затем с помощью двух призм. В обоих случаях получился белый цвет, такой же, как и до разложения призмой. Исходя из этого, Ньютон пришел к выводу, что белый цвет представляет собой сложную смесь различных видов лучей.

В 1672 году он направил в Королевское общество работу под названием «Теория цветов», в которой сообщил о результатах своего опыта с призмами. Выделил семь основных цветов спектра и впервые объяснил природу цвета. Ньютон продолжал свои опыты и после завершения работы в 1692 году написал книгу, но во время пожара все его заметки и рукописи погибли. Только в 1704 году вышел его монументальный труд под названием «Оптика».

Теперь мы знаем, что различные цвета - это не что иное, как электромагнитные волны разной частоты. Глаз, чувствительный к свету различных частот, и воспринимает их, как разные цвета. Каждый цвет следует расценивать с точки зрения трех характеризующих его признаков:

- тон - зависит от длины волны, является основным качеством цвета;

- насыщенность - густота тона, процентное соотношение основного тона и примесей к нему; чем больше в цвете основного тона, тем он насыщеннее;

- яркость - светлость цвета, проявляется степенью близости к белому цвету - степень разведения белым цветом.

Разнообразие цветов может быть получено путем смешения только трех основных цветов - красного, зеленого и синего. Эти основные три цвета для человека впервые установил Ломоносов М.В. (1757), а затем Томас Юнг (1773-1829). Опыты Ломоносова М.В. заключались в проецировании на экран наложенных друг на друга кругов света: красного, зеленого и синего цвета. При наложении происходило сложение цветов: красный и синий давали пурпурный цвет, синий и зеленый - голубой, красный и зеленый - желтый. При наложении всех трех цветов получался белый цвет.

Согласно Юнгу (1802) глаз анализирует каждый цвет в отдельности и передает сигналы о нем в мозг по трем различным типам нервных волокон, но теория Юнга была отвергнута и на 50 лет предана забвению.

Гельмгольц (1862) так же проводил опыты по смешиванию цветов и в конечном итоге подтвердил теорию Юнга. Теперь теория называется теория Ломоносова - Юнга - Гельмгольца.

Согласно этой теории в зрительном анализаторе существуют три вида цветоощущающих компонентов, которые по-разному реагируют на цвет с разной длиной волны.

В 1964 году две группы американских ученых - Маркс, Добелл, Мак - Никол в опытах на сетчатке серебряного карася, обезьяны и человека и Браун и Уол на сетчатке человека - провели виртуозные микроспектрофотометрические исследования одиночных рецепторов-колбочек и обнаружили три типа колбочек, поглощающих свет в различных частях спектра.

В 1958 году де Валуа с соавт. проводили исследования на обезьянах - макаках, имеющих механизм цветового зрения такой же, как у человека. Они доказали, что цветоощущение есть результат воздействия света на все три типа колбочек. Излучение любой длины волны возбуждает все колбочки сетчатки, но в разной степени. При одинаковом раздражении всех трех групп колбочек возникает ощущение белого цвета.

Существуют врожденные и приобретенные расстройства цветового зрения. Около 8% мужчин имеют врожденные дефекты цветовосприятия. У женщин эта патология встречается значительно реже (около 0,5%). Приобретенные изменения цветовосприятия отмечаются при заболеваниях сетчатки, зрительного нерва, центральной нервной системы и общих заболеваниях организма.

В классификации врожденных расстройств цветового зрения Криса - Нагеля красный цвет считается первым и обозначают его «протос» (греч. - protos - первый), затем идут зеленый - «дейтерос» (греч. deuteros - второй) и синий - «тритос» (греч. iritos - третий). Человек с нормальным цветовосприятием называется нормальным трихроматом. Аномальное восприятие одного из трех цветов обозначают соответственно как прото-, дейтеро- и тританомалию.

Прото - дейтеро - и тританомалию подразделяют на три типа: тип С - незначительное снижение цветовосприятия, тип В - более глубокое нарушение и тип А - на грани утраты восприятия красного и зеленого цвета.

Полное невосприятие одного из трех цветов делает человека дихроматом и обозначается соответственно как протанопия, дейтеранопия или тританопия (греч. an - отрицательная частица, ops, opos - зрение, глаз). Людей, имеющих такую патологию, называют: протанопами, дейтеранопами, тританопами.

Отсутствие восприятия одного из основных цветов, например красного, изменяет восприятие других цветов, так как в их составе отсутствует доля красного. Крайне редко встречаются монохроматы и ахроматы, которые не воспринимают цвета и видят все в черно-белом цвете. У совершенно нормальных трихроматов наблюдается своеобразная истощаемость цветового зрения, цветовая астенопия. Это явление физиологическое, оно свидетельствует просто о недостаточной устойчивости хроматического зрения у отдельных лиц.

На характер цветового зрения оказывают влияние слуховые, обонятельные, вкусовые и многие другие раздражения. Под влиянием этих непрямых раздражителей цветовое восприятие может в одних случаях угнетаться, в других усиливаться. Врожденные нарушения цветовосприятия обычно не сопровождаются другими изменениями глаза, и обладатели этой аномалии узнают о ней случайно при медицинском обследовании. Такое обследование является обязательным для водителей всех видов транспорта, людей, работающих с движущимися механизмами, и при ряде профессий, требующих правильного различения цветов.

Расстройства цветового зрения, о которых мы говорили, имеют врожденный характер.

У человека 23 пары хромосом, одна из которых несет информацию о половых признаках. У женщин имеются две идентичные половые хромосомы (XX), а у мужчин неодинаковые половые хромосомы (ХУ). Передача дефекта цветового зрения определяется геном, находящимся в X-хромосоме. Дефект не проявляется, если другая Х- хромосома содержит соответствующий нормальный ген. Поэтому у женщин с одной дефектной и одной нормальной Х-хромосомой цветовое зрение будет нормальным, но она может быть передатчиком дефектной хромосомы. Мужчина наследует X-хромосому от матери, а женщина по одной от матери и от отца.

Для диагностики дефектов цветового зрения в настоящее время существует более десятка тестов. В клинической практике у нас используются полихроматические таблицы Рабкина Е.Б., а также аномалоскопы - приборы, основанные на принципе достижения субъективно воспринимаемого равенства цветов путем дозированного составления цветовых смесей.

Диагностические таблицы построены по принципу уравнения кружочков разного цвета по яркости и насыщенности. С их помощью обозначены геометрические фигуры и цифры «ловушки», которые видят и читают цветоаномалы. В то же время они не замечают цифру или фигурку, выделенную кружками одного цвета. Следовательно, это и есть тот цвет, который не воспринимает обследуемый. Во время исследования пациент должен сидеть спиной к окну. Врач держит таблицу на уровне его глаз на расстоянии 0,5-1,0 метра. Каждая таблица экспонируется 2 секунды. Дольше можно демонстрировать только наиболее сложные таблицы.

Классическим прибором, предназначенным для исследования врожденных нарушений восприятия красно-зеленых цветов, является аномалоскоп Нагеля (Шамшинова A.M., Волков В.В., 1999). Аномалоскоп позволяет диагностировать как протанопию и дейтеранопию, так и протаномалию и дейтераномалию. По этому принципу построен аномалоскоп Рабкина Е.Б.

В отличие от врожденных приобретенные дефекты цветового зрения могут проявляться только на одном глазу. Поэтому при подозрении на приобретенные изменения цветоощущения тестирование следует проводить только монокулярно.

Нарушения цветового зрения могут быть одним из ранних симптомов приобретенной патологии. Они чаще связаны с патологией макулярной области сетчатки, с патологическими процессами и на более высоком уровне - в зрительном нерве, зрительной коре в связи с токсическими воздействиями, сосудистыми нарушениями, воспалительными, дистрофическими, демиелинизирующими процессами и др.

Созданные пороговые таблицы Юстовой с соавт. (1953) заняли ведущее место в дифференциальной диагностике приобретенных заболеваний зрительных путей, в диагностике начальных нарушений прозрачности хрусталика, при которых одним из наиболее частых симптомов, выявляемых таблицами, оказался тритадефицит второй степени. Таблицы могут быть использованы и при мутных оптических средах, если сохраняется форменное зрение не ниже 0,03-0,04 (Шамшинова A.M., Волков В.В., 1999). Перспективы в улучшении диагностики офтальмологической и нейроофтальмологической патологии открывает новый метод, разработанный Шамшиновой A.M. с соавт. (1985-1997) - цветовая статическая кампиметрия.

Программой исследования предусматривается возможность изменения не только длины волны и яркости стимула и фона, но и величины стимула в зависимости от топографии рецептивных полей в сетчатке, уравнения по яркости, стимула и фона.

Метод цветовой кампиметрии позволяет проводить «топографическое» картирование световой и цветовой чувствительности зрительного анализатора при начальной диагностике заболеваний различного генеза.

В настоящее время в мировой клинической практике признана классификация приобретенных нарушений цветового зрения, разработанная Verriest I. (1979), в которой цветонарушения подразделены на три типа в зависимости от механизмов их возникновения: абсорбция, альтерация и редукция.

1. Приобретенные прогрессирующие нарушения восприятия красно-зеленого цвета от трихромазии до монохромазии. На аномалоскопе выявляются изменения различной степени выраженности от протаномалии до протанопии и ахроматопсии. Нарушение этого типа характерно для патологии макулярной области сетчатки и свидетельствует о нарушениях в колбочковой системе. В исходе альтерации и скотопизации лежит ахроматопсия (скотопическая).

2. Приобретенные красно-зеленые нарушения, характеризуются прогрессирующим нарушением различения цветового тона от трихромазии до монохромазии и сопровождаются сине-желтыми нарушениями. На аномалоскопе в равенстве Релея расширен диапазон зеленого. При тяжелом заболевании цветовое зрение приобретает форму ахроматопсии и может проявиться скотомой. Нарушения этого типа встречаются при заболеваниях зрительного нерва. Механизм - редукция.

3. Приобретенные сине-желтые нарушения цветового зрения: в ранних стадиях больные путают цвета пурпурный, фиолетовый, синий и сине-зеленый, при его прогрессировании наблюдается дихроматическое цветовое зрение с нейтральной зоной в области около 550 нм.

Механизм нарушения цветового зрения - редукция, абсорбция или альтерация. Нарушения этого типа характерны для заболеваний хориоидеи и пигментного эпителия сетчатки, заболеваний сетчатки и зрительного нерва, встречаются также при бурой катаракте.

К приобретенным расстройствам относят и своеобразную патологию зрительного восприятия, сводящуюся к видению всех предметов, окрашенных в один какой-нибудь цвет.

Эритропсия - окружающее пространство и предметы окрашиваются в красный или розовый цвет. Это бывает при афакии, при некоторых заболеваниях крови.

Ксантопсия - окрашивание предметов в желтый цвет (ранний симптом поражения гепато-билиарной системы: (болезнь Боткина, гепатиты), при приеме акрихина.

Цианопсия - окрашивание в синий цвет (чаще после экстракции катаракты).

Хлоропсия - окрашивание в зеленый цвет (признак отравления медикаментами, иногда токсикомании).

Контрольные вопросы:

1. Назовите основные зрительные функции по очередности их развития филогенеза.

2. Назовите нейро-эпителиальные клетки, обеспечивающие зрительные функции, их количество, место расположения на глазном дне.

3. Какие функции выполняет колбочковый аппарат сетчатки?

4. Какие функции выполняет палочковый аппарат сетчатки?

5. Каким качеством характеризуется центральное зрение?

6. По какой формуле рассчитывается острота зрения меньше 0,1?

7. Перечислите таблицы и приборы, с помощью которых можно исследовать остроту зрения субъективно.

8. Назовите методы и приборы, с помощью которых можно исследовать остроту зрения объективно.

9. Какие патологические процессы могут привести к снижению остроты зрения?

10. Назовите средние нормальные границы поля зрения на белый цвет, у взрослых, у детей (по основным меридианам).

11. Назовите основные патологические изменения полей зрения.

12. При каких заболеваниях, как правило, возникают очаговые дефекты поля зрения - скотомы?

13. Перечислите заболевания, при которых происходит концентрическое сужение полей зрения?

14. На каком уровне нарушается проводимость зрительного пути при развитии:

А) гетеронимной гемианопсии?

Б) гомонимной гемианопсии?

15. На какие основные группы делятся все цвета, наблюдаемые в природе?

16. По каким признакам хроматические цвета отличаются друг от друга?

17. Назовите основные цвета, воспринимаемые человеком в норме.

18. Назовите виды расстройства цветового зрения врожденного характера.

19. Перечислите приобретенные расстройства цветового зрения.

20. Какие методы применяются для исследования цветоощущения в нашей стране?

21. В каком виде у человека проявляется световая чувствительность глаза?

22. Какой вид зрения (функциональной способности сетчатки) наблюдается при различном уровне освещенности?

23. Какие нейроэпителиальные клетки функционируют при различном уровне освещенности?

24. Какими свойствами характеризуется дневное зрение?

25. Перечислите свойства сумеречного зрения.

26. Перечислите свойства ночного зрения.

27. Назовите время адаптации глаза к свету и к темноте.

28. Перечислите виды нарушений адаптации к темноте (виды гемералопии).

29. Какими методами можно исследовать светоощущение?

Учебник для 8 класса

Орган зрения состоит из глазного яблока и вспомогательного аппарата.

Вспомогательный аппарат - это брови, веки и ресницы, слезная железа, слезные канальцы, глазодвигательные мышцы, нервы и кровеносные сосуды

Брови и ресницы защищают глаза от пыли. Кроме того, брови отводят стекающий со лба пот. Все знают, что человек постоянно моргает (2-5 движений веками в 1 мин).

Но знают ли зачем? Оказывается, поверхность глаза в момент моргания смачивается слезной жидкостью, предохраняющей ее от высыхания, заодно при этом очищаясь от пыли. Слезную жидкость вырабатывает слезная железа. Она содержит 99% воды и 1 % соли. В сутки выделяется до I г слезной жидкости, она собирается во внутреннем углу глаза, а затем попадает в слезные канальцы, которые выводят ее в носовую полость.

Если человек плачет, слезная жидкость не успевает уйти по канальцам в носовую полость. Тогда слезы перетекают через нижнее веко и каплями стекают по лицу.

Глазное яблоко располагается в углублении черепа - глазнице. Оно имеет шаровидную форму и состоит из внутреннего ядра, покрытого тремя оболочками: наружной - фиброзной, средней - сосудистой и внутренней - сетчатой.

Фиброзная оболочка подразделяется на заднюю непрозрачную часть - белочную оболочку, или склеру, и переднюю прозрачную - роговицу. Роговица представляет собой выпукло-вогнутую линзу, через которую свет проникает внутрь глаза. Сосудистая оболочка расположена под склерой.

Ее передняя часть называется радужкой, в ней содержится пигмент, определяющий цвет глаз. В центре радужной оболочки находится небольшое отверстие - зрачок, который рефлекторно с помощью гладких мышц может расширяться или сужаться, пропуская в глаз необходимое количество света.

Непосредственно за зрачком находится двояковыпуклый прозрачный хрусталик.

Он может рефлекторно менять свою кривизну, обеспечивая четкое изображение на сетчатке - внутренней оболочке глаза. В сетчатке располагаются рецепторы: палочки (рецепторы сумеречного света, которые отличают светлое от темного) и колбочки (они обладают меньшей светочувствительностью, но различают цвета). Большинство колбочек размещается на сетчатке напротив зрачка, в желтом пятне. Рядом с этим пятном находится место выхода зрительного нерва, здесь нет рецепторов, поэтому его называют слепым пятном.

Свет попадает в глазное яблоко через зрачок. Хрусталик и стекловидное тело служат для проведения и фокусирования световых лучей на сетчатку. Шесть глазодвигательных мышц обеспечивают такое положение глазного яблока, чтобы изображение предмета попадало бы точно на сетчатку, на ее желтое пятно.

Начавшееся в сетчатке восприятие цвета, формы, освещенности предмета, его деталей, заканчивается анализом в зрительной зоне коры. Здесь собирается вся информация, она расшифровывается и обобщается. В результате этого складывается представление о предмете.

Нарушения зрения. Зрение людей меняется с возрастом, так как хрусталик теряет эластичность, способность менять свою кривизну.

В этом случае изображение близко расположенных предметов расплывается - развивается дальнозоркость. Другой дефект зрения - близорукость, когда люди, наоборот, плохо видят удаленные предметы; она развивается после длительного напряжения, неправильного освещения.

Близорукость часто возникает у детей школьного возраста из-за неправильного режима труда, плохой освещенности рабочего места. При близорукости изображение предмета фокусируется перед сетчаткой, а при дальнозоркости - позади сетчатки и поэтому воспринимается как расплывчатое. Причиной этих дефектов зрения могут быть и врожденные изменения глазного яблока.

Проверьте свои знания

  1. Что такое анализатор?
  2. Как устроен анализатор?
  3. Как устроено глазное яблоко?
  4. Что такое слепое пятно?

Подумайте

Орган зрения образован глазным яблоком и вспомогательным аппаратом. Глазное яблоко может двигаться благодаря шести глазодвигательным мышцам. Зрачок- небольшое отверстие, через которое в глаз попадает свет.

Роговица и хрусталик являются преломляющим аппаратом глаза. Рецепторы (светочувствительные клетки - палочки, колбочки) находятся в сетчатке.

Строение зрительного анализатора человека

Понятие об анализаторе

Представлен воспринимающим отделом — рецепторами сетчатой оболочки глаза, зрительными нервами, проводящей системой и соответствующими участками коры в затылочных долях мозга.

Человек видит не глазами, а посредством глаз, откуда информация передается через зрительный нерв, хиазму, зрительные тракты в определенные области затылочных долей коры головного мозга, где формируется та картина внешнего мира, которую мы видим.

Все эти органы и составляют наш зрительный анализатор или зрительную систему.

Наличие двух глаз позволяет сделать наше зрение стереоскопичным (то есть формировать трехмерное изображение). Правая сторона сетчатки каждого глаза передает через зрительный нерв "правую часть" изображения в правую сторону головного мозга, аналогично действует левая сторона сетчатки.

Затем две части изображения — правую и левую — головной мозг соединяет воедино.

Так как каждый глаз воспринимает "свою" картинку, при нарушении совместного движения правого и левого глаза может быть расстроено бинокулярное зрение. Попросту говоря, у вас начнет двоиться в глазах или вы будете одновременно видеть две совсем разные картинки.

Строение глаза

Глаз можно назвать сложным оптическим прибором.

Его основная задача — "передать" правильное изображение зрительному нерву.

Основные функции глаза:

  • оптическая система, проецирующая изображение;

· система, воспринимающая и "кодирующая" полученную информацию для головного мозга;

· "обслуживающая" система жизнеобеспечения.

Роговица — прозрачная оболочка, покрывающая переднюю часть глаза.

В ней отсутствуют кровеносные сосуды, она имеет большую преломляющую силу. Входит в оптическую систему глаза. Роговица граничит с непрозрачной внешней оболочкой глаза — склерой.

Передняя камера глаза — это пространство между роговицей и радужкой.

Она заполнена внутриглазной жидкостью.

Радужка — по форме похожа на круг с отверстием внутри (зрачком). Радужка состоит из мышц, при сокращении и расслаблении которых размеры зрачка меняются. Она входит в сосудистую оболочку глаза.

Радужка отвечает за цвет глаз (если он голубой — значит, в ней мало пигментных клеток, если карий — много). Выполняет ту же функцию, что диафрагма в фотоаппарате, регулируя светопоток.

Зрачок — отверстие в радужке. Его размеры обычно зависят от уровня освещенности.

Чем больше света, тем меньше зрачок.

Хрусталик — "естественная линза" глаза. Он прозрачен, эластичен — может менять свою форму, почти мгновенно "наводя фокус", за счет чего человек видит хорошо и вблизи, и вдали. Располагается в капсуле, удерживается ресничным пояском.

Хрусталик, как и роговица, входит в оптическую систему глаза.

Стекловидное тело — гелеобразная прозрачная субстанция, расположенная в заднем отделе глаза. Стекловидное тело поддерживает форму глазного яблока, участвует во внутриглазном обмене веществ.

Входит в оптическую систему глаза.

Сетчатка — состоит из фоторецепторов (они чувствительны к свету) и нервных клеток. Клетки-рецепторы, расположенные в сетчатке, делятся на два вида: колбочки и палочки. В этих клетках, вырабатывающих фермент родопсин, происходит преобразование энергии света (фотонов) в электрическую энергию нервной ткани, т.е.

фотохимическая реакция.

Палочки обладают высокой светочувствительностью и позволяют видеть при плохом освещении, также они отвечают за периферическое зрение. Колбочки, наоборот, требуют для своей работы большего количества света, но именно они позволяют разглядеть мелкие детали (отвечают за центральное зрение), дают возможность различать цвета. Наибольшее скопление колбочек находится в центральной ямке (макуле), отвечающей за самую высокую остроту зрения.

Сетчатка прилегает к сосудистой оболочке, но на многих участках неплотно. Именно здесь она и имеет тенденцию отслаиваться при различных заболеваниях сетчатки.

Склера — непрозрачная внешняя оболочка глазного яблока, переходящая в передней части глазного яблока в прозрачную роговицу. К склере крепятся 6 глазодвигательных мышц. В ней находится небольшое количество нервных окончаний и сосудов.

Сосудистая оболочка — выстилает задний отдел склеры, к ней прилегает сетчатка, с которой она тесно связана.

Сосудистая оболочка ответственна за кровоснабжение внутриглазных структур. При заболеваниях сетчатки очень часто вовлекается в патологический процесс. В сосудистой оболочке нет нервных окончаний, поэтому при ее заболевании не возникают боли, обычно сигнализирующие о каких-либо неполадках.

Зрительный нерв — при помощи зрительного нерва сигналы от нервных окончаний передаются в головной мозг.

Биология человека

Учебник для 8 класса

Зрительный анализатор. Строение и функции глаза

Глаза - орган зрения - можно сравнить с окном в окружающий мир. Примерно 70% всей информации мы получаем с помощью зрения, например о форме, размерах, цвете предметов, расстоянии до них и др.

Зрительный анализатор контролирует двигательную и трудовую деятельность человека; благодаря зрению мы можем по книгам и экранам компьютеров изучать опыт, накопленный человечеством.

Орган зрения состоит из глазного яблока и вспомогательного аппарата. Вспомогательный аппарат - это брови, веки и ресницы, слезная железа, слезные канальцы, глазодвигательные мышцы, нервы и кровеносные сосуды

Брови и ресницы защищают глаза от пыли.

Кроме того, брови отводят стекающий со лба пот. Все знают, что человек постоянно моргает (2-5 движений веками в 1 мин). Но знают ли зачем? Оказывается, поверхность глаза в момент моргания смачивается слезной жидкостью, предохраняющей ее от высыхания, заодно при этом очищаясь от пыли.

Слезную жидкость вырабатывает слезная железа. Она содержит 99% воды и 1 % соли. В сутки выделяется до I г слезной жидкости, она собирается во внутреннем углу глаза, а затем попадает в слезные канальцы, которые выводят ее в носовую полость. Если человек плачет, слезная жидкость не успевает уйти по канальцам в носовую полость. Тогда слезы перетекают через нижнее веко и каплями стекают по лицу.

Глазное яблоко располагается в углублении черепа - глазнице. Оно имеет шаровидную форму и состоит из внутреннего ядра, покрытого тремя оболочками: наружной - фиброзной, средней - сосудистой и внутренней - сетчатой. Фиброзная оболочка подразделяется на заднюю непрозрачную часть - белочную оболочку, или склеру, и переднюю прозрачную - роговицу.

Роговица представляет собой выпукло-вогнутую линзу, через которую свет проникает внутрь глаза. Сосудистая оболочка расположена под склерой. Ее передняя часть называется радужкой, в ней содержится пигмент, определяющий цвет глаз.

В центре радужной оболочки находится небольшое отверстие - зрачок, который рефлекторно с помощью гладких мышц может расширяться или сужаться, пропуская в глаз необходимое количество света.

Собственно сосудистая оболочка пронизана густой сетью кровеносных сосудов, питающих глазное яблоко. Изнутри к сосудистой оболочке прилежит слой пигментных клеток, поглощающих свет, поэтому внутри глазного яблока свет не рассеивается, не отражается.

Непосредственно за зрачком находится двояковыпуклый прозрачный хрусталик. Он может рефлекторно менять свою кривизну, обеспечивая четкое изображение на сетчатке - внутренней оболочке глаза. В сетчатке располагаются рецепторы: палочки (рецепторы сумеречного света, которые отличают светлое от темного) и колбочки (они обладают меньшей светочувствительностью, но различают цвета).

Большинство колбочек размещается на сетчатке напротив зрачка, в желтом пятне. Рядом с этим пятном находится место выхода зрительного нерва, здесь нет рецепторов, поэтому его называют слепым пятном.

Внутри глаз заполнен прозрачным и бесцветным стекловидным телом.

Восприятие зрительных раздражений . Свет попадает в глазное яблоко через зрачок.

Хрусталик и стекловидное тело служат для проведения и фокусирования световых лучей на сетчатку. Шесть глазодвигательных мышц обеспечивают такое положение глазного яблока, чтобы изображение предмета попадало бы точно на сетчатку, на ее желтое пятно.

В рецепторах сетчатки происходит преобразование света в нервные импульсы, которые по зрительному нерву передаются в головной мозг через ядра среднего мозга (верхние бугры четверохолмия) и промежуточного мозга (зрительные ядра таламуса) - в зрительную зону коры больших полушарий, расположенную в затылочной области.

Начавшееся в сетчатке восприятие цвета, формы, освещенности предмета, его деталей, заканчивается анализом в зрительной зоне коры. Здесь собирается вся информация, она расшифровывается и обобщается.

В результате этого складывается представление о предмете.

Нарушения зрения. Зрение людей меняется с возрастом, так как хрусталик теряет эластичность, способность менять свою кривизну. В этом случае изображение близко расположенных предметов расплывается - развивается дальнозоркость. Другой дефект зрения - близорукость, когда люди, наоборот, плохо видят удаленные предметы; она развивается после длительного напряжения, неправильного освещения.

Близорукость часто возникает у детей школьного возраста из-за неправильного режима труда, плохой освещенности рабочего места. При близорукости изображение предмета фокусируется перед сетчаткой, а при дальнозоркости - позади сетчатки и поэтому воспринимается как расплывчатое.

Причиной этих дефектов зрения могут быть и врожденные изменения глазного яблока.

Близорукость и дальнозоркость исправляются специально подобранными очками или линзами.

Проверьте свои знания

  1. Что такое анализатор?
  2. Как устроен анализатор?
  3. Назовите функции вспомогательного аппарата глаза.
  4. Как устроено глазное яблоко?
  5. Какие функции выполняют зрачок и хрусталик?
  6. Где располагаются палочки и колбочки, в чем заключаются их функции?
  7. Как работает зрительный анализатор?
  8. Что такое слепое пятно?
  9. Как возникают близорукость и дальнозоркость?
  10. Каковы причины нарушения зрения?

Подумайте

Почему говорят, что глаз смотрит, а мозг видит?

Орган зрения образован глазным яблоком и вспомогательным аппаратом.

Глазное яблоко может двигаться благодаря шести глазодвигательным мышцам. Зрачок- небольшое отверстие, через которое в глаз попадает свет. Роговица и хрусталик являются преломляющим аппаратом глаза.

Рецепторы (светочувствительные клетки - палочки, колбочки) находятся в сетчатке.

Зрительный анализатор. Представлен воспринимающим отделом - рецепторами сетчатой оболочки глаза, зрительными нервами, проводящей системой и соответствующими участками коры в затылочных долях мозга.

Глазное яблоко (см.рис.) имеет шаровидную форму, заключено в глазницу. Вспомогательный аппарат глаза представлен глазными мышцами, жировой клетчаткой, веками, ресницами, бровями, слезными железами. Подвижность глаза обеспечивают поперечно-полосатые мышцы, которые одним концом прикрепляются к костям глазничной впадины, другим - к наружной поверхности глазного яблока - белочной оболочке. Спереди глаз окружают две складки кожи - веки. Внутренние их поверхности покрыты слизистой оболочкой - конъюнктивой. Слезный аппарат состоит из слезных желез и отводящих путей. Слеза предохраняет роговицу от переохлаждения, высыхания и смывает осевшие пылевые частицы.

Глазное яблоко имеет три оболочки: наружную - фиброзную, среднюю - сосудистую, внутреннюю - сетчатую. Фиброзная оболочка непрозрачна и называется белочной или склерой. В передней части глазного яблока она переходит в выпуклую прозрачную роговицу. Средняя оболочка снабжена кровеносными сосудами и пигментными клетками. В передней части глаза она утолщается, образуя ресничное тело, в толще которого находится ресничная мышца, изменяющая своим сокращением кривизну хрусталика. Ресничное тело переходит в радужную оболочку, состоящую из нескольких слоев. В более глубоком слое залегают пигментные клетки. От количества пигмента зависит цвет глаз. В центре радужной оболочки есть отверстие - зрачок, вокруг которого расположены круговые мышцы. При их сокращении зрачок суживается. Радиальные мышцы, имеющиеся в радужной оболочке, расширяют зрачок. Самая внутренняя оболочка глаза - сетчатка, содержащая палочки и колбочки - светочувствительные рецепторы, представляющие периферический отдел зрительного анализатора. В глазу у человека насчитывается около 130 млн. палочек и 7 млн. колбочек. В центре сетчатки сосредоточено больше колбочек, а вокруг них и на периферии расположены палочки. От светочувствительных элементов глаза (палочек и колбочек) отходят нервные волокна, которые, соединяясь через промежуточные нейроны, образуют зрительный нерв. В месте выхода его из глаза отсутствуют рецепторы, этот участок не чувствителен к свету и называется слепым пятном. Снаружи от слепого пятна на сетчатке сосредоточены только колбочки. Этот участок называется желтым пятном, в нем наибольшее количество колбочек. Задний отдел сетчатки представляет собой дно глазного яблока.

За радужной оболочкой находится прозрачное тело, имеющее форму двояковыпуклой линзы - хрусталик, способный преломлять световые лучи. Хрусталик заключен в капсулу, от которой отходят цинновы связки, прикрепляющиеся к ресничной мышце. При сокращении мышцы связки расслабляются и кривизна хрусталика увеличивается, он становится более выпуклым. Полость глаза за хрусталиком заполнена вязким веществом - стекловидным телом.

Возникновение зрительных ощущений. Световые раздражения воспринимаются палочками и колбочками сетчатки. Прежде чем достигнуть сетчатки, лучи света проходят через светопреломляющие среды глаза. При этом на сетчатке получается действительное обратное уменьшенное изображение. Несмотря на перевернутость изображения предметов на сетчатке, вследствие переработки информации в коре головного мозга человек воспринимает их в естественном положении, к тому же зрительные ощущения всегда дополняются и согласуются с показаниями других анализаторов.

Способность хрусталика изменять свою кривизну в зависимости от удаленности предмета называется аккомодацией. Она увеличивается при рассматривании предметов на близком расстоянии и уменьшается при удалении предмета.

К нарушениям функции глаза относятся дальнозоркость и близорукость. С возрастом эластичность хрусталика уменьшается, он становится более уплощенным и аккомодация ослабевает. В это время человек хорошо видит только далекие предметы: развивается так называемая старческая дальнозоркость. Врожденная дальнозоркость связана с уменьшенной величиной глазного яблока или слабой преломляющей силой роговицы или хрусталика. При этом изображение от далеких предметов фокусируется позади сетчатки. При ношении очков с выпуклыми стеклами изображение передвигается на сетчатку. В отличие от старческой при врожденной дальнозоркости аккомодация хрусталика может быть нормальная.

При близорукости глазное яблоко увеличено в размере, изображение далеких предметов даже при отсутствии аккомодации хрусталика получается перед сетчаткой. Такой глаз ясно видит только близкие предметы и поэтому называется близоруким.Очки с вогнутыми стеклами, отодвигая изображение на сетчатку, исправляют близорукость.

Рецепторы сетчатки - палочки и колбочки - отличаются как по строению, так и по функции. С колбочками связано дневное зрение, они возбуждаются при ярком свете, а с палочками - сумеречное зрение, так как они возбуждаются при пониженном освещении. В палочках имеется вещество красного цвета - зрительный пурпур, или родопсин; на свету, в результате фотохимической реакции, он распадается, а в темноте восстанавливается в течение 30 мин из продуктов собственного расщепления. Вот почему человек, войдя в темную комнату, вначале ничего не видит, а через некоторое время начинает постепенно различать предметы (ко времени окончания синтеза родопсина). В образовании родопсина участвует витамин А, при его недостатке этот процесс нарушается и развивается "куриная слепота". Способность глаза рассматривать предметы при различной яркости освещения называется адаптацией. Она нарушается при недостатке витамина А и кислорода, а также при утомлении.

В колбочках содержится другое светочувствительное вещество - иодопсин. Он распадается в темноте и восстанавливается на свету в течение 3-5 мин. Расщепление иодопсина на свету дает цветовое ощущение. Из двух рецепторов сетчатки к цвету чувствительны только колбочки, которых в сетчатке три вида: одни воспринимают красный цвет, другие - зеленый, третьи - синий. В зависимости от степени возбуждения колбочек и сочетания раздражений воспринимаются различные другие цвета и их оттенки.

Глаз следует оберегать от разных механических воздействий, читать в хорошо освещенном помещении, держа книгу на определенном расстоянии (до 33-35 см от глаза). Свет должен падать слева. Нельзя близко наклоняться к книге, так как хрусталик в этом положении долго находится в выпуклом состоянии, что может привести к развитию близорукости. Слишком яркое освещение вредит зрению, разрушает световоспринимающие клетки. Поэтому сталеварам, сварщикам и лицам других сходных профессий рекомендуется надевать во время работы темные защитные очки. Нельзя читать в движущемся транспорте. Из-за неустойчивости положения книги все время меняется фокусное расстояние. Это ведет к изменению кривизны хрусталика, уменьшению его эластичности, в результате чего ослабевает ресничная мышца. Расстройство зрения может возникнуть также из-за недостатка витамина А.

Кратко:

Основную часть глаза составляет глазное яблоко. Оно состоит из хрусталика, стекловидного тела и водянистой влаги. Хрусталик имеет вид двояковыгнутой линзы. Он имеет свойство изменять свою кривизну в зависимости от дальности предмета. Его кривизна изменяется при помощи реснитчатой мыщцы. Функция стекловидного тела - поддержание формы глаза. Также имеется водянистая влага двух видов: передняя и задняя. Передняя находится между роговицей и радужкой, а задняя между радужкой и хрусталиком. Функция слезного аппарата - смачивание глаза. Близорукость - это патология зрения при котором изображение образуется перед сетчаткой. Дальнозоркость - патология при которой изображение формируется за сетчаткой. Изображение формируется перевернутое, уменьшенное.