Федеральное агентство по образованию

ФГОУ ВПО «ЮЖНЫЙ ФЕДЕРАЛЬНЫЙ УНИВЕРСИТЕТ»

Ростовский Государственный Педагогический Университет

Курсовая работа

Тема:

Регуляция дыхания

Дисциплина: Физиология человека

Ростов-на-Дону 2009

Введение

1. Дыхательный центр

2. Регуляция деятельности дыхательного центра

3. Рефлексы дыхательного центра ирефлекторное влияние на дыхание

4. Механизм адаптациидыхания к мышечной деятельности

Заключение

Список литературы

Введение

Дыхание – это неотъемлемый признак жизни. Мы дышим постоянно с момента рождения и до самой смерти, дышим днем и ночью во время глубокого сна, в состоянии здоровья и болезни.

В организме человека и животных запасы кислорода ограничены, поэтому организм нуждается в непрерывном поступлении кислорода из окружающей среды. Также постоянно и непрерывно из организма должен удаляться углекислый газ, который всегда образуется в процессе обмена веществ и в больших количествах является токсичным соединением.

Дыхание – сложный непрерывный процесс, в результате которого постоянно обновляется газовый состав крови и происходит биологическое окисление в тканях. В этом заключается его сущность.

Нормальное функционирование организма человека возможно только при условии пополнения энергией, которая непрерывно расходуется. Организм получает энергию за счет окисления органических веществ – белков, жиров, углеводов. При этом освобождается скрытая химическая энергия, которая является источникомжизнедеятельности, развития и роста организма. Таким образом, значение дыхания состоит в поддержании в организме оптимального уровня окислительно-восстановительных процессов.

Состав выдыхаемого воздуха весьма непостоянен и зависит от интенсивности обмена веществ, а также от частоты и глубины дыхания. Стоит задержать дыхание или сделать несколько глубоких дыхательных движений, как состав выдыхаемого воздуха изменится.

Важную роль в жизнедеятельности человека играет регуляция дыхания.

Регуляция деятельности дыхательного центра, расположенного в продолговатом мозге, осуществляется гуморально, за счет рефлекторных воздействий и нервных импульсов, поступающих из отделов головного мозга.

В курсовой работе рассмотрены вопросы регуляции деятельности дыхательного центра и механизмы адаптации дыхания к мышечной деятельности.

1 . Дыхательный центр

Дыхательным центром называют совокупность нервных клеток, расположенных в разных отделах центральной нервной системы, обеспечивающих координированную ритмическую деятельность дыхательных мышц иприспособление дыхания к изменяющимся условиям внешней и внутренней среды организма.

Некоторые группы нервных клеток являются необходимыми для ритмической деятельности дыхательных мышц. Они расположены в ретикулярной формации продолговатого мозга, составляя дыхательный центр в узком смысле слова. Нарушение функции этих клеток приводит к прекращению дыхания вследствие паралича дыхательных мышц.

Дыхательный центр продолговатого мозга посылает импульсы к мотонейронам спинного мозга, иннервирующим дыхательную мускулатуру.

Мотонейроны, отростки которых образуют диафрагмальные нервы, иннервирующие диафрагму, находятся в передних рогах III…IV шейных сегментов. Мотонейроны, отростки которых образуют межреберные нервы, иннервирующие межреберные мышцы, расположены в передних рогах грудного отдела спинного мозга. Отсюда понятно, что при перерезке спинного мозга между грудными и шейными сегментами прекращается реберное дыхание, а диафрагмальное дыхание сохраняется, так как двигательное ядро диафрагмального нерва, находящееся выше места перерезки, сохраняет связь с дыхательным центром и диафрагмой. При перерезке спинного мозга под продолговатым дыхание полностью прекращается и наступает гибель организма от удушения. Однако при такой перерезке мозга продолжаются в течение некоторого времени сокращения вспомогательных дыхательных мышц ноздрей и гортани, которые иннервируются нервами, выходящими непосредственно из продолговатого мозга.

Уже в древности было известно, что повреждение спинного мозга ниже продолговатого приводит к смерти. В 1812 г. Легаллуа путем перерезки мозга у птиц, а в 1842 г. Флуранс путем раздражения и разрушения участков продолговатого мозга дали объяснение этого факта и привели экспериментальные доказательства местонахождения дыхательного центра в продолговатом мозгу. Флуранс представлял дыхательный центр как ограниченную зону размером с булавочную головку и дал ему название «жизненного узла».

Н. А. Миславский в 1885 г., применяя методику точечного раздражения и разрушения отдельных участков продолговатого мозга, установил, что дыхательный центр расположен в ретикулярной формации продолговатого мозга, в области дна IV желудочка, и является парным, причем каждая его половина иннервирует дыхательные мышцы той же половины тела. Кроме того, Н. А. Миславский показал, что дыхательный центр представляет собой сложное образование, состоящее из центра вдоха (инспираторный центр) и центра выдоха (экспираторный центр). Он пришел к заключению, что определенный участок продолговатого мозга является центром, регулирующим и координирующим дыхательные движения.

Выводы Н.А. Миславского подтверждены многочисленными экспериментальными исследованиями, в частности проведенными в последнее время с помощью микроэлектродной техники. При записи электрических потенциалов отдельных нейронов дыхательного центра обнаружено, что в нем существуют нейроны, разряды которых резко учащаются в фазе вдоха, и другие нейроны, разряды которых учащаются в фазе выдоха. Раздражение отдельных точек продолговатого мозга электрическим током, проводимое с помощью микроэлектродов, также выявило наличие нейронов, стимуляция которых вызывает акт вдоха, и других нейронов, стимулирующих акт выдоха.

Баумгартен в 1956 г. показал, что нейроны дыхательного центра распределены в ретикулярной формации продолговатого мозга, вблизи от striaeacusticae (рисунок 1). Точной границы между экспираторными и инспираторными нейронами не существует, но имеются участки, где преобладают одни из них: инспираторные – в каудальном отделе одиночного пучка, (tractussolitarius), экспираторные – в вентральном ядре (nucleusambiguus).

Рисунок 1 – Локализация дыхательных центровНа рисунке – нижняя часть ствола мозга (вид сзади). ПН – центр пневмотаксиса; ИНСП – инспираторный центр; ЭКСП – экспираторный центр. Центры являются двусторонними, но для упрощения схемы на каждой из сторон изображен только один из центров. Перерезка выше линии 1 на дыхании не отражается. Перерезка по линии 2 отделяет центр пневмотаксиса. Перерезка ниже линии 3 вызывает прекращение дыхания

Лумсден и другие исследователи в опытах на теплокровных животных нашли, что дыхательный центр имеет более сложную структуру, чем предполагалось ранее. В верхней части варолиева моста находится так называемый пневмотаксический центр, который контролирует деятельность расположенных ниже дыхательных центров вдоха и выдоха и обеспечивает нормальные дыхательные движения. Полагают, что значение пневмотаксического центра состоит в том, что во время вдоха он вызывает возбуждение центра выдоха и, таким образом, обеспечивает ритмическое чередование вдоха и выдоха.

Деятельность всей совокупности нейронов, образующих дыхательный центр, необходима для сохранения нормального дыхания. Однако в процессах регуляции дыхания принимают участие также вышележащие отделы центральной нервной системы, которые обеспечивают тонкие приспособительные изменения дыхания при различных видах деятельности организма. Важная роль в регуляции дыхания принадлежит большим полушариям головного мозга и их коре, благодаря которой осуществляется приспособление дыхательных движений при разговоре, пении, спорте и трудовой деятельности.

Регуляция деятельности дыхательного центра осуществляется гуморально, за счет рефлекторных воздействий и нервных импульсов, поступающих из вышележащих отделов головного мозга.

По И.П. Павлову, деятельность дыхательного центра зависит от химических свойств крови и от рефлекторных влияний, в первую очередь с легочной ткани.

Нейронам дыхательного центра свойственна ритмическая автоматия. Это видно из того, что даже после полного выключения приходящих к дыхательному центру афферентных импульсов в его нейронах возникают ритмические колебания биопотенциалов, которые можно зарегистрировать электроизмерительным прибором. Впервые это явление обнаружил еще в 1882 г. И. М. Сеченов. Много позднее Эдриан и Бутендайк посредством осциллографа с усилителем зарегистрировали ритмические колебания электрических потенциалов в изолированном стволе мозга золотой рыбки. Б. Д. Кравчинский наблюдал подобные ритмические колебания электрических потенциалов, происходящие в ритме дыхания, в изолированном продолговатом мозге лягушки.

Автоматическое возбуждение дыхательного центра обусловлено протекающими в нем самом процессами обмена веществ и его высокой чувствительностью к углекислоте. Автоматия центра регулируется нервными импульсами, приходящими от рецепторов легких, сосудистых рефлексогенных зон, дыхательных и скелетных мышц, а также импульсами из вышележащих отделов центральной нервной системы и, наконец, гуморальными влияниями.

2 . Регуляция деятельности дыхательного центра

Дыхательный центр не только обеспечивает ритмическое чередование вдоха и выдоха, но и способен изменять глубину и частоту дыхательных движений, приспосабливая тем самым легочную вентиляцию к текущим потребностям организма. Факторы внешней среды, например состав и давление атмосферного воздуха, окружающая температура, и изменения состояния организма, например при мышечной работе, эмоциональном возбуждении и др., влияя на интенсивность обмена веществ, а, следовательно, потребление кислорода и выделение углекислого газа, действуют на функциональное состояние дыхательного центра. В результате меняется объем легочной вентиляции.

Значение газового состава крови в регуляции дыхания было показано Фредериком путем опыта с перекрестным кровообращением. Для этого у двух собак, находившихся под наркозом, перерезали и соединяли перекрестно их сонные артерии и отдельно яремные вены (рисунок 2) После такого соединения этих и зажатия других сосудов шеи голова первой собаки снабжалась кровью не от собственного туловища, а от туловища второй собаки, голова же второй собаки – от туловища первой.

Если у одной из этих собак зажать трахею и таким образом производить удушение организма, то через некоторое время у нее происходит остановка дыхания (апноэ), у второй же собаки возникает резкая одышка (диспноэ). Это объясняется тем, что зажатие трахеи у первой собаки вызывает накопление СО 2 в крови ее туловища (гиперкапния) и уменьшение содержания кислорода (гипоксемия). Кровь из туловища первой собаки поступает в голову второй собаки и стимулирует ее дыхательный центр. В результате возникает усиленное дыхание – гипервентиляция – у второй собаки, что приводит к снижению напряжения СО 2 и повышению напряжения О 2 в крови сосудов туловища второй собаки. Богатая кислородом и бедная углекислым газом кровь из туловища этой собаки поступает в голову первой и вызывает у нее апноэ.

Рисунок 2 – Схема опыта Фредерика с перекрестным кровообращением

Опыт Фредерика показывает, что деятельность дыхательного центра изменяется при изменении напряжения СО 2 и О 2 в крови. Рассмотрим влияние на дыхание каждого из этих газов в отдельности.

Значение напряжения углекислого газа в крови в регуляции дыхания. Повышение напряжения углекислого газа в крови вызывает возбуждение дыхательного центра, приводящее к увеличению вентиляции легких, а понижение напряжения углекислого газа в крови угнетает деятельность дыхательного центра, что приводит к уменьшению вентиляции легких. Роль углекислого газа в регуляции дыхания доказана Холденом в опытах, в которых человек находился в замкнутом пространстве небольшого объема. По мере того как во вдыхаемом воздухе уменьшается содержание кислорода и увеличивается содержание углекислого газа, начинает развиваться диспноэ. Если же поглощать выделяющийся углекислый газ натронной известью, содержание кислорода во вдыхаемом воздухе может снизиться до 12%, причем заметного увеличения легочной вентиляции не наступает. Таким образом, увеличение объема вентиляции легких в этом опыте обусловлено повышением содержания во вдыхаемом воздухе углекислого газа.

В другой серии экспериментов Холден определял объем вентиляции легких и содержание углекислого газа в альвеолярном воздухе при дыхании газовой смесью с разным содержанием углекислого газа. Полученные результаты приведены в таблице 1.

дыхание мышечная газовый кровь

Таблица 1 – Объем вентиляции легких и содержание углекислого газа в альвеолярном воздухе

Данные, приведенные в таблице 1, показывают, что одновременно с увеличением содержания углекислого газа во вдыхаемом воздухе нарастает его содержание в альвеолярном воздухе, а значит, и в артериальной крови. При этом происходит увеличение вентиляции легких.

Результаты экспериментов дали убедительное доказательство того, что состояние дыхательного центра зависит от содержания углекислого газа в альвеолярном воздухе. Выявлено, что увеличение содержания СО 2 в альвеолах на 0,2% вызывает увеличение вентиляции легких на 100%.

Уменьшение содержания углекислого газа в альвеолярном воздухе (и, следовательно, уменьшение напряжения его в крови) понижает деятельность дыхательного центра. Это происходит, например, в результате искусственной гипервентиляции, т. е. усиленного глубокого и частого дыхания, которое приводит к снижению парциального давления СО 2 в альвеолярном воздухе и напряжения СО 2 в крови. В результате наступает остановка дыхания. Пользуясь таким способом, т. е. производя предварительную гипервентиляцию, можно значительно увеличить время произвольной задержки дыхания. Так поступают ныряльщики, когда им нужно провести под водой 2…3 минуты (обычная длительность произвольной задержки дыхания составляет 40…60 секунд).

Прямое возбуждающее действие углекислоты на дыхательный центр доказано путем различных экспериментов. Инъекция 0,01 мл раствора, содержащего углекислоту или ее соль, в определенный участок продолговатого мозга вызывает усиление дыхательных движений. Эйлер подвергал изолированный продолговатый мозг кошки действию углекислого газа и наблюдал, что это вызывает увеличение частоты электрических разрядов (потенциалов действия), свидетельствующее о возбуждении дыхательного центра.

На дыхательный центр оказывает влияние повышение концентрации водородных ионов. Винтерштейн в 1911 г. высказал точку зрения, что возбуждение дыхательного центра вызывает не сама угольная кислота, а, повышение концентрации водородных ионов вследствие увеличения ее содержания в клетках дыхательного центра. Это мнение основывается на том, что усиление дыхательных движений наблюдается при введении в артерии, питающие мозг, не только угольной кислоты, но и других кислот, например молочной. Возникающая при увеличении концентрации водородных ионов в крови и тканях гипервентиляция способствует выделению из организма части содержащейся в крови углекислоты и тем самым приводит к уменьшению концентрации водородных ионов. Согласно этим экспериментам, дыхательный центр является регулятором постоянства не только напряжения углекислоты в крови, но и концентрации водородных ионов.

Установленные Винтерштейном факты нашли подтверждение в экспериментальных исследованиях. Вместе с тем ряд физиологов настаивал на том, что угольная кислота является специфическим раздражителем дыхательного центра и оказывает на него более сильное возбуждающее действие, чем другие кислоты. Причиной этого оказалось то, что углекислый газ легче, чем Н+-ион, проникает через гематоэнцефалический барьер, отделяющий кровь от цереброспинальной жидкости, которая является непосредственной средой, омывающей нервные клетки, и легче проходит через мембрану самих нервных клеток. При поступлении СО 2 внутрь клетки образуется Н 2 СО 3 , которая диссоциирует с освобождением Н+-ионов. Последние и являются возбудителями клеток дыхательного центра.

Другой причиной более сильного по сравнению с другими кислотами действия Н 2 СО 3 является, по мнению ряда исследователей, то, что она специфически влияет на некоторые биохимические процессы в клетке.

Стимулирующее влияние углекислого газа на дыхательный центр является основанием одного мероприятия, нашедшего применение в клинической практике. При ослаблении функции дыхательного центра и возникающем при этом недостаточном снабжении организма кислородом больного заставляют дышать через маску смесью кислорода с 6% углекислого газа. Такая газовая смесь носит название карбогена.

Механизм действия повышенного напряжения СО 2 и увеличенной концентрации Н+-ионов в крови на дыхание. Долгое время считалось, что повышение напряжения углекислого газа и увеличение концентрации Н+-ионов в крови и цереброспинальной жидкости (ликворе) влияют непосредственно на инспираторные нейроны дыхательного центра. В настоящее же время установлено, что изменения напряжения СО 2 и концентрации Н + -ионов действуют на дыхание, возбуждая находящиеся вблизи дыхательного центра хеморецепторы, чувствительные к указанным выше изменениям. Эти хеморецепторы находятся в тельцах диаметром около 2 мм, расположенных симметрично с двух сторон продолговатого мозга на вентролатеральной его поверхности поблизости от места выхода подъязычного нерва.

Значение хеморецепторов продолговатого мозга видно из следующих фактов. При воздействии на эти хеморецепторы углекислого газа или растворов с повышенной концентрацией Н+-ионов наблюдается стимуляция дыхания. Охлаждение одного из хеморецепторных телец продолговатого мозга влечет за собой, согласно опытам Лешке, прекращение дыхательных движений на противоположной стороне тела. Если хеморецепторные тельца разрушены или отравлены новокаином, дыхание прекращается.

Наряду с хеморецепторами продолговатого мозга в регуляции дыхания важная роль принадлежит хеморецепторам, находящимся в каротидном и аортальном тельцах. Это было доказано Геймансом в методически сложных опытах, в которых сосуды двух животных соединялись так, что каротидный синус и каротидное тельце или дуга аорты и аортальное тельце одного животного снабжались кровью другого животного. Оказалось, что увеличение концентрации Н + -ионов в крови и повышение напряжения СО 2 вызывают возбуждение каротидных и аортальных хеморецепторов и рефлекторное усиление дыхательных движений.

Имеются данные, что 35% эффекта, вызываемого вдыханием воздуха с высоким содержанием углекислого газа, обусловлены влиянием на хеморецепторы увеличенной концентрации Н + -ионов в крови, а 65% являются результатом повышения напряжения СО 2 . Действие СО 2 объясняется быстрой диффузией углекислого газа через мембрану хеморецептора и сдвигом концентрации Н + -ионов внутри клетки.

Рассмотрим влияние недостатка кислорода на дыхание. Возбуждение инспираторных нейронов дыхательного центра возникает не только при повышении напряжения углекислого газа в крови, но и при понижении напряжения кислорода.

Пониженное напряжение кислорода в крови вызывает рефлекторное усиление дыхательных движений, действуя на хеморецепторы сосудистых рефлексогенных зон. Прямое доказательство того, что понижение напряжения кислорода в крови возбуждает хеморецепторы каротидного тельца, получено Геймансом, Нилом и другими физиологами путем регистрации биоэлектрических потенциалов в синокаротидном нерве. Перфузия каротидного синуса кровью с пониженным напряжением кислорода приводит к учащению потенциалов действия в этом нерве (рисунок 3) и к учащению дыхания. После разрушения хеморецепторов понижение напряжения кислорода в крови не вызывает изменений дыхания.

Рисунок 3 – Электрическая активностьсинусного нерва (по Нилу)А – при дыхании атмосферным воздухом; Б – при дыхании газовой смесью, содержащей 10% кислорода и 90% азота. 1 – запись электрической активности нерва; 2 – запись двух пульсовых колебаний артериального давления. Калибровочные линии соответствуют величине давления 100 и 150 мм рт. ст.


Запись электрических потенциалов Б показывает непрерывную частую импульсадию, возникающую при раздражении хеморецепторов недостатком кислорода. Высокоамплитудные потенциалы в периоды пульсовых повышений артериального давления обусловлены импульсацией прессорецепторов каротидного синуса.

Тот факт, что раздражителем хеморецепторов является понижение напряжения кислорода в плазме крови, а не уменьшение общего содержания его в крови, доказывается следующими наблюдениями Л. Л. Шика. При понижении количества гемоглобина или при связывании его угарным газом содержание кислорода в крови резко уменьшено, но растворение О 2 в плазме крови не нарушено и напряжение его в плазме остается нормальным. При этом возбуждения хеморецепторов не происходит и дыхание не меняется, хотя транспорт кислорода резко нарушен и ткани испытывают состояние кислородного голодания, так как недостаточно кислорода доставляется им гемоглобином. При понижении атмосферного давления, когда уменьшается напряжение кислорода в крови, возникает возбуждение хеморецепторов и учащение дыхания.

Характер изменения дыхания при избытке углекислоты и понижении напряжения кислорода в крови различен. При небольшом понижении напряжения кислорода в крови наблюдается рефлекторное учащение ритма дыхания, а при незначительном повышении напряжения углекислоты в крови происходит рефлекторное углубление дыхательных движений.

Таким образом, деятельность дыхательного центра регулируется воздействием повышенной концентрации Н+-ионов и увеличенного напряжения СО 2 на хеморецепторы продолговатого мозга и на хеморецепторы каротидного и аортального телец, а также действием на хеморецепторы указанных сосудистых рефлексогенных зон понижения напряжения кислорода в артериальной крови.

Причины первого вдоха новорожденного объясняются тем, что в утробе матери газообмен плода происходит через пупочные сосуды, тесно контактирующие с материнской кровью в плаценте. Прекращение этой связи с матерью при рождении приводит к понижению напряжения кислорода и накоплению углекислоты в крови плода. Это, по данным Баркрофта, вызывает раздражение дыхательного центра и приводит к вдоху.

Для наступления первого вдоха важно, чтобы прекращение эмбрионального дыхания произошло внезапно: при медленном зажатии пуповины дыхательный центр не возбуждается и плод погибает, не совершив ни единого вдоха.

Следует учитывать также, что переход в новые условия вызывает у новорожденного раздражение ряда рецепторов и поступление по афферентным нервам потока импульсов, повышающих возбудимость центральной нервной системы, в том числе и дыхательного центра (И. А. Аршавский).

Значение механорецепторов в регуляции дыхания. Дыхательный центр получает афферентные импульсы не только от хеморецепторов, но и от прессорецепторов сосудистых рефлексогенных зон, а также от механорецепторов легких, дыхательных путей и дыхательных мышц.

Важное значение в регуляции дыхания имеют импульсы, поступающие к дыхательному центру по блуждающим нервам от рецепторов легких. От них в значительной степени зависит глубина вдоха и выдоха. Наличие рефлекторных влияний с легких было описано в 1868 г. Герингом и Брейером и легло в основу представления о рефлекторной саморегуляции дыхания. Она проявляется в том, что при вдохе в рецепторах, находящихся в стенках альвеол, возникают импульсы, рефлекторно тормозящие вдох, и стимулирующих выдох, а при очень резком выдохе, при крайней степени уменьшения объема легких возникают импульсы, поступающие к дыхательному центру и рефлекторно стимулирующие вдох. О наличии такой рефлекторной регуляции свидетельствуют следующие факты:

В легочной ткани в стенках альвеол, т. е. в наиболее растяжимой части легкого, имеются интерорецепторы, представляющие собой воспринимающие раздражения окончания афферентных волокон блуждающего нерва;

После перерезки блуждающих нервов дыхание становится резко замедленным и глубоким;

При раздувании легкого индифферентным газом, например азотом, при обязательном условии целости блуждающих нервов, мускулатура диафрагмы и межреберий внезапно перестает сокращаться, вдох останавливается, не достигнув обычной глубины; наоборот, при искусственном отсасывании воздуха из легкого наступает сокращение диафрагмы.

На основании всех этих фактов авторы пришли к выводу, что растяжение легочных альвеол во время вдоха вызывает раздражение рецепторов легких, вследствие чего учащаются импульсы, приходящие к дыхательному центру по легочным ветвям блуждающих нервов, а это рефлекторно возбуждает экспираторные нейроны дыхательного центра, и, следовательно, влечет за собой возникновение выдоха. Таким образом, как писали Геринг и Брейер, «каждый вдох, поскольку он растягивает легкие, сам подготовляет свой конец».

Если соединить с осциллографом периферические концы перерезанных блуждающих нервов, можно зарегистрировать потенциалы действия, возникающие в рецепторах легких и идущие по блуждающим нервам к центральной нервной системе не только при раздувании легких, но и при искусственном отсасывании из них воздуха. При естественном же дыхании частые токи действия в блуждающем нерве обнаруживаются только во время вдоха; во время же естественного выдоха их не наблюдается (рисунок 4).

Рисунок 4 – Токи действия в блуждающем нерве при растяжениилегочной ткани во время вдоха (по Эдриану)Сверху вниз: 1 – афферентные импульсы в блуждающем нерве:2 – запись дыхания (вдох – вверх, выдох – вниз); 3 – отметка времени

Следовательно, спадение легких обусловливает рефлекторное раздражение дыхательного центра только при таком сильном их сжатии, какого не бывает при нормальном, обычном выдохе. Это наблюдается лишь при очень глубоком выдохе или внезапном двустороннем пневмотораксе, на что диафрагма рефлекторно реагирует сокращением. Во время естественного дыхания рецепторы блуждающих нервов раздражаются только при растяжении легких и рефлекторно стимулируют выдох.

Помимо механорецепторов легких, в регуляции дыхания принимают участие механорецепторы межреберных мышц и диафрагмы. Они возбуждаются растяжением при выдохе и рефлекторно стимулируют вдох (С. И. Франштейн).

Соотношения между инспираторными и экспираторными нейронами дыхательного центра. Между инспираторными и экспираторными нейронами существуют сложные реципрокные (сопряженные) соотношения. Это означает, что возбуждение инспираторных нейронов тормозит экспираторные, а возбуждение экспираторных нейронов тормозит инспиряторные. Такие явления частично обусловлены наличием прямых связей, существующих между нейронами дыхательного центра, но в основном они зависят от рефлекторных влияний и от функционирования центра пневмотаксиса.

Взаимодействие между нейронами дыхательного центра в настоящее время представляют следующим образом. Вследствие рефлекторного (через хеморецепторы) действия углекислоты на дыхательный центр возникает возбуждение инспираторных нейронов, которое передается на мотонейроны, иннервирующие дыхательные мышцы, вызывая акт вдоха. Одновременно импульсы от инспираторных нейронов поступают к центру пневмотаксиса, расположенному в варолиевом мосту, а от него по отросткам его нейронов импульсы приходят к экспираторным нейронам дыхательного центра продолговатого мозга, вызывая возбуждение этих нейронов, прекращение вдоха и стимуляцию выдоха. Кроме того, возбуждение экспираторных нейронов во время вдоха осуществляется и рефлекторно посредством рефлекса Геринга – Брейера. После перерезки блуждающих нервов приток импульсов от механорецепторов легких прекращается и экспираторные нейроны могут возбуждаться лишь посредством импульсов, приходящих из центра пневмотаксиса. Импульсация, возбуждающая центр выдоха, значительно уменьшается и возбуждение его несколько запаздывает. Поэтому после перерезки блуждающих нервов вдох продолжается значительно дольше и сменяется выдохом позднее, чем до перерезки нервов. Дыхание становится редким и глубоким.

Аналогичные изменения дыхания при целых блуждающих нервах возникают после перерезки ствола мозга на уровне варолиева моста, отделяющей центр пневмотаксиса от продолговатого мозга (см. рисунок 1, рисунок 5). После такой перерезки поступление импульсов, возбуждающих центр выдоха, также уменьшается, и дыхание становится редким и глубоким. Возбуждение центра выдоха в этом случае осуществляется только импульсами, поступающими к нему по блуждающим нервам. Если у такого животного произвести еще и перерезку блуждающих нервов или прервать распространение импульсов по этим нервам путем охлаждения их, то возбуждения центра выдоха не наступает и дыхание останавливается в фазе максимального вдоха. Если после этого восстановить проводимость блуждающих нервов путем согревания их, то вновь периодически возникает возбуждение центра выдоха и восстанавливается ритмическое дыхание (рисунок 6).

Рисунок 5 – Схема нервных связейдыхательного центра1 – инспираторный центр; 2 – центр пневмотаксиса; 3 – экспираторный центр; 4 – механорецепторы легкого. После перезки по линиям / и // в отдельности ритмическая деятельность дыхательного центра сохраняется. При одновременной перерезке происходит остановка дыхания в фазе вдоха.

Таким образом, жизненно важная функция дыхания, возможная лишь при ритмическом чередовании вдоха и выдоха, регулируется сложным нервным механизмом. При его изучении обращает на себя внимание множественное обеспечение работы этого механизма. Возбуждение центра вдоха возникает как под влиянием увеличения концентрации водородных ионов (повышения напряжения СО 2) в крови, вызывающего возбуждение хеморецепторов продолговатого мозга и хеморецепторов сосудистых рефлексогенных зон, так и в результате влияния пониженного напряжения кислорода на аортальные и каротидные хеморецепторы. Возбуждение центра выдоха обусловлено как рефлекторными импульсами, приходящими к нему по афферентным волокнам блуждающих нервов, так и влиянием центра вдоха, осуществляемым через центр пневмотаксиса.

Возбудимость дыхательного центра изменяется при действии нервных импульсов, поступающих по шейному симпатическому нерву. Раздражение этого нерва повышает возбудимость центра дыхания, что усиливает и учащает дыхание.

Влиянием симпатических нервов на дыхательный центр отчасти объясняются изменения дыхания при эмоциях.

Рисунок 6 – Влияние выключения блуждающих нервов на дыхание после перерезания мозга на уровне между линиями I и II (см. рисунок 5) (по Стелла) а – запись дыхания; б – отметка охлаждения нервов

3 . Рефлексы дыхательного центра и рефлекторное влияние на дыхание

На активность нейронов дыхательного центра выраженное влияние оказывают рефлекторные воздействия. Различают постоянные и непостоянные (эпизодические) рефлекторные влияния на дыхательный центр.

Постоянные рефлекторные влияния возникают в результате раздражения рецепторов альвеол (рефлекс Геринга – Брейера), корня легкого и плевры (пульмоторакальный рефлекс), хеморецепторов дуги аорты и каротидных синусов (рефлекс Гейманса), механорецепторов указанных сосудистых областей, проприорецепторов дыхательных мышц.

Наиболее важным рефлексом этой группы является рефлекс Геринга –Брейера. В альвеолах легких заложены механорецепторы растяжения и спадения, являющиеся чувствительными нервными окончаниями блуждающего нерва. Рецепторы растяжения возбуждаются при обычном и максимальном вдохе, т. е. любое увеличение объема легочных альвеол возбуждает эти рецепторы. Рецепторы спадения становятся активными только в условиях патологии (при максимальном спадении альвеол).

В экспериментах на животных установлено, что при увеличении объема легких (вдувание в легкие воздуха) наблюдается рефлекторный выдох, выкачивание же воздуха из легких приводит к быстрому рефлекторному вдоху. Указанные реакции не возникали при перерезке блуждающих нервов. Следовательно, нервные импульсы в центральную нервную систему поступают по блуждающим нервам.

Рефлекс Геринга – Брейера относится к механизмам саморегуляции дыхательного процесса, обеспечивая смену актов вдоха и выдоха. При растяжении альвеол во время вдоха нервные импульсы от рецепторов растяжения по блуждающему нерву идут к экспираторным нейронам, которые возбуждаясь, тормозят активность инспираторных нейронов, что приводит к пассивному выдоху. Легочные альвеолы спадаются, и нервные импульсы от рецепторов растяжения уже не поступают к экспираторным нейронам. Активность их падает, что создает, условия для повышения возбудимости инспипараторной части дыхательного центра и активного вдоха. Кроме того, активность инспираторных нейронов повышается при нарастании концентрации углекислого газа в крови, что также способствует осуществлению акта вдоха.

Таким образом, саморегуляция дыхания осуществляется на основе взаимодействия нервного и гуморального механизмов регуляции активности нейронов дыхательного центра.

Пульмоторакальный рефлекс возникает при возбуждении рецепторов, заложенных в легочной ткани и плевре. Проявляется этот рефлекс при растяжении легких и плевры. Рефлекторная дуга замыкается на уровне шейных и грудных сегментов спинного мозга. Конечным эффектом рефлекса является изменение тонуса дыхательной мускулатуры, благодаря чему происходит увеличение или уменьшение среднего объема легких.

К дыхательному центру постоянно идут нервные импульсы от проприорецепторов дыхательных мышц. Во время вдоха происходит возбуждение проприорецепторов дыхательных мышц и нервные импульсы от них поступают к инспираторным нейронам дыхательного центра. Под влиянием нервных импульсов активность инспираторных нейронов тормозится, что способствует наступлению выдоха.

Непостоянные рефлекторные влияния на активность дыхательных нейронов связаны с возбуждением разнообразных по своим функциям экстеро- и интерорецепторов.

К непостоянным рефлекторным воздействиям, оказывающим влияние на активность дыхательного центра, относятся рефлексы, возникающие при раздражении рецепторов слизистой оболочки верхних дыхательных путей, носа, носоглотки, температурных и болевых рецепторов кожи, проприорецепторов скелетных мышц, интерорецепторов. Так, например, при внезапном вдыхании паров аммиака, хлора, сернистого ангидрида, табачного дыма и некоторых других веществ происходит раздражение рецепторов слизистой оболочки носа, глотки, гортани, что приводит к рефлекторному спазму голосовой щели, а иногда даже мускулатуры бронхов и рефлекторной задержке дыхания.

При раздражении эпителия дыхательных путей накопившейся пылью, слизью, а также попавшими химическими раздражителями и инородными телами наблюдаются чиханье и кашель. Чиханье возникает при раздражении рецепторов слизистой оболочки носа, а кашель – при возбуждении рецепторов гортани, трахеи, бронхов.

Кашель и чиханье начинаются с глубокого вдоха, который возникает рефлекторно. Затем происходит спазм голосовой щели и одновременно активный выдох. Вследствие этого давление в альвеолах и воздухоносных путях значительно возрастает. Следующее за этим раскрытие голосовой щели приводит к выбросу воздуха из легких толчком в дыхательные пути и наружу через нос (при чиханье) или через рот (при кашле). Пыль, слизь, инородные тела увлекаются этой струей воздуха и выбрасываются из легких и дыхательных путей.

Кашель и чиханье в условиях нормы относят к категории защитных рефлексов. Эти рефлексы называют защитными потому, что они препятствуют попаданию вредных веществ в дыхательные пути или же способствуют их удалению.

Раздражение температурных рецепторов кожи, в частности холодовых, приводит к рефлекторной задержке дыхания. Возбуждение болевых рецепторов кожи, как правило, сопровождается учащением дыхательных движений.

Возбуждение проприорецепторов скелетных мышц обусловливает стимуляцию акта дыхания. Повышенная активность дыхательного центра в этом случае является важным приспособительным механизмом, обеспечивающим увеличенные потребности организма в кислороде при мышечной работе.

Раздражение интерорецепторов, например механо-рецепторов желудка при его растяжении, приводит к торможению не только сердечной деятельности, но и дыхательных движений.

При возбуждении механорецепторов сосудистых рефлексогенных зон (дуга аорты, каротидные синусы) в результате изменения величины артериального давления наблюдаются сдвиги в активности дыхательного центра. Так, повышение артериального давления сопровождается рефлекторной задержкой дыхания, понижение приводит к стимуляции дыхательных движений.

Таким образом, нейроны дыхательного центра чрезвычайно чувствительны к воздействиям, обусловливающим возбуждение экстеро-, проприо- и интерорецепторов, что приводит к изменению глубины и ритма дыхательных движений в соответствии с условиями жизнедеятельности организма.

На активность дыхательного центра оказывает влияние коры головного мозга.Регуляция дыхания корой больших полушарий имеет свои качественные особенности. В опытах с прямым раздражением электрическим током отдельных областей коры головного мозга было показано выраженное влияние ее на глубину и частоту дыхательных движений. Результаты исследований М. В. Сергиевского и его сотрудников, полученные при непосредственном раздражении различных участков коры больших полушарий электрическим током в острых, полухронических и хронических опытах (вживленные электроды), свидетельствуют о том, что нейроны коры не всегда оказывают однозначное влияние на дыхание. Конечный эффект зависит от ряда факторов, главным образом от силы, продолжительности и частоты применяемых раздражений, функционального состояния коры головного мозга и дыхательного центра.

Важные факты были установлены Э. А. Асратяном и его сотрудниками. Было обнаружено, что у животных с удаленной корой головного мозга отсутствовали приспособительные реакции внешнего дыхания на изменения условий жизнедеятельности. Так, мышечная активность у таких животных не сопровождалась стимуляцией дыхательных движений, а приводила к длительной одышке и дискоординации дыхания.

Для оценки роли коры головного мозга в регуляции дыхания большое значение имеют данные, полученные с помощью метода условных рефлексов. Если у человека или животных звук метронома сопровождать вдыханием газовой смеси с повышенным содержанием углекислого газа, то это приведет к увеличению легочной вентиляции. Через 10…15 сочетаний изолированное включение метронома (условный сигнал) вызовет стимуляцию дыхательных движений – образовался условный дыхательный рефлекс на избранное количество ударов метронома в единицу времени.

Учащение и углубление дыхания, которые наступают до начала физической работы или спортивных состязаний, также осуществляются по механизму условных рефлексов. Эти изменения в дыхательных движениях отражают сдвиги в активности дыхательного центра и имеют приспособительное значение, способствуя подготовке организма к выполнению работы, требующей большой затраты энергии и усиления окислительных процессов.

По мнению М.Е. Маршака, корковая: регуляция дыхания обеспечивает необходимый уровень легочной вентиляции, темп и ритм дыхания, постоянство уровня углекислого газа в альвеолярном воздухе и артериальной крови.

Приспособление дыхания к внешней среде и сдвигам, наблюдаемым во внутренней среде организма, связано с обширной нервной информацией, поступающей в дыхательный центр, которая предварительно перерабатывается, главным образом в нейронах моста мозга (варолиев мост), среднего и промежуточного мозга и в клетках коры головного мозга.

Таким образом, регуляция активности дыхательного центра сложна. По М.В. Сергиевскому, она состоит из трех уровней.

Первый уровень регуляции представлен спинным мозгом. Здесь располагаются центры диафрагмальных и межреберных нервов. Эти центры обусловливают сокращение дыхательных мышц. Однако этот уровень регуляции дыхания не может обеспечить ритмичную смену фаз дыхательного цикла, так как огромное количество афферентных импульсов от дыхательного аппарата, минуя спинной мозг, направляется непосредственно в продолговатый мозг.

Второй уровень регуляции связан с функциональной активностью продолговатого мозга. Здесь находится дыхательный центр, который воспринимает разнообразные афферентные импульсы, идущие от дыхательного аппарата, а также от основных рефлексогенных сосудистых зон. Этот уровень регуляции обеспечивает ритмичную смену фаз дыхания и активность спинномозговых мотонейронов, аксоны которых иннервируют дыхательную мускулатуру.

Третий уровень регуляции – это верхние отделы головного мозга, включающие и корковые нейроны. Только при наличии коры полушарий головного мозга возможно адекватное приспособление реакций системы дыхания к изменяющимся условиям существования организма.

4 . Механизм адаптациидыхания к мышечной деятельности

Интенсивность дыхания тесно связана с интенсивностью окислительных процессов: глубина и частота дыхательных движений уменьшаются при покое и увеличиваются при работе, притом тем сильнее, чем напряженнее работа. Так, у тренированных людей при напряженной мышечной работе объем легочной вентиляции возрастает до 50 и даже до 100 л в минуту.

Одновременно с усилением дыхания во время работы наступает усиление деятельности сердца, приводящее к увеличению минутного объема кровотока. Вентиляция легких и минутный объем кровотока нарастают в соответствии с величиной выполняемой работы и усилением окислительных процессов.

У человека потребление кислорода составляет в покое 250…350 мл в минуту, а во время работы может достигать 4500…5000 мл. Транспорт такого большого количества кислорода возможен потому, что при работе систолический объем может увеличиваться втрое (с 70 до 200 мл), а частота сердечных сокращений в 2 и даже 3 раза (с 70 до 150 и даже 200 сокращений в минуту).

Вычислено, что при повышении потребления кислорода при мышечной работе на 100 мл в минуту минутный объем кровотока возрастает примерно на 800…1000 мл. Увеличению транспорта кислорода при тяжелой мышечной работе способствует также выбрасывание эритроцитов из кровяных депо и обеднение крови водой вследствие потения, что ведет к некоторому сгущению крови и повышению концентрации гемоглобина, а, следовательно, и к увеличению кислородной емкости крови.

Значительно увеличивается при работе коэффициент утилизации кислорода. Из каждого литра крови, протекающей по большому кругу, клетки организма утилизируют в покое 60…80 мл кислорода, а во время работы – до 120 мл (кислородная емкость 1 л крови равна около 200 мл О 2).

Повышенное поступление кислорода в ткани при мышечной работе зависит от того, что понижение напряжения кислорода в работающих мышцах, увеличение напряжения углекислого газа и концентрации Н+-ионов в крови способствуют увеличению диссоциации оксигемоглобина. Особенно значителен прирост утилизации кислорода у тренированных людей. Крог объяснял это еще и тем, что у тренированных людей во время работы происходит раскрытие большего количества капилляров, чем у нетренированных.

Одной из причин увеличения легочной вентиляции при интенсивной мышечной работе является накопление молочной кислоты в тканях и переход ее в кровь. Содержание молочной кислоты в крови может достигать при этом 50…100 и даже 200 мг % вместо 5…22 мг % в условиях мышечного покоя. Молочная кислота вытесняет угольную кислоту из ее связей с ионами натрия и калия, что приводит к повышению напряжения углекислого газа в крови и к возбуждению дыхательного центра.

Накопление молочной кислоты при мышечной работе возникает потому, что интенсивно работающие мышечные волокна испытывают недостаток в кислороде и часть молочной кислоты не может окислиться до конечных продуктов – углекислого газа и воды. Такое состояние Хилл назвал кислородной задолженностью. Оно возникает при весьма интенсивной мышечной работе, например у спортсменов во время напряженных соревнований.

Окисление образовавшейся во время работы мышц молочной кислоты завершается уже после окончания работы – во время восстановительного периода, в течение которого сохраняется интенсивное дыхание, достаточное для того, чтобы излишние количества накопившейся в организме молочной кислоты были ликвидированы.

Накопление в организме молочной кислоты – не единственная причина усиления дыхания и кровообращения при работе мышц. Как показали исследования М. Е. Маршака, мышечная работа ведет к усилению дыхания даже в том случае, если у человека, работающего на эргометриеском велосипеде, конечности перетянуты жгутом, препятствующим поступлению молочной кислоты и других продуктов из работающих мышц в кровь. Усиление дыхания возникает при этом рефлекторным путем. Сигналом, вызывающим усиление дыхания и кровообращения, является возникающее при сокращении раздражение проприорецепторов мышц. Этот рефлекторный компонент принимает участие в любом усилении дыхания при мышечной работе.

Таким образом, усиление вентиляции при мышечной работе обусловлено, с одной стороны, химическими изменениями, происходящими в организме, – накоплением углекислоты и недоокисленных продуктов обмена, а с другой – рефлекторными влияниями.

Значительную роль в координации функций органов и физиологических систем при мышечной работе играет кора головного мозга. Так, в предстартовом состоянии у спортсменов отмечается увеличение силы и частоты сердечных сокращений, возрастает легочная вентиляция, повышается кровяное давление. Следовательно, условнорефлекторный механизм – один из важнейших нервных механизмов адаптации организма к меняющимся условиях внешней среды.

Система дыхания обеспечивает возросшие потребности организма в кислороде. Системы же кровообращения и крови, перестраиваясь на новый функциональный уровень, способствуют транспорту кислорода к тканям и углекислого газа к легким.


Заключение

Как и все другие процессы автоматической регуляции физиологических функций, регуляция дыхания осуществляется в организме на основе принципа обратной связи. Это значит, что деятельность дыхательного центра, регулирующего снабжение организма кислородом и удаление образующегося в нем углекислого газа, определяется состоянием регулируемого им процесса. Накопление в крови углекислоты, а также недостаток кислорода являются факторами, вызывающими возбуждение дыхательного центра.

В регуляции дыхания важное значение имеет газовый состав крови.

На дыхательный центр оказывает влияниеповышение концентрации водородных ионов. В настоящее же время установлено, что изменения напряжения СО 2 и концентрации Н + -ионов действуют на дыхание, возбуждая находящиеся вблизи дыхательного центра хеморецепторы, чувствительные к указанным выше изменениям. Эти хеморецепторы находятся в тельцах диаметром около 2 мм, расположенных симметрично с двух сторон продолговатого мозга на вентролатеральной его поверхности поблизости от места выхода подъязычного нерва.

Пониженное напряжение кислорода в крови вызывает рефлекторное усиление дыхательных движений, действуя на хеморецепторы сосудистых рефлексогенных зон. Деятельность дыхательного центра регулируется воздействием повышенной концентрации Н+-ионов и увеличенного напряжения СО 2 на хеморецепторы продолговатого мозга и на хеморецепторы каротидного и аортального телец, а также действием на хеморецепторы указанных сосудистых рефлексогенных зон понижения напряжения кислорода в артериальной крови.

Дыхательный центр получает афферентные импульсы не только от хеморецепторов, но и от прессорецепторов сосудистых рефлексогенных зон, а также от механорецепторов легких, дыхательных путей и дыхательных мышц.

Влияние прессорецепторов сосудистых рефлексогенных зон обнаруживается в том, что повышение давления в изолированном каротидном синусе, связанном с организмом только нервными волокнами, приводит к угнетению дыхательных движений. Это происходит и в организме при повышении артериального давления. Наоборот, при понижении артериального давления дыхание учащается и углубляется.

Важное значение в регуляции дыхания имеют импульсы, поступающие к дыхательному центру по блуждающим нервам от рецепторов легких. От них в значительной степени зависит глубина вдоха и выдоха.

Помимо механорецепторов легких, в регуляции дыхания принимают участие механорецепторы межреберных мышц и диафрагмы. Они возбуждаются растяжением при выдохе и рефлекторно стимулируют вдох.

Таким образом, жизненно важная функция дыхания, возможная лишь при ритмическом чередовании вдоха и выдоха, регулируется сложным нервным механизмом.

На активность дыхательного центра оказывает влияние коры головного мозга. Для оценки роли коры головного мозга в регуляции дыхания большое значение имеют данные, полученные с помощью метода условных рефлексов.

Учащение и углубление дыхания, которые наступают до начала физической работы или спортивных состязаний, также осуществляются по механизму условных рефлексов.

Эти изменения в дыхательных движениях отражают сдвиги в активности дыхательного центра и имеют приспособительное значение, способствуя подготовке организма к выполнению работы, требующей большой затраты энергии и усиления окислительных процессов.


Список литературы

1. Анатомия, физиология, психология человека. Краткий иллюстрированный словарь / Под ред. А.С. Петрова. – СПб: Питер, 2002. – 256 с., ил.

2. Атлас по нормальной физиологии. Пособие для студ. мед. и биол. спец. вузов / Под ред. Н.А. Агаджаняна. – М.: Высш. шк., 1986. – 351 с., ил.

3. Бабский Е.Б., Забков А.А., Косицкий Г.И., Ходоров Б.И. Физиология человека / Под ред. Е.Б. Бабского. – М.: Издательство «Медицина, 1972. – 656 с.

4. Сапин М.Р. Анатомия и физиология человека: Уч. Для студ. Образоват.учреждений / М.Р. Сапин, В.И.Сивоглазов. – 6-е изд., стер. –М.: Издательский центр «Академия», 2008. – 384 с.: ил.

5. Физиология человека /С.А. Георгиева, Н.В. Белинина, Л.И. Прокофьева, Г.В. Коршунов, В.Ф. Киричук, В.М. Головченко, Л.К.Токарева. – М.: Медицина, 1989. – 480 с.

6. Фомин Н.А. Физиология человека: Уч. пособие для студентов фак. физ. воспитания пед. ин-тов. – М.: Просвещение, 1982. – 320 с., ил.

Кислород, являющийся конечным акцептором электронов в дыхательной цепи, необходимо доставить в организме к каждой клетке. У животных выработались системы внешнего дыхания, функцией которых и является газообмен. В курсе зоологии получены исчерпывающие сведения на этот счет.

Дыхание – это совокупность процессов и механизмов, обеспечивающих потребление кислорода и выделение избытка углекислого газа организмом, и направленных на поддержание газового гомеостазиса.

Функции и этапы дыхания.

Функции системы дыхания

1.газообмен между клетками организма и окружающей средой

2.выделение летучих соединений

3.депонирование крови

С точки зрения физики газообмен происходит с использованием конвекции (перемещение молекул на большие расстояния с током воздуха и крови) и диффузии (движение газов по градиенту парциального давления на небольшие расстояния).

Этапы (стадии) дыхания

1.Газообмен между внешней средой и альвеолярным воздухом (конвекция)

2.Газообмен между альвеолярным воздухом и кровью (диффузия)

3.Транспорт газов кровью по малому и большому кругу кровообращения (конвекция)

4.Газообмен в тканях (диффузия)

5.Клеточное дыхание (изучает биохимия)

Газообмен в легких происходит благодаря ритмичным дыхательным движениям, инспирации (вдох) и экспирации (выдох). Длительность фазы вдоха и выдоха при различных нагрузках на организм меняется, поэтому введено понятие о паттерне дыхания.

Паттерн дыхания – это совокупность объемных и временных параметров, характеризующих структуру дыхательного цикла и легочную вентиляцию в целом.

Параметры дыхания.

1.Количество дыхательных циклов в 1 минуту. Частота дыхания.

2.Длительность одного дыхательного цикла.

3.Длительность инспираторной и экспираторной фазы.

4.Дыхательный объем или глубина дыхания.

5.Легочная вентиляция (минутный объем дыхания)

Выделяют

    нормопноэ , или нормопноическое дыхание, (12-16 дыхательных циклов в мин);

    тахипноэ (частое, но неглубокое дыхание, более 20 циклов в минуту);

    брадипноэ (медленное, глубокое дыхание, менее 8 вдохов-выдохов в минуту

Рабочее гиперпноэ может наблюдаться при мышечной нагрузке.

Необходимую для организма интенсивность альвеолярной вентиляции можно обеспечить при различных паттернах дыхания, частоты и глубины его.

Чем больше дыхательный объем, тем большее усилие необходимо приложить для преодоления эластичной тяги легких, т.е. при таком дыхании большая нагрузка ложится на вдыхательные мышцы. С другой стороны, при частом поверхностном дыхании нагрузка на дыхательную мускулатуру возрастает из-за сопротивления току воздуха в воздухоносных путях.

При физиологической одышке может быть частое поверхностное дыхание, встречается такой паттерн дыхания при повышенной температуре воздуха и гипертермии. Газообмен в этом случае происходит только в пределах мертвого пространства, отчего обмен кислорода и диоксида углерода в альвеолах снижен.

Кроме указанных, различают понятия гиперпноэ и гипервентиляция легких, в первом случае газообмен в альвеолах нормален, во втором происходит «вымывание» СО 2 из альвеол, и из крови, наступаетгипокапния. При гиповентиляции наблюдаетсягиперкапния , избыток углекислоты в крови или альвеолярном газе.

Недостаток кислорода обозначается как гипоксия , недостаток кровоснабжения в тканях –ишемия .

Дыхательные движения обеспечиваются работой дыхательных мышц.

Исполнительными (эффекторными) образованиями системы дыхания у человека являются инспираторные и экспираторные мышцы. При сокращении инспираторных мышц объем грудной клетки увеличивается за счет поднятия ребер и уплощения диафрагмы. Основные инспираторы – наружные межреберные мышцы и диафрагма. При вдохе межреберные мышцы подтягивают нижележащие ребра вверх, диафрагма опускается книзу. При глубоком вдохе дополнительно в акт включаются грудино-ключично-сосцевидная и трапециевидная мышцы.

Основные экспираторы – внутренние межреберные мышцы, вспомогательные – мышцы живота. Они способствуют опусканию ребер, а также способствуют пассивному смещению диафрагмы при выдохе.

Грудная клетка герметична. С внутренней стороны она выстлана париетальной плеврой. Между тканью легкого (покрытой висцеральной плеврой) и париетальной плеврой имеется плевральная полость, заполненная плевральной жидкостью.

Клетки париетальной плевры фильтруют до 300 мл плевральной жидкости в час. Висцеральная плевра эту жидкость адсорбирует, причем более активно, чем она секретируется. Этим создаются условия для отрицательного (относительно атмосферного) давления в плевральной полости.

Ткань легкого эластична и стремится занять как можно меньший объем. Поэтому растяжение легких происходит за счет распирающего давления атмосферы, атмосферное давление прижимает легкие к париетальной плевре. Нарушение герметичности грудной клетки носит название пневмоторакса .

Таким образом, периодические экскурсии грудной клетки «затягивают» дыхательную порцию воздуха в трахею и далее в легкие, при условии отрицательного давления в плевральной полости.

Воздухопроводящий путь включает носоглотку, трахею, бронхи, 23 поколения которых составляют бронхиальное дерево.

Кондуктивную зону с общим объемом 130-180 мл состаляют первые 16 поколений бронхов, это анатомическое мертвое пространство, названное так потому, что здесь газообмен с кровью не происходит.

Транзиторная зона , 17-19 ветвления бронхов, может содержать альвеолярные ходы.

Респираторная зона бронхиального дерева включает 20-23-е разветвления бронхов. Бронхи образуют альвеолярные бронхиоли и альвеолы.

Функциональной единицей легких являются дольки. Наиболее мелкие бронхиоли входят в дольку и делятся здесь на 12-18 концевых бронхиолей, те образуют альвеолярные бронхиоли и ацинусы, состоящие из альвеол. Число альвеол у человека варьирует от 300 до 700 миллионов. Общая поверхность доходит до 100-130 кв. метров. Альвеолы густо оплетены капиллярами, куда поступает венозная кровь из легочных артерий, а оксигенированная кровь затем отводится из легочного круга кровообращения по легочным венам в левое предсердие.

Особенности нормальной легочной циркуляции крови заключаются в том, что она обладает низким сосудистым сопротивлением и способна аккумулировать весь минутный объем кровотока, создаваемый правым желудочком сердца. Давление в легочной артерии в фазу систолы равно 20-30 мм рт.ст. Объем крови в легких может составлять до 28% от всей циркулирующей в организме. Только за счет емкостных свойств легочные сосуды могут воспринимать весь кровоток, повышающийся при физической нагрузке, без изменений давления.

Альвеолярный эпителий (респираторный) на поверхности покрыт вырабатывающимся в нем специальным веществом фосфолипопротеиновой природы – сурфактонтом . Пленка сурфактанта уменьшает поверхностное натяжение альвеолярной стенки, что препятсвует слипанию альвеол. Сурфактант постоянно вырабатывается разновидностью эпителиальных клеток – гранулярными пневмоноцитами под контролем блуждающих нервов.

Легочные объемы.

В условиях покоя человек дышит так, что используется только часть всего объема легких, поэтому всегда есть резерв для дополнительного вдоха и выдоха. Но даже при самом глубоком дыхании в легких остается определенное количество воздуха, составляющее остаточный объем .

Общая емкость легких =резервный объем вдоха (2,5 л)+дыхательный объем (500-700 мл)+ резервный объем выдоха (1,5 л) + остаточный объем (1,5 л) =3,5…6 л.

Дыхательный объем – объем воздуха, который входит в легкие при каждом спокойном вдохе и выходит при спокойном выдохе.

Резервные объемы вдоха и выдоха – объемы воздуха, которые человек может произвольно вдохнуть и выдохнуть сверх дыхательного объема.

Жизненная емкость легких – количество воздуха, которое может выдохнуть человек после глубокого вдоха. Она равна сумме дыхательного объема, резервных объемов вдоха и выдоха.

Легочная вентиляция всегда находится в точном соответствии с текущими метаболическими потребностями организма. Увеличение вентиляции происходит как за счет роста дыхательного объема, так и увеличением частоты дыхания.

Не весь воздух, поступающий в легкие, участвует в газообмене, анатомическое мертвое пространство соответствует (в мл) цифре удвоенной массы тела. Функциональное мертвое пространство дополнительно снижает степень газообмена.

Газ в альвеолах имеет постоянный состав, обусловленный буферными функциями мертвого пространства, где воздух увлажняется и нагревается.

В условиях покоя оптимальным является дыхание через нос, хотя при этом сопротивление дыханию возрастает по сравнению с дыханием через рот.

При осуществлении дыхательных движений дыхательные мышцы совершают работу, затрачиваемую на преодоление внутренних и внешних сил. Работа дыхания складывается из энергозатрат на преодоление общего легочного сопротивления (эластичного сопротивления самой легочной ткани и грудной клетки) и преодоления сопротивления потоку воздуха в воздухоносных путях.

Минутному объему дыхания должен соответствовать минутный объем крови, протекающий по сосудам малого круга кровообращения. Вентиляционно-перфузионный коэффициент составляет 0,8-0,9, т. е. при альвеолярной вентиляции, равной 6 л/мин, минутный объем кровообращения может быть равным 7 л/мин.

В атмосфере Земли кислород составляет примерно 21%, или 1/5. Атмосферное давление на уровне моря 760 мм рт.ст. Значит, парциальное давление кислорода примерно соответствует 1/5 этой величины, 160 мм рт.ст., это предельная цифра содержания О 2 в естественных газовых смесях.

В воздухоносных путях воздух постепенно теряет скорость перемещения (конвекции). В респираторных бронхиолях и альвеолах большое значение приобретает диффузия газов. Газы перемещаются по градиенту парциального давления. В альвеолах, где и происходит, контакт альвеолярного газа с капиллярной кровью, напряжение кислорода Р О 2 составляет 103 мм рт.ст., а парциальное давление диоксида углерода Р СО 2 около 40 мм рт.ст. В выдыхаемом воздухе Р О 2 составляет 126 мм рт.ст., а Р СО 2 соответственно 16 мм рт.ст. В артериальной крови Р О 2 соответствует 95 мм рт.ст., в венозной Р О 2 равно 40 мм рт.ст. Р СО 2 артериальной крови соответствует 40 мм рт.ст., а венозной – Р СО 2 приближается к 46 мм рт.ст.

Вектор диффузии дыхательных газов

Поэтому вектор диффузии кислорода постоянно направлен в сторону альвеол и капилляров, а углекислоты – в обратном направлении, из капилляров в атмосферу.

Перенос кислорода из альвеолярного газа в кровь и диоксида углерода из крови в альвеолярный газ происходит исключительно путем диффузии. Движущей силой диффузии диффузии служит градиент парциального давления каждого из газов по обе стороны аэрогематического барьера. Диффузия осуществляется в водной среде. В слое сурфактанта растворимость кислорода повышается.

Аэрогематический барьер состоит из слоя сурфактанта, альвеолярного эпителия, двух основных мембран, эндотелия капилляра и мембраны эритроцита.

Диффузионная способность легких для кислорода достаточно высока. Установлено, что на каждый миллиметр ртутного столба градиента парциального давления кислорода между альвеолярным газом и эритроцитом в кровь поступает путем диффузии 25 мл кислорода в минуту. Этого достаточно для того, чтобы за 0,8 с, что равно времени прохождения отдельным эритроцитом одного легочного капилляра, парциальное давление кислорода в нем успело выравняться с альвеолярным. Даже с большим запасом по времени, поскольку для выравнивания напряжения кислорода в эритроцитах с альвеолярным воздухом достаточно 0,25 с.

Поэтому, если кровоток в капиллярах легких повышается (возрастает линейная скорость движения эритроцитов) при физической нагрузке на организм, и время прохождения капилляров клетками уменьшается до 0,3 с, этого оказывается вполне достаточно для полного газообмена. Для диффузии из крови углекислого газа необходимо всего 0,1 с. Растворимость диоксида углерода в воде превышает этот показатель для кислорода в 25 раз.

Транспорт кислорода кровью.

Если животное имеет систему кровообращения, в крови имеется переносчик кислорода. В растворенном состоянии у человека в артериальной крови имеется только 2% кислорода.

Все пигменты – переносчики кислорода представляют собой металлорганические соединения, большинство содержит Fe, некоторые Cu.

Гемоглобины представляют собой железопорфирины (гем), связанные с глобином (белком). Гемоглобин у человека и млекопитающих всегда находится в специализированных клетках крови эритроцитах. Установлено более 90 типов гемоглобинов, отличающихся белковыми составляющими. Молекула гемоглобина состоит из нескольких мономеров, каждый из которых содержит один гем, соединенный с глобином. У человека гемоглобин содержит 4 таких мономера. Миоглобин содержит только 1 гем.

Гем в химическом отношении представляет собой протопорфирин, состоящий из 4 пиррольных колец с атомом железа в центре.

Оксигенация гемоглобина представляет собой обратимое присоединение кислорода к закисному (двухвалентному) железу в количествах, зависящих от напряжения кислорода в окружающем пространстве.

Кислород присоединяется к каждому из атомов железа согласно уравнению равновесия

Формально в этой реакции не происходит изменения валентности железа. Тем не менее оксигенация сопровождается частичным переходом электрона от закисного железа к кислороду, кислород частично восстанавливается.

Иное значение валентности может быть у гемового железа при образовании метгемоглобина, когда Fe изменяет валентность и становится трехвалентным. В этом случае, при истинном окислении железа, гемоглобин утрачивает способность переносить кислород.

Гем в молекуле гемоглобина способен присоединять другие молекулы. Если он присоединяет диоксид углерода, его называют карбогемоглобином. Если к гему присоединятся монооксид углерода, образуется карбоксигемоглобин. Сродство гемоглобина к CO в 300 раз выше, чем к О 2 . Поэтому отравление угарным газом очень опасно. Если во вдыхаемом воздухе содержится 1% СО, млекопитающие и птицы могут погибнуть.

Артериальная кровь насыщается кислородом на 96-97%. Этот процесс происходит очень быстро, всего за четверть секунды в альвеолярных капиллярах.

В литературе принято оценивать содержание кислорода в крови по показателю кислородная емкость крови .

Кислородная емкость крови – это максимальное количество кислорода, которое может присоединить 100 мл крови.

Поскольку 96% кислорода находится в соединении с гемоглобином, кислородная емкость крови определяется этим пигментом. Известно, что кислород-связывающая способность 1 г гемоглобина определяется величиной 1,34 – 1,36 мл О 2 , при нормальном атмосферном давлении. Это означает, что при содержании в крови 15 г% Нв (а это близко к средней), кислородная емкость составляет 1,341520 объемных процентов, то есть на каждые 20 мл О 2 на каждые 100 мл крови, или 200 мл О 2 на литр крови. В 5 литрах крови (полная кислородная емкость индивидуума, у которого 5 л крови в системе кровообращения) содержится 1 литр кислорода.

Реакция оксигенации гемоглобина обратима

HHb 4 +4O 2 = HHb 4 (O 2) 4

Или проще Hb+О 2 = HbО 2

Оказалось, что на практике удобнее анализировать этот процесс, если построить график зависимости концентрации HbО 2 в образце от парциального давления/напряжения кислорода. Чем больше в среде кислорода, тем сильнее равновесие в реакции смещается в сторону оксигенации, и наоборот.

Каждому значению РО 2 соответствует определенный процент HbО 2 . При значениях РО 2 , характерных для артериальной крови, практически весь гемоглобин окислен. В периферических тканях, при низких значениях напряжения кислорода, увеличивается скорость диссоциации его диссоциации до кислорода и гемоглобина.

Кривая диссоциации гемоглобина имеется в каждом учебнике.

Анализ кривой диссоциации оксигемоглобина показывает, что при напряжении кислорода в среде 60-100 мм рт.ст. (условия равнины и подъема человека на высоту до 2 километров) насыщение кислородов крови происходит полностью. В тканях отдача кислорода также протекает удовлетворительно, при напряжениях кислорода около 20 мм рт.ст.

Другими словами, характер кривой дает сведения о свойствах транспортной системы.

Диссоциация оксигемоглобина зависит не только от парциального давления кислорода в тканях, но и от некоторых других условий. Когда в кровь поступает углекислота из тканей, сродство гемоглобина к кислороду падает и кривая диссоциации сдвигается вправо. Это прямой эффект Вериго-Бора. Эффект Вериго-Бора способствует улучшению диссоциации оксигемоглобина в тканях. Обратный эффект наблюдается в легких, где отдача диоксида углерода приводит к более полному насыщению гемоглобина кислородом. Эффект обусловлен не самим СО 2 , а подкислением среды при образовании угольной кислоты (или накоплением молочной кислоты в активно работающих мышцах).

Не весь оксигемоглобин диссоциирует в тканях. От 40 до 70% его сохраняется в венозной крови. У человека каждые 100 мл крови отдают тканям 5-6 мл кислорода, и на такую же величину обогащаются новой его порцией в легочных капиллярах. Для оценки этих процессов (утилизации кислорода тканями) введен показатель артерио-венозная разница по кислороду.

Транспорт углекислого газа кровью.

Как и кислород, диоксид углерода в крови находится в двух состояниях – физически растворенном и химически связанном. Около 5% СО 2 транспортируется в растворенном виде. Химическая связь диоксида углерода осуществляется по реакции

СО 2 + Н 2 О↔Н 2 СО 3 ↔Н + + НСО 3 -

Реакция сдвигается вправо при высоких напряжениях СО 2 , и влево при низких. Катализируется карбоангидразой с коэффициентом ускорения 250-300 раз. 80% образовавшейся угольной кислоты транспортируется в виде бикарбонатов щелочных металлов. Противоионами для карбонатных ионов в плазме выступают Na + , а в эритроитах – К + . Остальные 20% НСО 3 - транспортируется в связи с гемоглобином. В артериальной крови 15% СО 2 (в венозной 20%) переносится в виде карбаминовых групп гемоглобина, поскольку NH-группы белка связывают СО 2 обратимо. Доля транспорта в связи с гемом ничтожна. Для образования бикарбонатов щелочных металлов используется их резерв, ассоциированный с молекулой гемоглбина. Гемоглобин, как и все белковые молекулы, является амфотерным соединением. В слабощелочной среде (рН 7,35-7,4) гемоглобин и оксигемоглобин ведут себя как слабые кислоты, ассоциируя ионы калия. В артериальной крови 67% НСО 3 - растворено в плазме, уравновешивающим ионом выступает натрий. Гемоглобин в дезоксиформе слабее по кислотным свойствам, чем оксигемоглобин, поэтому легко отдает К + , при этом реализуется эффект Холдена: оксигенация гемоглобина облегчает отдачу СО 2 кровью, а дезоксигенация гемоглобина усиливает поглощение диоксида углерода.

Гемоглобиновая буферная система (отвечает за 75% буферных свойств крови) и карбонатная буферная система, кроме дыхательной функции, обеспечивает постоянство активной реакции крови в диапазоне рН 7,35 – 7,47 (венозная кровь в норме имеет более кислую реакцию на 0,02 единицы рН). Поэтому нарушения кислотно-щелочного равновесия в организме может быть не только метаболическим, но и дыхательным. При респираторном ацидозе рН крови снижается, концентрация НСО 3 - возрастает. При респираторном алкалозе (может наступить при гипервентиляции) наблюдаются обратные процессы, концентрация НСО 3 - падает из-за «вымывания» углекислого газа.

Регуляция дыхания.

Конечная цель регуляции дыхания, или полезный приспособительный результат – поддержание постоянного газового состава и рН артериальной и венозной крови. Отклонение этих показателей от нормы (РО 2 менее 100 мс рт.ст., РСО 2 более 40 мм рт.ст., рН от 7,36) воспринимается как стимул для регуляции. Координированные сокращения дыхательных мышц обеспечиваются ритмической активностью нейронов дыхательного центра, или, как это принято формулировать по современным представлениям, центрального дыхательного механизма .

К дыхательным нейронам относят те нервные клетки, импульсная активность которых меняется в соответствии с фазами дыхательного цикла. Различают инспираторные нейроны (нейроны вдоха) и экспираторные (нейроны выдоха) и клеточные популяции, согласовывающие смену дыхательных фаз. Центральный дыхательный механизм локализован в ретикулярной формации продолговатого мозга. Большинство нейронов сгруппированы в двух главных группах ядер – дорсальной и вентральной. В дорсальной группе сосредоточены инспираторные нейроны, посылающие аксоны в шейные сегменты спинного мозга, где они синаптически оканчиваются на мотонейронах ядра диафрагмального нерва. Ядра вентральной группы дыхательных ядер содержат как инспираторные, так и экспираторные нейроны. Они связаны синаптически с теми нейронами спинного мозга, которые иннервируют межреберные мышцы. Для 80% нейронов грудного отдела спинного мозга характерна дыхательная ритмика. В области моста выделен пневмотаксический центр, клетки которого принимают участие в переключении фаз дыхательного цикла. Для нейронов центрального дыхательного механизма характерен автоматизм, хотя пейсмекеров пока не обнаружено. Основной активатор дыхательного механизма – афферентная сигнализация от рецепторов, расположенных во внутренней среде организма. Главный дыхательный стимул – снижение в крови содержания кислорода и повышение напряжения диоксида углерода. Хеморецепторы посылают в ЦНС сигналы о степени отклонения этих показателей от нормы. Основное место локализации хеморецепторов дыхательной системы – область каротидного синуса (каротидные клубочки). В области дуги аорты расположена вторая группа хеморецепторов, контролирующая газовые и кислотные показатели той порции крови, которая направляется к внутренним органам. В продолговатом мозге имеются и центральные хеморецепторы.

Установлено, что чем выше в крови рСО 2 , тем выше частота импульсации в афферентных волокнах синокаротидного нерва. Эта афферентная посылка интегрируется центральным дыхательным механизмом и используется для усиления дыхания, как увеличением частоты дыхательных циклов, так и углублением каждого вдоха.

В трахее, бронхах имеются собственные рецепторы, инициирующие защитные рефлексы дыхания, например, кашель. Кроме того, часть из них используется и для коррекции частоты и глубины дыхания. К ним относится рефлекс Геринга–Брейера. Рецепторы, реагирующие на повышение давления в воздухоносных путях, активируются при вдохе и посылают афферентные сигналы по волокнам блуждающего нерва к группе нейронов дорсальной порции дыхательного центра. Их возбуждение нарастает в фазу вдоха и тормозит инспираторные нейроны. Каждый вдох за счет рецепторов растяжения подготавливает свое окончание.

Имеются рецепторы и в верхних дыхательных путях, они активируются при попадании в нос и рот пыли или ирритантов. Кашель, чихание, принюхивание, остановка дыхания на вдохе при обнаружении резкого неприятного запаха или химическом загрязнении среды – рефлекторные проявления их активации.

Регуляция внешнего дыхания .

Вентиляция легких осуществляется работой дыхательных мышц. Периодичность их сокращений обуславливается деятельностью дыхательного центра. Значение этого центра заключается не только в определении объема вентиляции, но и выборе наиболее экономичной частоты, глубины и формы дыхательных движений в зависимости от механических свойств легких и стенок грудной полости (их растяжимости, сопротивления воздухоносных путей току воздуха, вязких сопротивлений тканей и т.п).

Деятельности дыхательного центра свойственна высокая степень надежности. В ее обеспечении участвуют афферентные импульсы, способствующие смене дыхательных фаз. Сокращения многих мышц и мышечных групп, участвующих в вентиляции легких, строго координированы по протеканию во времени и силе. Интенсивность возбуждения дыхательных мышц регулируется в соответствии с изменениями их длины и объема грудной клетки. Эти стороны деятельности аппарата внешнего дыхания обслуживаются рефлексами, рецептивные поля которых расположены в самом дыхательном аппарате: в легких, дыхательных мышцах, верхних дыхательных путях. Они выполняют функцию обратной связи между центрами и периферией и должны быть отнесены к собственным дыхательным рефлексам, осуществляющим саморегуляцию дыхания.

Рассмотрим строение рефлекторных дуг этих рефлексов.

Афферентная система легких . В 1868 г. Геринг и Брейер обнаружили, что увеличение объема легких тормозит сокращение мышц вдоха, а отсасывание воздуха из легких, наоборот, вызывает сильное сокращение инспираторных мышц. Зависимость деятельности дыхательного центра от объема легких устраняется двусторонней перерезкой блуждающих нервов или только их легочных ветвей.

Имеется несколько видов механорецепторов в легких. Морфологи различают медленно и быстро адаптирующиеся рецепторы растяжения легких, рецепторы спадения легких, рецепторы слизистой оболочки трахеи и бронхов, рецепторы интерстициальной ткани альвеол (т.н. Ю-рецепторы легких ). Роль и значение всех этих образований в регуляции дыхательных движений различна.

Изменения объема легких у животных вызывает три сильные и постоянные реакции дыхательного центра: 1) торможение инспираторной активности при увеличении объема легких, 2) короткое инспираторное возбуждение при резком и небольшом увеличении объема и 3) увеличение частоты дыхания и силы сокращений мышц вдоха при уменьшении объема легких. Для этих рефлексов характерны системные реакции дыхательного аппарата, причем состояние мотонейронов мышц вдоха и выдоха изменяется реципрокно.

Хотя двусторонняя ваготомия не приводит к смерти животного. но выключение импульсов от рецепторов легких существенно меняет протекание дыхательных периодов и форму дыхательных движений. Происходит увеличение амплитуды и продолжительности вдохов и выдохов, а смена дыхательных фаз нарушается и происходит за счет раздражения механорецепторов дыхательных мышц. Афферентная система легких играет важную роль в саморегуляции дыхания. являясь основой обратной связи между периферией дыхательного аппарата и центрами.

Афферентная система дыхательных мышц . Диафрагма относительно бедна рецепторами, которые в обычных условиях не имеют существенного значения в регуляции дыхания. Зато дыхательная активность диафрагмы находится в постоянной зависимости от объема легких. При герметичной плевральной полости движения диафрагмы всегда сопровождаются раздражением механорецепторов легких, которые, по существу. заменяют собственные рецепторы диафрагмы.

Межреберные мышцы снабжены большим количеством рецепторов типа мышечных веретен. В мышцах одного межреберного промежутка насчитывают до 100 таких образований. Возбуждение окончаний веретен изменяется при сокращении и растяжении межреберных мышц. От чувствительных окончаний веретен в спинной мозг постоянно поступает поток импульсов, который усиливается при вдохе, так как вместе с экстрафузальными мышечными волокнами при вдохе происходит сокращение и интрафузальных, причем начало сокращения последних определяется раньше, чем возбуждение альфа-мотонейронов. Активность мотонейронов мышц вдоха и выдоха изменяется строго реципрокно.

Кроме рецепторов растяжения мышц, при дыхательных движениях происходит раздражение механорецепторов кожи грудной клетки, и рецепторов подкожных вен. Импульсы от механорецепторов грудной клетки поступают в грудные сегменты спинного мозга, восходят к диафрагмальным центрам и в головной мозг.

Нормальный дыхательный объем обеспечивается укорочением дыхательных мышц, развивающих определенное напряжение. Дыхательный центр определяет "запрос" на укорочение дыхательных мышц через эфферентные системы мышечных веретен. Сокращение интрафузальных волокон обуславливает дополнительное сокращение экстрафузальных мышечных волокон, пропорциональное укорочению интрафузальных волокон в соответствии с запросом. При увеличении нагрузки дыхательного аппарата (увеличение сопротивления дыханию) прежнее напряжение мышц не обуславливает прежнего укорочения и необходимого изменения объема грудной полости. Но в этих условиях веретена оказываются более растянутыми, чем до нагрузки, что в порядке рефлекса растяжения автоматически вызывает увеличение напряжения мышц.

Хеморецепторы дыхательного аппарата . Помимо механорецепторов легких и воздухоносных путей, а также проприорецепторов дыхательных мышц большую роль в регуляции дыхания играют сенсорные образования, чувствительные к химическим раздражителям, хеморецепторы. Функция последних - контроль газового состава и кислотно-щелочного баланса внутренней среды организма, в обеспечении постоянства которой дыхание принимает прямое участие.

Интенсивность внешнего дыхания в конечном счете определяется динамикой потребления кислорода и продукцией СО 2 тканями тела. Дыхательный центр продолговатого мозга поддерживает уровень легочной вентиляции прежде всего в соответствии с напряжение углекислого газа и концентрацией водородных ионов в омывающей его крови. Однако этот центр, если его изолировать от афферентных связей с периферией, не способен адекватно реагировать на уровень доставки кислорода. Именно хеморецепторы посылают в дыхательный центр сигналы о величине напряжения кислорода в крови, а также дополнительную информацию о напряжении углекислоты и активной реакции внутренней среды. Показано, что эти рецепторы чувствительны к ограничению кислородного снабжения и снижению содержания кислорода в крови независимо от того, каким путем оно происходит.

Рецепторы, воспринимающие газовый состав артериальной крови, расположены в двух областях: дуге аорты и в каротидном синусе (место деления сонной артерии на наружную и внутреннюю). Хеморецепторы заключены в особых телах - клубочках, или гломусах, которые находятся вне сосуда и омываются кровью через специальные капилляры.

Кроме этих рецепторов, в регуляции газового состава крови принимают участие т.н. центральные нейрорецепторные образования. Перфузия 4 мозгового желудочка животных подкисленными или насыщенными СО 2 растворами вызывает гипервентиляцию. Исследования показали, что хемочувствительные области располагаются в вентролатеральной части продолговатого мозга, на глубине 2,5-3 мм от поверхности, и посылают информацию нейронам дыхательного центра.

Благодаря функциональным свойствам артериальных хеморецепторов стимуляция их особенно эффективна при мышечной деятельности, которая, как известно, требует поддержания высокого уровня вентиляции. При этом хеморецепторы участвуют в регуляции не только МОД, но и таких параметров, как тонус бронхиальной мускулатуры и просвет воздухоносных путей, а также - путем влияния на активность межреберных мышц - на функциональную остаточную емкость и структуру дыхательного цикла.

Аортальные хеморецепторы расположены у "ворот" всей артериальной системы, а каротидные - у "ворот" сосудистой сети головного мозга. Исключительная важность функции каротидного тела указывает на большую физиологическую значимость регуляции газового состава крови, снабжающей мозг.

Дыхательный центр ретикулярной формации мозгового ствола осуществляет интеграцию поступающих хеморецепторных сигналов с другими афферентными и центральными влияниями. Полагают, что в результате взаимодействия механорецепторных и хеморецепторных импульсов в специализированных нейронных сетях и формируется специфический ритмический характер деятельности дыхательного центра.

Как же устроен дыхательный центр, который осуществляет столь тонкую регуляцию дыхания организма? Мы уже несколько раз упоминали о нем, давайте теперь поговорим более подробно.

Дыхательным центром называют совокупность нервных клеток, расположенных в разных отделах ЦНС, обеспечивающих координированную ритмическую деятельность дыхательных мышц и приспособление дыхания к изменяющимся условиям внешней и внутренней среды организма. Некоторые группы нервных клеток являются совершенно необходимыми для ритмической деятельности дыхательных мышц. Они расположены в ретикулярной формации продолговатого мозга, составляя дыхательный центр в узком (анатомическом) смысле слова. Нарушение функции этих клеток приводит к прекращению дыхания вследствие паралича дыхательных мышц.

Анализируя результаты перерезок, электрического раздражения и коагуляции различных участков продолговатого мозга, Миславский (1885) пришел к заключению, что дыхательный центр (ДЦ) находится в ретикулярной формации продолговатого мозга по обеим сторонам шва на уровне корней подъязычного нерва. Клеточные структуры центра простираются от нижнего угла почли до основания писчего пера. С боков они ограничены веревчатыми телами, а снизу оливами и пирамидами. Миславский доказал, что дыхательный центр имеет инспираторную и экспираторную части (центр вдоха и центр выдоха). В настоящее время показано, что инспираторные нейроны преобладают каудальном отделе tractus solitarius, экспираторные - в вентральном ядре (nucleus ambiguus).

Лумсден и другие исследователи в опытах на теплокровных животных показали, что ДЦ имеет более сложную структуру, чем предполагалось ранее. В верхней части варолиевого моста они обнаружили т.н. пневтомотаксический центр который контролирует деятельность расположенных ниже в продолговатом мозге центров

вдоха и выдоха. Между инспираторными и экспираторными нейронами существуют реципрокные отношения. Это значит, что возбуждение одной группы нейронов тормозит деятельность другой и наоборот.

Взаимодействие между нейронами ДЦ в настоящее время представляется следующим образом. Вследствие рефлекторных импульсом с хеморецепторов возникает возбуждение инспираторных нейронов и реципрокное торможение экспираторных. Одновременно импульсы от инспираторных нейронов поступают к центру пневмотаксиса, а от него к экспираторным нейронам, вызывая их возбуждение и акт выдоха. Одновременно центр выдоха возбуждается импульсацией с рецепторов растяжения легких. Активация экспираторных нейронов реципрокно тормозит инспираторный центр, но через центр пневмотаксиса наступает новое его возбуждение, подкрепляемое импульсацией от рецепторов спадения легких.

Деятельность всей совокупности нейронов, образующих ДЦ, необходима для сохранения нормального дыхания. Однако в процессах регуляции дыхания принимают участие также вышележащие отделы ЦНС, которые обеспечивают тонкие приспособительные изменения дыхания при различных видах деятельности. Важная роль в регуляции дыхания принадлежит большим полушариям головного мозга и их коре, благодаря которой осуществляется приспособление дыхательных движений при разговоре, пении, спорте и трудовой деятельности. Способность коры головного мозга влиять на процессы внешнего дыхания видна из того, что можно произвольно менять частоту и ритм дыхания, и, кроме того, можно выработать условно-рефлекторные изменения дыхания (например, предстартовые изменения дыхания у спортсменов и т.п.).

Функциональная система кислородного снабжения организма .

До сих пор мы рассматривали лишь регуляцию внешнего дыхания. Однако для поддержания нормального уровня концентрации кислорода в крови одного внешнего дыхания недостаточно. В число исполнительных механизмов функциональной системы кислородного снабжения организма (ФСКС ) входят еще механизмы, обеспечивающие связывание кислорода, его транспортировку, уровень окислительно восстановительных процессов, а также серию поведенческих проявлений, направленных на сохранение кислородного снабжения. Естественно, что системообразующим фактором в ФСКС выступает уровень кислорода в крови, который контролируется хеморецепторами. Схема ФСКС представлена на таблице. На практических занятиях Вы разберете ее более подробно.

Наиболее наглядно вовлечение различных исполнительных механизмов ФСКС в реализацию полезного результата - обеспечения нормального содержания кислорода в крови - проявляется при различных экстремальных условиях, к которым прежде всего относятся условия пониженного или повышенного атмосферного давления.

Особенности дыхания и снабжения организма кислородом в экстремальных условиях.

Гипоксия и действие на организм пониженного атмосферного давления . Всякий недостаток кислорода в отдельных тканях или организме в целом носит название гипоксии. Недостаток кислорода крови называется гипоксемией.

Гипоксия может быть четырех видов.

1. При недостаточном насыщении крови кислородом наступает дыхательная (гипоксемическая) гипоксия . Такое состояние возникает в следующих случаях:

При низком парциальном давлении кислорода в воздухе;

При недостаточной вентиляции легких (непроходимость дыхательных путей, слабость дыхательных мышц, недостаточность дыхательного центра, пневмоторакс). При этом в крови отмечается гиперкапния, повышенная концентрация СО2.

При ухудшении диффузии газов через легочную мембрану (спазм бронхов, заполнение альвеол жидкостью при отеках, пневмонии, утоплении), которое тоже сопровождается гиперкапнией;

При некоторых видах порока сердца (не заросший боталлов проток и т.п).

2. Анемическая гипоксия обусловлена понижением способности крови связывать кислород, т.е. снижением кислородной емкости крови. Это возникает при потере крови, связывании Hb другими веществами (окисью углерода, ферроцианидами и др.).

3. В случае замедления движения крови в капиллярах при общей недостаточности кровообращения, вследствие недостаточного притока крови к отдельным органам возникает гипоксия застойная, или циркуляторная . По существу, всякая смерть от остановки сердца является смертью от гипоксии.

4 . Когда ткани в силу инактивации окислительных ферментов (например, цианидами) не могут использовать кислород, возникает гистотоксическая гипоксия .

За исключением циркуляторной гипоксии, происходящей в случае недостаточного притока крови к отдельным органам, остальные формы гипоксии ведут к недостаточному снабжению кислородом всех тканей. Но так как чувствительность разных тканей к недостатку кислорода различна, то одна и та же степень гипоксии может вызывать серьезные расстройства в деятельности одних органов, почти не затрагивая других, изменения в которых будут в первую очередь вызваны расстройствами, происходящими в наиболее чувствительных к гипоксии органах.

Быстрее и резче всего на недостаток кислорода реагируют высшие отделы ЦНС и высшие рецепторы (сетчатка глаза). Это появляется особенно при быстром развитии и значительной гипоксии. В этом случае потря сознания может наступать мгновенно, как это бывает, например, при удушении или удавлении (прекращении притока крови к мозгу). При более медленном развитии гипоксии смерть также всегда наступает после потери сознания, т.е. после паралича функций высших отделов мозга.

Почки, печень и сердечная мышца менее чувствительны к гипоксии, чем мозг, однако признаки расстройства их функций возникают довольно быстро. Скелетные, а особенно гладкие мышцы сохраняют жизнедеятельность при недостатке кислорода относительно долго, в течение нескольких часов (жгут накладывают на 2 часа, и после этого функции конечности восстанавливается).

Следствием падения напряжения кислорода в крови сначала всегда является повышение деятельности дыхательного центра, что проявляется в учащении и углублении дыхания и приводит к росту МОД. Этот эффект зависит главным образом от рефлекторной стимуляции хеморецепторов дуги аорты и каротидного синуса. Усиление легочной вентиляции при гипоксии характерно при ее неглубокой стадии. Оно имеет положительное значение для организма, особенно в случае дыхательной гипоксии. В этом случае рост легочной вентиляции приводит к повышению парциального давления кислорода в крови. При других формах гипоксии, не зависящих от недостатка кислорода в артериальной крови, увеличение дыхательной деятельности не может способствовать устранению гипоксии.

При углублении гипоксии наступает ослабление работоспособности дыхательного центра, сначала проявляющееся в периодическом Чейн-Стоксовом дыхании, которое не обеспечивает достаточной вентиляции легких. Тогда к причинам, вызывающим гипоксию, присоединяется недостаточное дыхание и получается порочный круг: гипоксия приводит к недостаточности дыхания, а недостаточность дыхания еще более усугубляет гипоксию. Разорвать этот круг можно лишь устранением причины гипоксии.

Изменения кровообращения при гипоксии характеризуются тем, что в начальных ее фазах наступает учащение сердцебиений, рост минутного объема сердца, повышение артериального давления. Вследствие опорожнения депо масса циркулирующей крови увеличивается и растет кислородная емкость крови. Однако при длительной и тяжелой гипоксии наступает поражение центров регуляции кровообращения и получается второй порочный руг - гипоксия вызывает расстройство кровообращения, а оно усугубляет гипоксию.

Особенности дыхания при пониженном атмосферном давлении . Наиболее изученной формой гипоксии является гипоксемическая гипоксия, особенно ее дыхательная форма. Человек встречается с этой формой гипоксии при подъеме на высоты, при полетах в стратосферу, при космических полетах. Артериальная кровь насыщена кислородом приблизительно на 95-90% до тех пор, пока барометрическое давление не падает ниже 500-550 мм Hg, что соответствует высоте 3-3,5 км над уровнем моря. При дальнейшем падении барометрического давления насыщение артериальной крови кислородом быстро снижается, оно доходит до 50% величины кислородной емкости при барометрическом давлении 270-300 мм Hg (7,5-8 км высоты).

У значительного большинства людей до высоты 2,5-3 км над уровнем моря не наступает серьезных расстройств. Это, конечно, не значит, что организм находится в таком же состоянии, что и внизу. Хотя на высоте 1,5-3 км артериальная кровь обычно еще насыщена кислородом не менее 90% своей кислородной емкости, напряжение кислорода в крови уже снижено и начинают появляться описанные выше рефлекторные реакции - учащение и углубление дыхания, учащение пульса, выход крови из депо, рост эритропоэза. Все эти изменения у здорового человека как раз и обеспечивают сохранение работоспособности на данной высоте.

С высоты 3-3,5 км у человека начинают обнаруживаться расстройства ряда функций, что зависит главным образом от изменения нормальной деятельности высших центров. На этой высоте падает не только напряжение кислорода в крови, но и количество связанного гемоглобином кислорода. Более или менее тяжелые симптомы дыхательной гипоксии начинаются обычно тогда, когда насыщение артериальной крови кислородом падает ниже 85-80% КЕК. Если же насыщение крови падает ниже 45% КЕК, то наступает смерть.

При подъеме на значительные высоты вследствие расстройства регуляции отмечаются усталость, апатия, сонливость, дрожание пальцев, головная боль, одышка и сердцебиение, тошнота, т.е. развивается высотная или горная болезнь. В зависимости от индивидуальных особенностей и тренированности человека высота, на которой наступают тяжелые расстройства, может быть различной, но они наступают у всех. Высота 8,5-9 км является пределом, выше которого человек без дыхательного аппарата не может подняться без риска для жизни.

Особенности дыхания при повышенном атмосферном давлении . В то время, как низкое атмосферное давление ведет к химическим сдвигам в организме, обусловленным недостатком кислорода, повышенное атмосферное давление, с которым человек сталкивается при водолазных работах, действует прежде всего как физический фактор.

Погружение на каждые 10 м под поверхность воды означает повышение воздействующего на организм давления на 1 атмосферу, так что на глубине, скажем, 90 м на человека действует уже 10 атм. Хотя само пребывание под таким давлением, если оно продолжается не больше 2 часов, не опасно, но подъем с этой глубины при несоблюдении необходимых мер может привести к смерти.

Дело в том, что когда человек подвергается повышенному давлению, то он может дышать только при подаче ему воздуха под таким же давлением. Растворение же газов в жидкости прямо пропорционально их парциальному давлению над жидкостью, и если 1 мл крови при дыхании на уровне моря растворяет 0,011 мл азота, но при давлении в 5 атмосфер - в 5 раз больше. Азот растворяется также во всех тканях, особенно в жировой и богатой жиром нервной ткани. При быстром переходе от давления в 5 атм. к обычному давлению ткани тела могут удержать в растворенном состоянии лишь 0,011 мл газа на 1 мл крови. Остальной азот переходит в газообразное состояние и образует пузырьки в тканях и крови. Такой пузырек может закупорить коронарную или мозговую артерию, что вызывает мгновенную смерть. Мелкие пузырьки азота, освобождающиеся в нервной ткани, суставах, мышцах и т.п., смерти не вызывают, но причиняют тяжелые боли.

Чтобы избежать этих осложнений, нужно поднимать водолазов только с такой скоростью, чтобы газы из крови успевали выделяться легкими. Если же пришлось по жизненным показаниям срочно поднять человека с большой глубины, то его следует поместить в специальную декомпрессионную барокамеру, в которой можно восстановить большое давление, добиться повторного растворения пузырьков и затем снова под наблюдением врача медленно "поднимать" его на "поверхность".

В настоящее время при погружении водолаза на большую глубину ему дают газовую смесь, где азот заменен гелием, который почти не растворяется в крови. Так как кислород под большим давлением токсичен, его добавляют к гелию в такой концентрации, чтобы парциальное давление его на глубине было равно тому давлению, которое имеется в обычных условиях.

Дыхание при мышечной работе . Интенсивность дыхания тесно связана с интенсивностью окислительных процессов: глубина и частота дыхательных движений уменьшаются в покое и увеличиваются при работе, притом тем сильнее, чем напряженнее работа. Мышечная работа всегда сопровождается увеличением легочной вентиляции, что совершенно необходимо для удовлетворения возникающей при работе потребности в кислороде. При интенсивной работе легочная вентиляция может достигать 120 л/мин вместо 5-8 л/мин в покое.

Исследования физиологов показали, что усиление дыхания при мышечной работе зависит, во-первых, от увеличения концентрации углекислоты и раздражения хеморецепторов, а во-вторых, от раздражения проприорецепторов мышц. Наложение жгута на работающую ногу вызывает увеличение вентиляции так же, как и без жгута.

Одновременно с усилением дыхания во время работы наступает усиление деятельности сердца, приводящее к увеличению минутного объема кровотока.

Вентиляция легких и МОК нарастают в соответствии с величиной выполняемой работы. Вычислено, что при повышении потребности кислорода при мышечной работе на 100 мл/мин МОК возрастает на 1000 мл.

Увеличению транспорта кислорода при тяжелой мышечной работе способствует также выброс эритроцитов из депо и обеднение крови водой вследствие потения, что ведет к некоторому сгущению крови и повышению концентрации Нb, а значит и КЕК.

Значительно растет при мышечной работе коэффициент утилизации кислорода. Из каждого литра крови в покое утилизируется 80 мл, при работе до 120 мл кислорода. Повышенное поступление кислорода в ткани при мышечной работе зависит от того, что понижение напряжения кислорода а мышцах, увеличение напряжения углекислого газа и концентрации водородных ионов способствует увеличению диссоциации оксигемоглобина.

Одной из причин увеличения легочной вентиляции при интенсивной мышечной работе является накопление молочной кислоты в тканях и переход ее в кровь. Содержание молочной кислоты в крови может достигать при этом 200 мг% против 5-22 мл в покое. Молочная кислота вытесняет угольную кислоты и ее связей с ионами натрия и калия, что приводит к повышению напряжения СО 2 в крови и возбуждению дыхательного центра. Накопление молочной кислоты при мышечной работе возникает потому, что интенсивно работающие мышечные волокна испытывают недостаток в кислороде и часть молочной кислоты не может окислиться до конечных продуктов. Такое состояние называется кислородной задолженностью. Окисление образовавшейся во время работы молочной кислоты завершается уже после окончания работы - во время восстановительного периода, в течение которого сохранятся интенсивное дыхание, достаточное для того, чтобы излишнее количество накопившейся в организме молочной кислоты было ликвидировано.

Для поддержания газового состава альвеол (удаления углекислого газа и поступления воздуха, содержащего достаточное количество кислорода) необходима вентиляция альвеолярного воздуха. Она достигается благодаря дыхательным движениям: чередованию вдоха и выдоха. Сами легкие не могут нагнетать или изгонять воздух из альвеол. Они лишь пассивно следуют за изменением объема грудной полости за счет отрицательного давления в плевральной полости. Схема дыхательных движений представлена на рис. 5.9.

Рис. 5.9.

При вдохе диафрагма опускается вниз, отодвигая органы брюшной полости, а межреберные мышцы поднимают грудную клетку вверх, вперед и в стороны. Объем грудной полости увеличивается, и легкие следуют за этим увеличением, поскольку содержащиеся в легких газы прижимают их к пристеночной плевре. Вследствие этого давление внутри легочных альвеол падает и наружный воздух поступает в альвеолы.

Выдох начинается с того, что межреберные мышцы расслабляются. Под действием силы тяжести грудная стенка опускается вниз, а диафрагма поднимается вверх, поскольку стенка живота давит на внутренние органы брюшной полости, а они своим объемом поднимают диафрагму. Объем грудной полости уменьшается, легкие сдавливаются, давление воздуха в альвеолах становится выше атмосферного, и часть его выходит наружу. Все это происходит при спокойном дыхании. При глубоком вдохе и выдохе включаются дополнительные мышцы.

Нервная регуляция дыхания

Дыхательный центр расположен в продолговатом мозге. Он состоит из центров вдоха и выдоха, которые регулируют работу дыхательных мышц. Спадение легочных альвеол, которое происходит при выдохе, рефлекторно активизирует центр вдоха, а расширение альвеол рефлекторно активизирует центр выдоха – таким образом дыхательный центр функционирует постоянно и ритмично. Автоматизм дыхательного центра обусловлен особенностями метаболизма в его нейронах. Возникающие в дыхательном центре импульсы по центробежным нервам достигают дыхательных мышц, вызывая их сокращение и, соответственно, обеспечивая вдох.

Особое значение в регуляции дыхания имеют импульсы, идущие от рецепторов дыхательных мышц и от рецепторов самих легких. От их характера в большой степени зависит глубина вдоха и выдоха. Физиологический механизм регуляции дыхания построен по принципу обратной связи: при вдохе легкие растягиваются и в рецепторах, расположенных в стенках легких, возникает возбуждение, которое по центростремительным волокнам блуждающего нерва достигает дыхательного центра и затормаживает активность нейронов центра вдоха, при этом в центре выдоха по механизму обратной индукции возникает возбуждение. В результате дыхательные мышцы расслабляются, грудная клетка уменьшается и происходит выдох. По такому же механизму выдох стимулирует вдох.

При задержке дыхания мышцы вдоха и выдоха сокращаются одновременно, вследствие чего грудная клетка и диафрагма удерживаются в одном положении. На работу дыхательных центров оказывают влияние и другие центры, в том числе расположенные в коре больших полушарий. Благодаря их влиянию можно сознательно изменять ритм дыхания, задерживать его, управлять дыханием при разговоре или пении.

При раздражении органов брюшной полости, рецепторов кровеносных сосудов, кожи, рецепторов дыхательных путей дыхание изменяется рефлекторно. Так, при вдыхании наров аммиака раздражаются рецепторы слизистой оболочки носоглотки, что вызывает активизацию акта дыхания, а при высокой концентрации паров – рефлекторную задержку дыхания. К этой же группе рефлексов относятся чихание и кашель – защитные рефлексы, служащие для удаления инородных частиц, попавших в дыхательные пути.

Гуморальная регуляция дыхания

При мышечной работе усиливаются процессы окисления, что приводит к повышению содержания углекислого газа в крови. Избыток углекислого газа повышает активность дыхательного центра, дыхание становится более глубоким и частым. В результате интенсивного дыхания восполняется недостаток кислорода, а избыток углекислого газа удаляется. Если концентрация углекислого газа в крови понижается, работа дыхательного центра тормозится и наступает непроизвольная задержка дыхания. Благодаря нервной и гуморальной регуляции концентрация углекислого газа и кислорода в крови в любых условиях поддерживается на определенном уровне.

Легкие находятся в грудной полости. Движения мышц, которые изменяют объем этой полости, вызывают движение воздуха в легкие и из легких, попеременно увеличивая или уменьшая объем грудной клетки. Это обусловливается ритмическими сокращениями дыхательных мышц, вследствие чего и осуществляются вдох и выдох - поступление и удаление из легких воздуха, их вентиляция.

При вдохе межреберные мышцы приподнимают ребра, а диафрагма, сокращаясь, становится менее выпуклой, в результате объем грудной клетки увеличивается, легкие расширяются, давление воздуха в них становится ниже атмосферного и воздух устремляется в легкие - происходит спокойный вдох. При глубоком вдохе, кроме наружных межреберных мышц и диафрагмы, одновременно сокращаются мышцы груди и плечевого пояса.

При выдохе межреберные мышцы и диафрагма расслабляются, ребра опускаются, выпуклость диафрагмы увеличивается, в результате объем грудной клетки уменьшается, легкие сжимаются, давление в них становится выше атмосферного и воздух устремляется из легких - происходит спокойный выдох. Глубокий выдох обусловлен сокращением внутренних межреберных и брюшных мышц.

Таким образом, ритмичное увеличение или уменьшение объема грудной полости действует как механический насос, нагнетающий воздух в легкие и выталкивающий его из них.

Скорость и сила дыхательных движений чрезвычайно тонко регулируется нервной системой на протяжении всей жизни человека: с момента его рождения и до самой смерти. Согласованность, координация, ритмичность сокращений и расслаблений дыхательных мышц обусловливаются поступающими к ним по нервам импульсам от дыхательного центра продолговатого мозга.

И. М. Сеченов в 1882 г. установил, что примерно через каждые 4 секунды в дыхательном центре автоматически возникают возбуждения, обеспечивающие чередование вдоха и выдоха. Дыхательный центр не только регулирует ритмичное чередование вдоха и выдоха, но и способен изменять частоту и глубину дыхательных движений, приспосабливая легочную вентиляцию к потребностям организма, обеспечивая тем самым оптимальное содержание газов в крови.

Нервные механизмы саморегуляции дыхания проявляются в том, что вдох рефлекторно вызывает выдох, а выдох - вдох. Это происходит потому, что во время вдоха при растяжении легочной ткани в нервных рецепторах, находящихся в ней, возникает возбуждение, которое передается продолговатому мозгу и вызывает активацию центра выдоха и торможение центра вдоха, образующих дыхательный центр.

Сокращение дыхательных мышц прекращается, они расслабляются, и происходит выдох. При выдохе поток импульсов от рецепторов прекращается, центр выдоха перестает активизироваться, центр вдоха растормаживается, активизируется и наступает вдох.

Гуморальная регуляция дыхания состоит в том, что повышение концентрации углекислого газа в крови возбуждает дыхательный центр - частота и глубина дыхания увеличиваются. Уменьшение содержания углекислого газа в крови понижает возбудимость дыхательного центра - частота и глубина дыхания уменьшаются.

Дыхание очень тесно связано с кровообращением. Увеличение скорости дыхания может способствовать циркуляции крови. Чем глубже вдох, тем больше снижается давление в грудной полости. Это падение давления не только нагнетает воздух в легкие, но и заставляет оттекать к сердцу кровь из вен, расположенных в различных частях тела. Если долго неподвижно сидеть или стоять, это может вызвать глубокий и непроизвольный вздох, заставляющий притекать к сердцу большие количества крови и, таким образом, способствующий циркуляции крови.

Формой дыхательной деятельности являются чихание и кашель. Они регулируются защитными дыхательными рефлексами.

Чихание - это сильный и очень быстрый рефлекторный выдох через ноздри, возникающий в результате раздражения рецепторов слизистой оболочки носовой полости. Во время чихания удаляются вещества, которые раздражают (пыль, вещества с резким запахом и т. д.).

Кашель - резкий рефлекторный выдох через рот, возникающий в результате раздражения рецепторов гортани.

Жизненная емкость легких состоит из дыхательного объема, резервного объема вдоха и резервного объема выдоха. Дыхательным объемом называется количество воздуха, поступающего в легкие при одном вдохе. В покое он равен примерно 0,5 л и соответствует объему выдыхаемого воздуха при одном выдохе. Если после спокойного вдоха сделать усиленный дополнительный вдох, то в легкие может поступить еще 1.5 л (1500 см 3) воздуха, который и составляет резервный объем вдоха. После спокойного выдоха можно при максимальном напряжении выдохнуть еще 1.5 л воздуха. Это количество называют резервным объемам выдоха.

Таким образом, дыхательный объем (0,5 л) + резервный объем вдоха (1,5 л) + резервный объем выдоха (1,5 л) и составляют жизненную емкость легких. Ее показатели колеблются от 3,5 л до 4,8 л у мужчин и от 3,0 л до 3,5 л — у женщин.

Наибольшее количество воздуха, которое человек может выдохнуть после самого глубокого вдоха, называется жизненной емкостью легких.

У физически здоровых тренированных людей жизненная емкость легких достигает 6,0-7,0 л. Измеряется жизненная емкость с помощью прибора спирометра.

Искусственное дыхание

Искусственное дыхание применяется при оказании первой помощи утопленникам, при поражении электрическим током, молнией, отравлении угарным газом и других несчастных случаях. Искусственное дыхание позволяет возобновить деятельность дыхательного центра и спасти человека от смерти. Для этого необходимо обеспечить проходимость дыхательных путем, очистив рот и глотку от инородных тел.

Например, спасая утопленника, прежде всего, нужно удалить воду из его дыхательных воздухоносных путей. Для этого спасатель, стоя на одном колене, укладывает пострадавшего себе на бедро так, чтобы его голова и верхняя часть туловища свисали вниз. Далее открывают рот тонувшему и, похлопывая его по спине, удаляют воду из дыхательных путей.

Затем пострадавшего нужно уложить на спину, на твердую горизонтальную поверхность, освободить от давящих частей одежды и произвести искусственное дыхание, которое лучше всего делать вдвоем.

Есть несколько способов искусственного дыхания:

  1. в положении на спине
  2. в положении на животе
  3. изо «рта в рот»

Вдувание производится с интервалом в 4–5 с, то есть 12–16 раз в минуту. Продолжительность выдоха должна быть больше вдоха в два раза. Одновременно с искусственным дыханием проводят массаж сердца, в случае его остановки.

Для этого массирующий кладет ладонь на нижнюю треть грудины, другую ладонь располагает сверху под прямым углом, производит толчкообразные надавливания на грудину. Темп массажа - 60 нажатий в минуту у взрослого, 70–80 - у детей до 12 лет.