Мутации на генном уровне являются молекулярными, не видимыми в световом микроскопе структурными изменениями ДНК. К ним относят любые трансформации дезоксирибонуклеиновой кислоты, вне зависимости от их влияния на жизнеспособность и локализации. Некоторые виды генных мутаций не оказывают никакого воздействия на функции и структуру соответствующего полипептида (белка). Однако большая часть таких трансформаций провоцирует синтез дефектного соединения, утратившего способность выполнять свои задачи. Далее рассмотрим генные и хромосомные мутации более подробно.

Характеристика трансформаций

Наиболее распространенными патологиями, которые провоцируют генные мутации человека, являются нейрофиброматоз, адрено-генитальный синдром, муковисцидоз, фенилкетонурия. В этот список можно также включить гемохроматоз, миопатии Дюшенна-Беккера и прочие. Это далеко не все примеры генных мутаций. Их клиническими признаками выступают обычно нарушения метаболизма (обменного процесса). Генные мутации могут состоять в:

  • Замене в кодоне основания. Такое явление именуют миссенс-мутацией. При этом в кодирующей части происходит замена нуклеотида, что, в свою очередь, приводит к смене аминокислоты в белке.
  • Изменении кодона таким образом, что приостанавливается считывание информации. Этот процесс называют нонсенсмутацией. При замене нуклеотида в данном случае происходит формирование стоп-кодона и прекращение трансляции.
  • Нарушении считывания, сдвиге рамки. Этот процесс именуют "фреймшифтом". При молекулярном изменении ДНК трансформируются триплеты в ходе трансляции полипептидной цепочки.

Классификация

В соответствии с типом молекулярной трансформации существуют следующие генные мутации:

  • Дупликация. В этом случае происходит повторное дублирование либо удвоение фрагмента ДНК от 1 нуклеотида до генов.
  • Делеция. В этом случае имеет место утрата фрагмента ДНК от нуклеотида до гена.
  • Инверсия. В этом случае отмечается поворот на 180 град. участка ДНК. Его размер может быть как в два нуклеотида, так и в целый фрагмент, состоящий из нескольких генов.
  • Инсерция. В этом случае происходит вставка участков ДНК от нуклеотида до гена.

Молекулярные трансформации, захватывающие от 1 до нескольких звеньев, рассматриваются как точечные изменения.

Отличительные черты

Генные мутации имеют ряд особенностей. В первую очередь следует отметить их способность переходить по наследству. Кроме того, мутации могут спровоцировать трансформацию генетических сведений. Некоторые из изменений могут быть отнесены к так называемым нейтральным. Такие генные мутации не провоцируют каких-либо нарушений в фенотипе. Так, благодаря врожденности кода одна и та же аминокислота может кодироваться двумя триплетами, имеющими отличия только по 1 основанию. Вместе с тем определенный ген может мутировать (трансформироваться) в несколько разных состояний. Именно такого рода изменения провоцируют большую часть наследственных патологий. Если приводить примеры генных мутаций, то можно обратиться к группам крови. Так, у элемента, контролирующего их системы АВ0, присутствует три аллеля: В, А и 0. Их сочетание определяют группы крови. Относящаяся к системе АВ0 считается классическим проявлением трансформации нормальных признаков у людей.

Геномные трансформации

Эти трансформации имеют свою классификацию. В категорию геномных мутаций относят изменения в плоидности не измененных структурно хромосом и анеуплоидии. Такие трансформации определяются специальными методами. Анеуплоидия представляет собой изменение (увеличение - трисомию, уменьшение - моносомию) количества хромосом диплоидного набора, некратное гаплоидному. При кратном увеличении числа говорят о полиплоидии. Они и большая часть анеуплоидий у людей считаются летальными изменениями. Среди наиболее распространенных геномных мутаций выделяют:

  • Моносомию. В этом случае присутствует только одна из 2 гомологичных хромосом. На фоне такой трансформации здоровое эмбриональное развитие невозможно по любой из аутосом. В качестве единственной совместимой с жизнью выступает моносомия по хромосоме Х. Она провоцирует синдром Шерешевского-Тернера.
  • Трисомия. В данном случае в кариотипе выявляется три гомологичных элемента. Примеры таких генных мутаций: синдромы Дауна, Эдвардса, Патау.

Провоцирующий фактор

Причиной, по которой развивается анеуплоидия, считается нерасхождение хромосом в процессе клеточного деления на фоне формирования половых клеток либо утрата элементов вследствие анафазного отставания, в то время как при движении к полюсу гомологичное звено может отстать от негомологичного. Понятие "нерасхождение" указывает на отсутствие разделения хроматид либо хромосом в митозе либо мейозе. Это нарушение может привести к мозаицизму. В этом случае одна клеточная линия будет нормальной, а другая - моносомной.

Нерасхождение при мейозе

Такое явление считается наиболее частым. Те хромосомы, которые должны в норме делиться при мейозе, остаются соединенными. В анафазе они отходят к одному клеточному полюсу. В результате формируется 2 гаметы. В одной из них присутствует добавочная хромосома, а в другой не достает элемента. В процессе оплодотворения нормальной клетки с лишним звеном развивается трисомия, гаметы с недостающим компонентом - моносомия. При формировании моносомной зиготы по какому-нибудь аутосомному элементу развитие прекращается на начальных этапах.

Хромосомные мутации

Эти трансформации представляют собой структурные изменения элементов. Как правило, они визуализируются в световой микроскоп. В хромосомные мутации обычно вовлекается от десятков до сотен генов. Это провоцирует изменения в нормальном диплоидном наборе. Как правило, такие аберрации не вызывают трансформации последовательности в ДНК. Однако при изменении количества генных копий развивается генетический дисбаланс из-за недостатка либо переизбытка материала. Существует две большие категории данных трансформаций. В частности, выделяют внутри- и межхромосомные мутации.

Влияние среды

Люди эволюционировали в качестве групп изолированных популяций. Они достаточно долго проживали в одинаковых условиях среды. Речь, в частности, идет о характере питания, климатогеографических характеристиках, культурных традициях, возбудителях патологий и прочем. Все это привело к закреплению специфических для каждой популяции сочетаний аллелей, являвшихся наиболее соответствующими для условий проживания. Однако вследствие интенсивного расширения ареала, миграций, переселения стали возникать ситуации, когда бывшие в одной среде полезные сочетания определенных генов в другой перестали обеспечивать нормальное функционирование ряда систем организма. В связи с этим часть наследственной изменчивости обуславливается неблагоприятным комплексом непатологических элементов. Таким образом, в качестве причины генных мутаций в данном случае выступают изменения внешней среды, условий проживания. Это, в свою очередь, стало основой для развития ряда наследственных заболеваний.

Естественный отбор

С течением времени эволюция протекала в более специфичных видах. Это также способствовало расширению наследственного разнообразия. Так, сохранялись те признаки, которые могли исчезать у животных, и наоборот, отметалось то, что оставалось у зверей. В ходе естественного отбора люди приобретали также и нежелательные признаки, которые имели прямое отношение к болезням. К примеру, у человека в процессе развития появились гены, способные определять чувствительность к полиомиелиту либо дифтерийному токсину. Став Homo sapiens, биологический вид людей в некотором роде "заплатил за свою разумность" накоплением и патологических трансформаций. Данное положение считается основой одной из базовых концепций учения о генных мутациях.

January 2nd, 2016

Рудиментарные структуры и компромиссные конструкции все еще могут быть обнаружены в организме человека, которые являются вполне определенными свидетельствами того, что у нашего биологического вида длинная эволюционная история, и что он не просто так появился из ничего.

Также еще одной серией свидетельств этого являются продолжающиеся мутации в человеческом генофонде. Большинство случайных генетических изменений нейтральные, некоторые вредные, а некоторые, оказывается, вызывают положительные улучшения. Такие полезные мутации являются сырьем, которое может быть со временем использовано естественным отбором и распределено среди человечества.

В этой статье некоторые примеры полезных мутаций...

Аполипопротеин AI-Milano

Болезнь сердца является одним из бичей промышленно развитых стран. Она досталась нам в наследство из эволюционного прошлого, когда мы были запрограммированы на стремление к получению богатых энергией жиров, в то время бывших редким и ценным источником калорий, а теперь являющихся причиной закупорки артерий. Однако существуют доказательства того, что у эволюции имеется потенциал, который стоит изучать.

У всех людей есть ген белка под названием аполипопротеин AI, являющийся частью системы, транспортирующей холестерин по кровотоку. Apo-AI является одним из липопротеинов высокой плотности (ЛВП), о которых уже известно, что они являются полезными, поскольку удаляют холестерин со стенок артерий. Известно, что среди небольшого сообщества людей в Италии присутствует мутировавшая версия этого белка, которая называется аполипопротеин AI-Milano, или, сокращенно, Apo-AIM. Apo-AIM действует еще более эффективно, чем Apo-AI во время удаления холестерина из клеток и рассасывания артериальных бляшек, а также дополнительно действуя как антиокислитель, предотвращающий некоторый вред от воспаления, которое обычно возникает при артеросклерозе. По сравнению с другими людьми у людей с геном Apo-AIM значительно ниже степень риска развития инфаркта миокарда и инсульта, и в настоящее время фармацевтические компании планируют выводить на рынок искусственную версию белка в виде кардиозащитного препарата.

Также производятся другие лекарственные препараты, основанные на еще одной мутации в гене PCSK9, производящей подобный эффект. У людей с этой мутацией на 88% снижен риск развития болезни сердца.

Увеличенная плотность костей

Один из генов, который отвечает за плотность кости у людей, называется ЛПНП-подобный рецептор малой плотности 5, или, сокращенно, LRP5. Мутации, ослабляющие функцию LRP5, как известно, вызывают остеопороз. Но другой вид мутации может усилить его функцию, вызывая одну из самых необычных известных мутаций у человека.

Эта мутация была обнаружена случайно, когда молодой человек со своей семьей со Среднего Запада попали в серьезную автокатастрофу, и с места ее происшествия они ушли сами без единой сломанной кости. Рентген выявил, что у них, так же как и у других членов этой семьи, кости были значительно крепче и плотнее, чем это обычно бывает. Занимающийся этим случаем врач, сообщил, что "ни один из этих людей, у которых возраст колебался от 3 до 93 лет, никогда не ломал кости". Фактически оказалось, что они являются не только невосприимчивыми к травмам, но и к обычной возрастной дегенерации скелета. У некоторых из них имелся доброкачественный костистый нарост на небе, но кроме этого у болезни не было других побочных эффектов – кроме того, как сухо было отмечено в статье, что это затрудняло плавание. Как и в случае с Apo-AIM некоторые фармацевтические фирмы исследуют возможность использования этого в качестве исходной точки для терапии, которая могла бы помочь людям с остеопорозом и другими болезнями скелета.

Устойчивость к малярии

Классическим примером эволюционного изменения у людей является мутация гемоглобина под названием HbS, заставляющая эритроциты принимать изогнутую, серповидную форму. Наличие одной копии дарит устойчивость к малярии, наличие же двух копий вызывает развитие серповидноклеточной анемии. Но мы сейчас говорим не об этой мутации.

Как стало известно в 2001 году, итальянские исследователи, изучающие население африканской страны Буркина-Фасо, открыли защитный эффект, связанный с другим вариантом гемоглобина, названного HbC. Люди со всего одной копией этого гена на 29% меньше рискуют заразиться малярией, в то время как люди с двумя его копиями могут наслаждаться 93%-ым сокращением риска. К тому же этот вариант гена вызывает, в худшем случае, легкую анемию, а отнюдь не изнурительную серповидноклеточную болезнь.

Тетрохроматическое зрение

У большинства млекопитающих хроматическое зрение несовершенно, поскольку у них имеется только два вида колбочки сетчатки, ретинальных клеток, различающих различные оттенки цвета. У людей, как и у других приматов, имеются три таких вида, наследство прошлого, когда хорошее хроматическое зрение использовалось для поиска спелых, ярко окрашенных фруктов и давало преимущество для выживания вида.

Ген для одного вида колбочки сетчатки, в основном отвечающий за синий оттенок, был найден в хромосоме Y. Оба других вида, чувствительные к красному и зеленому цвету, находятся в X-хромосоме. В силу того, что у мужчин имеется только одна X-хромосома, мутация, повреждающая ген, отвечающий за красный или зеленый оттенок, приведет к красно-зеленой цветовой слепоте, в то время как у женщин сохранится резервная копия. Это объясняет факт, почему это заболевание почти исключительно присуще мужчинам.

Но возникает вопрос: что происходит, если мутация гена, отвечающего за красный или зеленый цвет, не повредит его, а переместит цветовую гамму, за которую он отвечает? Гены, отвечающие за красный и зеленый цвета, именно так и появились, как следствие дупликации и дивергенции одиночного наследственного гена колбочки сетчатки.

Для мужчины это не было бы существенной разницей. У него все так же имелись бы три цветных рецептора, только набор отличался бы от нашего. Но если бы это произошло с одним из генов колбочки сетчатки женщины, тогда гены, отвечающие за синий, красный и зеленый цвета, находились бы в одной X-хромосоме, а видоизмененный четвертый – в другой..., что означает, что у нее было бы четыре различных цветных рецептора. Она являлась бы, как птицы и черепахи, настоящим "тетрахроматом", теоретически способным различать оттенки цвета, которые все остальные люди не могут видеть отдельно. Означает ли это, что она могла бы видеть совершенно новые цвета, невидимые для всех остальных? Это открытый вопрос.

Также у нас имеются доказательства того, что в редких случаях это уже происходило. Во время исследования по различению цветов, по крайней мере, одна женщина точно показала результаты, которые можно было ожидать от настоящего тетрахромата.

Мы уже о – художницу из Сан-Диего, она тетрахромат.

Меньшая потребность во сне

Восьмичасовой сон нужен не всем: ученые из Пенсильванского университета обнаружили мутацию малоизученного гена BHLHE41, которая, по их мнению, позволяет человеку полноценно отдыхать за более короткое время сна. В ходе исследования ученые попросили пару неидентичных близнецов, один из которых имел вышеупомянутую мутацию, воздерживаться от сна на протяжении 38 часов. «Близнец-мутант» и в повседневной жизни спал всего пять часов - на час меньше, чем его брат. А после депривации он совершил на 40% меньше ошибок в тестах и ему потребовалось меньше времени на то, чтобы полностью восстановить когнитивные функции.

По мнению ученых, благодаря такой мутации человек проводит больше времени в состоянии «глубокого» сна, необходимого для полноценного восстановления физических и умственных сил. Конечно, эта теория требует более основательного изучения и дальнейших экспериментов. Но пока что она выглядит очень заманчиво - кто не мечтает, чтобы в сутках было больше часов?

Гиперэлластичная кожа

Синдром Элерса - Данлоса - генетическое заболевание соединительных тканей, поражающее суставы и кожу. Несмотря на ряд серьёзных осложнений, люди с этим недугом способны безболезненно сгибать конечности под любыми углами. Образ Джокера в фильме Кристофера Нолана «Тёмный рыцарь» частично основан на этом синдроме.

Эхолокация

Одна из способностей, которой любой человек владеет ей в той или иной степени. Слепые люди учатся пользоваться ей в совершенстве, и на этом во многом основан супергерой Сорвиголова. Свой навык можно проверить, встав с закрытыми глазами в центре комнаты и громко щёлкая языком в разных направлениях. Если вы мастер эхолокации, то сможете определить расстояние до любого объекта.

Вечная молодость



Звучит гораздо лучше, чем является на самом деле. Таинственная болезнь, которую окрестили «Синдром X» предотвращает у человека любые признаки взросления. Известный пример - Брук Меган Гринберг, дожившая до 20 лет и при этом телесно и умственно оставшаяся на уровне двухлетнего ребёнка. Известны лишь три случая этого заболевания.

Нечувствительность к боли

Данную способность демонстрировал супергерой Пипец, - это реальное заболевание, не позволяющее организму ощущать боль, жар или холод. Способность вполне героическая, но благодаря ей человек может легко навредить себе, не осознавая этого и вынужден жить очень осторожно.

Суперсила


Одна из самых популярных способностей у супергероев, но одна из самых редких в реальном мире. Мутации, связанные с недостатком белка миостатина, приводят к значительному увеличению мышечной массы человека с отсутствием роста жировой ткани. Известно всего два случая подобных дефектов среди всех людей, и в одном из них двухлетний ребёнок обладает телом и силой бодибилдера.

Золотая кровь

Кровь с нулевым резус-фактором, наиредчайшая в мире. За последние полвека было найдено лишь сорок человек с этим типом крови, на данный момент в живых существует лишь девять. Резус-ноль подходит абсолютно всем, так как в нём отсутствуют любые антигены в системе Rh, но самих его носителей может спасти только такой же «брат по золотой крови».

Так как ученые уже достаточно долго занимаются подобными вопросами, стало известно, что можно получить нулевую группу. Это делается за счет специальных кофейных бобов, которые способны удалять агглютиноген В эритроцитов. Такая система работала сравнительно не долго, так как были случаи несовместимости таковой схемы. После этого стала известна еще одна система, которая была основана на работе двух бактерий – фермент одной из них убивал агглютиноген А, а другой В. Поэтому ученые сделали вывод, что второй метод образования нулевой группы наиболее эффективен и безопасен. Поэтому, американская компания до сих пор усердно работает над разработкой специального аппарата, который будет эффективно и качественно преобразовывать кровь с одной группы крови в нулевую. А такая нулевая кровь будет подходить идеально для всех остальных переливаний. Таким образом, вопрос донорства будет не так глобален, как сейчас и всем реципиентам не придется столько долго ждать, чтоб получить свою кровь.

Ученые не одно столетие уже давно ломают голову о том, как сделать одну единственную универсальную группу, у людей с которой будет минимум риска для различных заболеваний и недостатков. Поэтому на сегодняшний день стало возможным «обнулить» любую группу крови. Это позволит в ближайшем будущем значительно уменьшить риск различных осложнений и заболеваний. Таким образом, исследования показали, что и у мужчин и у женщин наименьший риск развития ИБС. Подобные наблюдения проводили больше 20-и лет. Эти люди на протяжении определенного периода времени отвечали на определенные вопросы о своем здоровье и образе жизни.

Все существующие данные опубликовали на различных источниках. Все исследования привели к тому, что люди с нулевой группой действительно меньше болеют и имеют самую малую вероятность заболевания ИБС. Так же стоит отметить, что резус-фактор не имеет никакого определенного воздействия. Поэтому нулевая группа крови не имеет никакого резус-фактора, что может разделять ту ли иную группу. Одной из наиболее важных причин оказалось то, что у каждой крови ко всему этому еще и разная свертываемость. Это еще больше усложняет ситуацию и вводит в заблуждение ученых. Если смешивать нулевую группу с какой-либо другой и не учитывать уровень свертываемости, это может привести развитию у человека атеросклероза и смерти. На данный момент технология превращения одной группы крови в нулевую не настолько распространена, что каждая больница может этим пользоваться. Поэтому во внимание берутся исключительно те распространенные медицинские центры, которые работают на высоком уровне. Нулевая группа является новым достижением и открытием медицинских ученых, что на сегодняшний день не всем даже знакома.

А вот вы знали, что существует еще

Здравствуйте, с вами Ольга Рышкова. Сегодня побеседуем о мутациях. Что это такое – мутация? Мутации в человеческих организмах это хорошо или плохо, это положительное или опасное для нас явление? Мутации могут быть причиной болезней, а могут дать своим носителям невосприимчивость к заболеваниям, таким как рак, СПИД, малярия, сахарный диабет.

Что такое мутация?

Что же это такое – мутация и где она происходит? Клетки человека (как и растений, и животных) имеют ядро.

В ядре заключён набор хромосом. Хромосома – это носитель генов, то есть носитель генетической, наследственной информации.

Каждая хромосома образуется из молекулы ДНК, которая содержит генетическую информацию и передаётся от родителей к детям. Молекула ДНК выглядит вот так:

Мутации происходят именно в молекуле ДНК.

Как они происходят?

Как происходят мутации? ДНК каждого человека состоит всего лишь из четырёх азотистых оснований – A,T,G,C. Но молекула ДНК очень большая и они повторяются в ней многократно в разных последовательностях. Характеристика каждой нашей клетки зависит от того, в какой последовательности расположены эти азотистые основания.

Изменение последовательности этих оснований в ДНК и приводит к мутациям.

Мутацию может вызвать небольшое изменение в одном основании ДНК или его части. Часть хромосомы может быть утеряна. Или эта часть может продублироваться. Или два гена поменяются местами. Мутации возникают, когда в генах начинается путаница. Ген – это участок ДНК. На этом рисунке для наглядности буквами обозначены не азотистые основания (их всего четыре — A,T,G,C), а участки хромосомы, с которыми происходят изменения.

Но это ещё не мутация.

Вы заметили, что я сказала «приводит к мутациям», а не «это и есть мутация». Например, в ДНК произошло изменение, а клетка, в которой эта ДНК расположена, может просто погибнуть. И никаких последствий в организме не останется. Чтобы мы могли сказать, что произошла мутация, это изменение должно быть стойким. Это значит, что клетка будет делиться, дочерние клетки ещё раз делиться и так многократно, и это изменение передастся всем потомкам данной клетки и закрепится в организме. Вот тогда мы можем сказать, что произошла мутация, то есть изменение в геноме человека и это изменение может передаться его потомкам.

Почему они происходят?

Почему происходят мутации в клетках человека? Есть такое понятие «мутагены», это физические и химические факторы, которые вызывают изменения в структуре хромосом и генов, то есть вызывают мутации.

  • К физическим относят радиацию, ионизирующее и ультрафиолетовое излучение, высокие и низкие температуры.
  • К химическим – нитраты, пестициды, продукты переработки нефти, некоторые пищевые добавки, некоторые лекарственные препараты и т.д.
  • Мутагены могут быть биологическими, к таким относят некоторые микроорганизмы, вирусы (кори, краснухи, гриппа), а также продукты окисления жиров внутри человеческого организма.

Мутации могут быть опасными.

Даже самая маленькая генная мутация резко увеличивает вероятность врождённых дефектов. Мутации могут стать причиной отклонений в развитии плода. Они возникают в процессе оплодотворения, когда сперматозоид встречается с яйцеклеткой. Что-то может пойти не так при смешении геномов или проблема может уже присутствовать в родительских генах. Это ведёт к рождению детей с генетическими отклонениями.

Мутации могут быть полезными.

Кому-то эти мутации дают привлекательную внешность, высокий уровень интеллекта или атлетическое телосложение. Такие мутации эффективно притягивают противоположный пол. Востребованные мутировавшие гены передаются потомкам и распространяются по планете.

Мутации привели к появлению большого числа людей, невосприимчивых к опасным инфекционным заболеваниям, таким как чума и СПИД, эти люди не заболеют ими даже во время самой страшной эпидемии.

Мутации полезные и вредные одновременно.

Одна из главных болезней в Африке – малярия. Но есть люди, которые малярией не болеют. Это люди с серповидными эритроцитами, вот такими:

Мутировавшие эритроциты достались им по наследству от предков. Такие эритроциты плохо переносят кислород, поэтому их обладатели хилые и страдают анемией. Но они невосприимчивы к малярии.

Или другой замечательный пример. Генетическая мутация, наследственное заболевание – синдром Ларона. У этих людей наследственный недостаток инсулиноподобного фактора роста ИФР-1, из-за этого рост их очень рано останавливается. Но из-за недостатка ИФР-1 они никогда не болеют раком, сердечно-сосудистыми заболеваниями и сахарным диабетом. Среди людей с синдромом Ларона эти заболевания вообще не встречаются.

Продукты, которые мы едим – это мутанты.

Да, мутанты, и это были полезные мутации. Большая часть продуктов, которые мы используем в пищу, появилась в результате мутаций.

Два примера. Дикий рис красный, его урожайность на 20% ниже, чем посевного. Посевной рис появился как мутировавшая форма около 10 000 лет назад. Оказалось, что он проще очищается, быстрее варится, что позволяло людям экономить топливо. Из-за высокой урожайности и полезных свойств крестьяне стали предпочитать мутировавший вид. То есть белый рис – это мутировавший красный.

Пшеницу, которую мы сейчас едим, стали выращивать за 7 тысяч лет до нашей эры. Человек выбрал мутировавшую дикую пшеницу с более крупными и неосыпающимися зёрнами. Её мы выращиваем до сих пор.

Другие культурные растения также выращивают несколько тысяч лет. Человек отбирал мутировавшие сорта диких растений и специально выращивал их. Сегодня мы потребляем результаты мутаций, отобранные в древние времена.

Не все мутации передаются по наследству.

Я говорю о мутациях, которые возникают в течение жизни одного человека. Это раковые клетки.

В следующей статье я расскажу вам о том, как мутации приводят к появлению раковых клеток и откуда среди нас взялись люди, невосприимчивые к ВИЧ-инфекции, люди, у которых есть иммунитет к ВИЧ.

Если у вас остались вопросы о том, что такое мутации, где, как и почему они происходят, обсудим это в комментариях. Если статья показалась вам полезной, поделитесь с друзьями в социальных сетях.

Причины мутаций

Мутации делятся на спонтанные и индуцированные . Спонтанные мутации возникают самопроизвольно на протяжении всей жизни организма в нормальных для него условиях окружающей среды с частотой около - на нуклеотид за клеточную генерацию .

Индуцированными мутациями называют наследуемые изменения генома , возникающие в результате тех или иных мутагенных воздействий в искусственных (экспериментальных) условиях или при неблагоприятных воздействиях окружающей среды .

Мутации появляются постоянно в ходе процессов, происходящих в живой клетке. Основные процессы, приводящие к возникновению мутаций - репликация ДНК , нарушения репарации ДНК и генетическая рекомбинация .

Связь мутаций с репликацией ДНК

Многие спонтанные химические изменения нуклеотидов приводят к мутациям, которые возникают при репликации . Например, из-за дезаминирования цитозина напротив него в цепь ДНК может включаться урацил (образуется пара У-Г вместо канонической пары Ц-Г). При репликации ДНК напротив урацила в новую цепь включается аденин , образуется пара У-А, а при следующей репликации она заменяется на пару Т-А, то есть происходит транзиция (точечная замена пиримидина на другой пиримидин или пурина на другой пурин).

Связь мутаций с рекомбинацией ДНК

Из процессов, связанных с рекомбинацией, наиболее часто приводит к мутациям неравный кроссинговер . Он происходит обычно в тех случаях, когда в хромосоме имеется несколько дуплицированных копий исходного гена, сохранивших похожую последовательность нуклеотидов. В результате неравного кроссинговера в одной из рекомбинантных хромосом происходит дупликация , а в другой - делеция .

Связь мутаций с репарацией ДНК

Спонтанные повреждения ДНК встречаются довольно часто, такие события имеют место в каждой клетке. Для устранения последствий подобных повреждений имеется специальные репарационные механизмы (например, ошибочный участок ДНК вырезается и на этом месте восстанавливается исходный). Мутации возникают лишь тогда, когда репарационный механизм по каким-то причинам не работает или не справляется с устранением повреждений. Мутации, возникающие в генах, кодирующих белки, ответственные за репарацию, могут приводить к многократному повышению (мутаторный эффект) или понижению (антимутаторный эффект) частоты мутирования других генов. Так, мутации генов многих ферментов системы эксцизионной репарации приводят к резкому повышению частоты соматических мутаций у человека, а это, в свою очередь, приводит к развитию пигментной ксеродермы и злокачественных опухолей покровов.

Мутагены

Существуют факторы, способные заметно увеличить частоту мутаций - мутагенные факторы . К ним относятся:

  • химические мутагены - вещества, вызывающие мутации,
  • физические мутагены - ионизирующие излучения , в том числе естественного радиационного фона, ультрафиолетовое излучение , высокая температура и др.,
  • биологические мутагены - например, ретровирусы , ретротранспозоны .

Классификации мутаций

Существует несколько классификаций мутаций по различным критериям. Мёллер предложил делить мутации по характеру изменения функционирования гена на гипоморфные (измененные аллели действуют в том же направлении, что и аллели дикого типа; синтезируется лишь меньше белкового продукта), аморфные (мутация выглядит, как полная потеря функции гена, например, мутация white у Drosophila), антиморфные (мутантный признак изменяется, например, окраска зерна кукурузы меняется с пурпурной на бурую) и неоморфные .

В современной учебной литературе используется и более формальная классификация, основанная на характере изменения структуры отдельных генов, хромосом и генома в целом. В рамках этой классификации различают следующие виды мутаций:

  • геномные ;
  • хромосомные ;
  • генные .

Последствия мутаций для клетки и организма

Мутации, которые ухудшают деятельность клетки в многоклеточном организме, часто приводят к уничтожению клетки (в частности, к программируемой смерти клетки, - апоптозу). Если внутри- и внеклеточные защитные механизмы не распознали мутацию и клетка прошла деление, то мутантный ген передастся всем потомкам клетки и, чаще всего, приводит к тому, что все эти клетки начинают функционировать иначе.

Кроме того, закономерно различается частота мутирования разных генов и разных участков внутри одного гена. Также известно, что высшие организмы используют «целенаправленные» (то есть происходящие в определенных участках ДНК) мутации в механизмах иммунитета . С их помощью создаётся разнообразие клонов лимфоцитов , среди которых в результате всегда находятся клетки, способные дать иммунный ответ на новую, неизвестную для организма болезнь. Подходящие лимфоциты подвергаются положительной селекции , в результате возникает иммунологическая память. (В работах Юрия Чайковского говорится и о других видах направленных мутаций.)

Генные мутации. Понятие о генных болезнях.

1. Определение изменчивости. Классификация ее форм.

Изменчивость – есть общее свойство живых организмов, заключающееся в изменении наследственных признаков в ходе онтогенеза (индивидуального развития).

Изменчивость организмов делят на два крупных типа:

1. фенотипическую, не затрагивающую генотип и не передающуюся по наследству;

2. генотипическую, изменяющую генотип и поэтому передаю­щуюся по наследству.

Генотипическая изменчивость подразделяется на комбинативную и мутационную.

Мутационная изменчивость включает геномные, хромосомные и генные мутации.

Геномные мутации подразделяется на полиплоидию и анеуплоидию

Хромосомные мутации подразделяется на делеции, дупликации, инверсии, транслокации

2. Фенотипическая изменчивость. Норма реакции генетически детерминиро­ванных признаков. Адаптивный характер модификаций. Фенокопии.

Фенотипическая изменчивость (или ненаследственная, модификационная) – это изменение фенотипических признаков организма под действием факторов внешней среды, без изменения генотипа.

Например: окраска шерсти у гималайского кролика в зависимости от температуры среды обитания.

Норма реакции – это диапазон изменчивости, в пределах которого один и тот же генотип способен давать различные фенотипы.

1. широкая норма реакции – когда колебания признака идут в широких пределах (например: загар, количество молока).

2. узкая норма реакции – когда колебания признака незначительны (например: жирность молока).

3. однозначная норма реакции – когда признак не изменяется, ни при каких условиях (например: группы крови, цвет глаз, разрез глаз).

Адаптивный характер модификаций заключается в том, что модификационная изменчивость позволяет организму адаптироваться к изменяющимся условиям среды. Поэтому модификации всегда полезны.

Если во время эмбриогенеза на организм воздействуют неблагоприятные факторы, то могут появляться фенотипические изменения, выходящие за пределы нормы реакции и не носящие адаптивного характера, их называют морфозы развития. Например, ребёнок рождается без конечностей или с заячьей губой.

Фенокопии – это морфозы развития, которые очень трудно отличить от наследственных изменений (заболеваний).

Например: если беременная женщина переболела краснухой, у неё может родиться ребёнок с катарактой. Но эта патология может появиться и в результате мутации. В первом случае речь идет о фенокопии.

Диагноз «фенокопия» важен для будущего прогноза, так как при фенокопии генетический материал не изменяется, то есть остается в норме.

3. Комбинативная изменчивость. Значение комбинативной изменчивости в обеспечении генетического разнообразия людей.

Комбинативная изменчивость – это возникновение у потомков новых комбинаций генов, которых не было у их родителей.

Комбинативная изменчивость связана:

с кроссинговером в профазу мейоза 1.

с независимым расхождением гомологичных хромосом в анафазу мейоза 1.

со случайным сочетанием гамет при оплодотворении.

Значение комбинативной изменчивости – обеспечивает генетическое разнообразие особей в пределах вида, что важно для естественного отбора и эволюции.

4. Мутационная изменчивость. Основные положения теории мутаций.

Гюго де Фриз голландский ученый ввел в 1901 году термин "мутация".

Мутация – это явление прерывистого скачкообразного изменения наследственного признака.

Процесс возникновения мутаций называется мутагенез, а организм, который приобретает новые признаки в процессе мутагенеза, называется – мутант.

Основные положения теории мутаций по Гюго де Фризу.

1. мутации возникают внезапно без всяких переходов.

2. возникшие формы вполне устойчивы.

3. мутации являются качественными изменениями.

4. мутации происходят в различных направлениях. они могут быть как полезными, так и вредными.

5. одни и те же мутации могут возникать повторно.

5. Классификация мутаций.

I. По происхождению.

1. Спонтанные мутации. Самопроизвольные мутации или естественные, возникают в обычных природных условиях.

2. Индуцированные мутации. Вызванные мутации или искусственные, возникают при воздействии на организм мутагенных факторов.

а. физические (ионизирующее излучение, УФЛ, высокая температура и т.п.)

б. химические (соли тяжёлых металлов, азотистая кислота, свободные радикалы, бытовые и промышленные отходы, лекарства).

II. По месту возникновения .

а. Соматические мутации возникают в соматических клетках и наследуются потомками тех клеток, в которых возникли. Из поколения в поколение не передаются.

б. Генеративные мутации возникают в половых клетках и передаются из поколения в поколение.

III. По характеру изменений фенотипа .

1. Морфологические мутации, характеризующиеся изменением строения органа или организма в целом.

2. Физиологические мутации, характеризующиеся изменением ф-й органа или организма в целом.

3. Биохимические мутации связанные с изменением макромолекулы.

IV. По влиянию на жизнеспособность организма .

1. Летальные мутации в 100% случаев приводят к гибели организма из-за несовместимых с жизнью дефектов.

2. Полулетальные мутации приводят к гибели в 50-90% случаев. Обычно организмы с такими мутациями не доживают до репродуктивного периода.

3. Условно летальные мутации, в одних условиях организм погибает, а в других условиях выживает (галактоземия).

4. Полезные мутации повышают жизнеспособность организма и используются в селекции.

V. По характеру изменения наследственного материала .

1. Генные мутации.

2. Хромосомные мутации.

6. Генные мутации, определение. Механизмы возникновения спонтанных генных мутаций.

Генные мутации или точковые мутации – это мутации, которые возникают в генах на уровне нуклеотидов, при этом изменяется структура гена, изменяется молекула мРНК, изменяется последовательность аминокислот в белке, в организме изменяется признак.

Виды генных мутаций:

- миссенс мутации – замена 1 нуклеотида в триплете на другой приведет к тому, что в полипептидную цепь белка будет включаться другая аминокислота, которой в норме не должно быть, а это приведет к тому, что изменятся свойства и функции белка.

Пример: замена глутаминовой кислоты на валин в молекуле гемоглобина.

ЦТТ – глутаминовая кислота, ЦАТ – валин

Если такая мутация происходит в гене, который кодирует β цепь белка гемоглобина, то в β цепь вместо глютаминовой кислоты включается валин → в результате такой мутации изменяются свойства и функции белка гемоглобина и вместо нормального HbA появляется HbS, в результате у человека развивается серповидноклеточная анемия (форма эритроцитов изменяется).

- нонсенс мутации – замена 1 нуклеотида в триплете на другой приведет к тому, что генетически значащий триплет превратится в стоп кодон, что приводит к обрыву синтеза полипептидной цепи белка. Пример: УАЦ – тирозин. УАА – стоп кодон.

Мутации со сдвигом рамки считывания наследственной информации.

Если в результате генной мутации у организма будет появляться новый признак (например, полидактилия), то они называются неоморфные.

если в результате генной мутации организм утрачивает признак (например, при ФКУ исчезает фермент) то они называются аморфные.

- сеймсенс мутации – замена нуклеотида в триплете приводит к появлению триплета-синонима, который кодирует тот же самый белок. Это связано с вырожденностью генетического кода. Например: ЦТТ – глютамин ЦТЦ – глютамин.

Механизмы возникновения генных мутаций (замена, вставка, выпадение).

ДНК состоит из 2-х полинуклеотидных цепей. Сначала изменение возникает в 1-й цепи ДНК – это полумутационное состояние или “первичное повреждение ДНК”. Каждую секунду в клетке имеет место 1 первичное повреждение ДНК.

Когда повреждение переходит на вторую цепь ДНК то, говорят о том, что произошла фиксация мутации, то есть возникла “полная мутация”.

Первичные повреждения ДНК возникают при нарушении механизмов репликации, транскрипции, кроссинговера

7. Частота генных мутаций. Мутации прямые и обратные, доминантные и рецессивные.

У человека частота мутаций = 1х10 –4 – 1х10 –7 , то есть в среднем 20–30% гамет у человека в каждом поколении являются мутантными.

У дрозофилы частота мутаций = 1х10 –5 , то есть 1 гамета из 100 тысяч несет генную мутацию.

а. Прямая мутация (рецессивная) – это мутация гена из доминантного состояния в рецессивное состояние: А → а.

б. Обратная мутация (доминантная) – это мутация гена из рецессивного состояния в доминантное состояние: а → А.

Генные мутации встречаются у всех организмов, гены мутируют в различных направлениях, а также с различной частотой. Гены, которые редко мутируют называются – стабильные, а гены, которые часто мутируют называются – мутабельные.

8. Закон гомологических рядов в наследственной изменчивости Н.И.Вави­лова.

Мутирование происходит в самых различных направлениях, т.е. случайно. Однако эти случайности подчиняются закономерности, обна­руженной в 1920г. Вавиловым. Он сформулировал закон гомологичных рядов в наследственной изменчивости.

"Виды и роды генетичес­ки близкие характеризуются сходными рядами наследственной измен­чивости с такой правильностью, что, зная ряд форм в пределах одно­го вида, можно предвидеть существование параллельных форм у других видов и родов".

Этот закон позволяет предсказать наличие определённого признака у особей различных родов одного семейства. Так было предска­зано наличие в природе безалкалоидного люпина, т.к. в семействе бобовых есть роды бобов, гороха, фасоли, не содержащие алкалоиды.

В медицине закон Вавилова позволяет использовать животных, генетически близких человеку, в качестве генетических моделей. На них ставят эксперименты по изуче­нию генетических болезней. Например, катаракта изучается на мышах и собаках; гемофилия – на собаках, врождённая глухота – на мышах, морских свинках, собаках.

Закон Вавилова позволяет предвидеть появление индуцирован­ных мутаций, неизвестных науке, которые могут использоваться в се­лекции для создания ценных для человека форм растений.

9. Антимутационные барьеры организма.

- Точность репликации ДНК. Иногда в ходе репликации возникают ошибки, тогда включаются механизмы самокоррекции, которые направлены на устранение неправильного нуклеотида. Важную роль играет фермент ДНК-полимераза, и частота ошибок снижается в 10 раз (с 10 –5 до 10 –6).

- Вырожденность генетического кода . 1 аминокислоту могут кодировать несколько триплетов, поэтому замена 1 нуклеотида в триплете в ряде случаев не искажает наследственную информацию. Например, ЦТТ и ЦТЦ – глутаминовая кислота.

- Экстракопирование некоторых генов отвечающих за важные макромолекулы: рРНК, тРНК, белки гистоны, т.е. образуется много копий этих генов. Эти гены входят в состав умеренно повторяющихся последовательностей.

- Избыточность ДНК – 99% является избыточной и мутагенный фактор чаще попадает в эти 99% бессмысленных последовательностей.

- Парность хромосом в диплоидном наборе. В гетерозиготном состоянии многие вредные мутации не проявляются.

- Выбраковка мутантных половых клеток.

- Репарация ДНК.

10. Репарация генетического материала. .

Репарация ДНК – удаление первичных повреждений из ДНК и замена их нормальными структурами.

Выделяют две формы репарации: световую и темновую

А. Световая репарация (или ферментативная фотореактивация). Ферменты репарации активны только в присутствии света. Эта форма репарации направлена на удаление первичных повреждений ДНК вызванных действием УФЛ.

Под действием УФЛ в ДНК активируются пиримидиновые азотистые основания, что приводит к тому, что возникают связи между пиримидиновыми азотистыми основаниями, которые располагаются рядом в одной цепи ДНК, то есть образуются пиримидиновыедимеры. Чаще всего возникают связи: Т=Т; Т=Ц; Ц=Ц.

В норме в ДНК пиримидиновых димеров нет. Образование их приводит к тому, что искажается наследственная информация и нарушается нормальный ход репликации и транскрипции, что приводит впоследствии к генным мутациям.

Суть фотореактивации: в ядре существуют специальный (фотореактивирующий) фермент, который активен только в присутствии света, этот фермент разрушает пиримидиновые димеры, то есть разрывает связи, которые возникли между пиримидиновыми азотистыми основаниями под действием УФЛ.

Темновая репарация происходит в темноте и на свету, то есть активность ферментов не зависит от присутствия света. Она делится на дорепликативная репарацию и пострепликативную репарацию.

Дорепликативная репарация происходит до репликации ДНК, в этом процессе участвует много ферментов:

o Эндонуклеаза

o Экзонуклеаза

o ДНК- полимераза

o ДНК - лигаза

1 этап. Фермент эндонуклеаза находит поврежденный участок и разрезает его.

2 этап. Фермент экзонуклеаза удаляет поврежденный участок из ДНК (эксцизия) в результате образуется брешь.

3 этап. Фермент ДНК полимераза синтезирует недостающий участок. Синтез происходит по принципу комплементарности.

4 этап. Ферменты лигазы соединяют или сшивают вновь синтезированный участок с цепью ДНК. Таким образом, первичное повреждение в ДНК устраняется.

Пострепликативная репарация.

Допустим, в ДНК имеется первичное повреждение.

1 этап. Начинается процесс репликации ДНК. Фермент ДНК-полимераза синтезирует новую цепь полностью комплементарную старой неповрежденной цепи.

2 этап. Фермент ДНК полимераза синтезирует другую новую цепь, но участок, где находится повреждение, он обходит. В результате во второй новой цепи ДНК образовалась брешь.

3 этап. По окончании репликации фермент ДНК полимераза синтезирует недостающий участок комплементарно новой цепи ДНК.

4 этап. Затем фермент лигаза соединяют вновь синтезированный участок с цепью ДНК, где имелась брешь. Таким образом, первичное повреждение ДНК не перешло на другую новую цепь, то есть не произошла фиксация мутации.

В дальнейшем первичное повреждение ДНК может быть ликвидировано в ходе дорепликативной репарации.

11. Мутации, связанные с нарушением репарации ДНК и их роль в патологии.

Способность к репарации у организмов выработалась и закрепилась в ходе эволюции. Чем выше активность репарирующих ферментов, тем стабильнее наследственный материал. За ферменты репарации отвечают соответствующие гены, поэтому если происходит мутация в этих генах, то снижается активность репарирующих ферментов. У человека при этом возникают тяжелые наследственные заболевания, которые связаны со снижением активности репарирующих ферментов.

Таких заболеваний у человека больше 100. Некоторые из них:

Анемия Фанкони – уменьшение количества эритроцитов, потеря слуха, нарушения в ССС, деформация пальцев, микроцефалия.

Сидром Блума – малый вес новорождённого, замедление роста, повышенная восприимчивость в вирусной инфекции, повышенный риск онкологических заболеваний. Характерный признак: при непродолжительном пребывании на солнечном свету на коже лица появляется пигментация в форме бабочки (расширение кровеносных капилляров).

Пигментная ксеродермия – на коже от света появляются ожоги, которые скоро перерождаются в рак кожи (у таких больных рак возникает в 20.000 раз чаще). Больные вынуждены жить при искусственном освещении.

Частота заболевания – 1: 250.000 (Европа, США), и 1: 40.000 (Япония)

Два вида прогерий преждевременное старение организма.

12. Генные болезни, механизмы их развития, наследования, частота воз­никновения.

Генные болезни (или молекулярные болезни) достаточно широко представлены у человека, их насчитывается более 1000.

Особую группу среди них составляют врожденные дефекты обмена веществ. Впервые эти заболевания описал А. Гарод в 1902 году. Симптоматика этих заболеваний различна, но всегда имеет место нарушение превращения веществ в организме. При этом одни вещества будут в избытке, другие в недостатке. Например, в организм поступает вещество (А) и превращается далее под действием ферментов в вещество (В). Далее вещество (В) должно превращаться в вещество (С), но этому мешает мутационный блок

(), в результате вещество (С) будет в недостатке, а вещество (В) в избытке.

Примеры некоторых болезней, обусловленных врожденным дефектом обмена веществ.

ФКУ (фенилкетонурия, врожденное слабоумие). Генное заболевание, наследуется по аутосомно-рецессивному типу, встречается с частотой = 1:10.000. Фенилаланин является незаменимой аминокислотой для построения белковой молекулы и, кроме того, служит предшественником гормонов щитовидной железы (тироксина), адреналина и меланина. Аминокислота фенилаланин в клетках печени должна превращаться с помощью фермента (фенилаланин-4-гидроксилазы) в тирозин. Если отсутствует фермент, отвечающий за данное превращение, или снижена его активность то содержание фенилаланина в крови будет резко повышено, а содержание тирозина понижено. Избыток фенилаланина в крови приводит к появлению его производных (фенилуксусной, фенилмолочной, фенилпировиноградной и других кетоновых кислот), которые выделяются с мочой, а также оказывают токсическое воздействие на клетки центральной нервной системы, что приводит к слабоумию.

При своевременной постановке диагноза и переводе младенца на диету, лишенную фенилаланина, развитие заболевания можно предупредить.

Альбинизм общий. Генное заболевание, наследуется по аутосомно-рецессивному типу. В норме аминокислота тирозин участвует в синтезе тканевых пигментов. Если возникает мутационный блок, отсутствует фермент или снижена его активность, то тканевые пигменты не синтезируются. В этих случаях кожа имеет молочно-белый цвет, волосы очень светлые, вследствие отсутствия пигмента в сетчатке просвечивают кровеносные сосуды, глаза имеют красновато-розовый цвет, и повышенную чувствительность к свету.

Алькапнонурия . Генное заболевание, наследуется по аутосомно-рецессивному типу, встречается с частотой = 3-5:1.000.000. Заболевание связано с нарушением превращения гомогентизиновой кислоты, в результате чего эта кислота накапливается в организме. Выделяясь с мочой, эта кислота приводит к развитию заболеваний почек, кроме того, подщелоченная моча при этой аномалии быстро темнеет. Также заболевание проявляется окрашиванием хрящевых тканей, в пожилом возрасте развивается артрит. Таким образом, заболевание сопровождается поражением почек и суставов.

Генные болезни, связанные с нарушением обмена углеводов.

Галактоземия . Генное заболевание, наследуется по аутосомно-рецессивному типу, встречается с частотой = 1:35.000-40.000 детей.

В крови новорождённого содержится моносахарид галактоза, который образуется при расщеплении дисахарида молока лактозы на глюкозу и галактозу . Галактоза непосредственно не усваивается организмом, она должна быть переведена специальным ферментом в усваиваемую форму – глюкоза-1-фосфат.

Наследственная болезнь галактоземия обусловлена нарушением функции гена, контролирующего синтез белка-фермента, превращающего галактозу в усваиваемую форму. В крови больных детей будет очень мало этого фермента и много галактозы, что устанавливается биохимическим анализом.

Если диагноз поставлен в первые дни после рождения ребенка, то его кор­мят смесями, где нет молочного сахара, и ребёнок нормально развива­ется. В противном случае ребёнок вырастает слабоумным.

Муковисцидоз . Генное заболевание, наследуется по аутосомно-рецессивному типу, встречается с частотой = 1:2.000-2.500. Заболевание связано с мутацией гена, который отвечает за белок-переносчик, встроенный в плазматическую мембрану клеток. Этот белок регулирует проницаемость мембраны к ионам Na и Ca. Если нарушена проницаемость этих ионов в клетках экзокринных желез, то железы начинают вырабатывать густой, вязкий секрет, который закрывает протоки экзокринных желез.

Выделяют легочную и кишечную формы муковисцидоза.

Синдром Марфана. Генное заболевание, наследуется по аутосомно-доминантному типу. Связано с нарушением обмена белка фибриллина в соединительной ткани, что проявляется комплексом признаков: «паучьи» пальцы (арахнодактилия), высокий рост, подвывих хрусталика, пороки сердца и сосудов, повышенный выброс в кровь адреналина, сутулость, впалая грудь, высокий свод стопы, слабость связок и сухожилий и т.д. Впервые описано в 1896 году французским педиатром Антонио Марфаном.

ЛЕКЦИЯ 10 Структурные мутации хромосом.

1. Структурные мутации хромосом (хромосомные аберрации).

Выделяют следующие виды хромосомных аберраций.

– делеции

– дупликации

– инверсии

– кольцевые хромосомы

– транслокации

– транспозиции

При данных мутациях изменяется структура хромосом, изменяется порядок расположения генов в хромосомах, изменяется доза генов в генотипе. Эти мутации встречаются у всех организмов, они бывают:

Спонтанные (вызваны фактором неизвестной природы) и индуцированные (природа фактора, вызвавшего мутацию известна)

Соматические (затрагивающие наследственный материал соматических клеток) и генеративные (изменения наследственного материала гамет)

Полезные и вредные (последнее гораздо чаще)

Сбалансированные (система генотипа не изменяется, значит, не меняется и фенотип) и несбалансированные (изменяется система генотипа, а значит, изменяется и фенотип

Если мутация затрагивает две хромосомы, говорят о межхромосомных перестройках.

Если мутация затрагивает 1 хромосому, говорят о внутрихромосомных перестройках.

2. Механизмы возникновения структурных мутаций хромосом.

Гипотеза «разрыв-соединение». Предполагают, что в одной или нескольких хромосомах происходят разрывы. Образуются участки хромосом, которые затем соединяются, но в иной последовательности. Если разрыв происходит до репликации ДНК, то в этот процесс вовлекаются 2 хроматиды – это изохроматидный разрыв. Если разрыв происходит после репликации ДНК, то вовлекается в процесс 1 хроматида – это хроматидный разрыв.

Вторая гипотеза: между негомологичными хромосомами происходит процесс подобный кроссинговеру, т.е. негомологичные хромосомы обмениваются участками.

3. Делеции, их сущность, формы, фенотипический эффект. Псевдодоминирование..

Делеция (нехватка) – потеря участка хромосомы.

в хромосоме может произойти 1 разрыв, и она потеряет концевой участок, который будет разрушен ферментами (дефишенси)

в хромосоме может быть два разрыва с потерей центрального участка, который также будет разрушен ферментами (интерстициальная делеция).

В гомозиготном состоянии делеции всегда летальны, в гетерозиготном состоянии они проявляются множественными пороками развития.

Выявление делеций:

Дифференциальное окрашивание хромосом

По фигуре петли, которая образуется во время коньюгации гомологичных хромосом в профазу мейоза 1. Петля возникает на нормальной хромосоме.

Впервые делеция была изучена у мушки дрозофилы, при этом произошла потеря участка Х хромосомы. В гомозиготном состоянии эта мутация летальна, а в гетерозиготном состоянии она проявляется фенотипически вырезкой на крыле (Notch-мутация). При анализе этой мутации было выявлено особое явление, которое получило название псевдодоминирование. При этом фенотипически проявляется рецессивный аллель, так как участок хромосомы с доминантным аллелем утрачен вследствие делеции.

У человека делеции чаще происходят в хромосомах с 1 по 18. Например, делеция короткого плеча пятой хромосомы в гетерозиготном состоянии проявляется фенотипически, как синдром "кошачьего крика". Ребёнок рож­дается с большим числом патологий, живет от 5 дней до месяца (очень редко до 10 лет), его плач напоминает резкое мяуканье кота.

В 21 или 22 хромосоме стволовых кроветворных клеток может произойти интерстициальная делеция. В гетерозиготном состоянии она проявляется фенотипически как злокачественная анемия.

4. Дупликации, инверсии, кольцевые хром-мы. Механизм возникновения. Фенотипическое проявление.

Дупликация – удвоение какого-то участка хромосомы (этот участок может повторяться многократно). Дупликации могут быть прямыми и обратными.

При данных мутациях увеличивается доза генов в генотипе, и в гомозиготном состоянии эти мутации летальны. В гетерозиготном состоянии они проявляются множественными пороками развития. Однако эти мутации могли играть определенную роль в ходе эволюции. Таким образом могли возникнуть семейства генов гемоглобина.

Возможно, многократно повторяющиеся последовательности нуклеотидов ДНК появились в результате дупликаций.

Выявление дупликаций:

Фигура петли в профазу мейоза 1. Петля возникает на мутировавшей хромосоме.

Инверсия – отрыв участка хромосомы, поворот его на 180° и присоединение на старое место. При инверсиях доза генов не меняется, но изменяется порядок расположения генов в хромосоме, т.е. изменяется группа сцепления. Концевых инверсий не бывает.

В гомозиготном состоянии инверсии летальны, в гетерозиготном состоянии они проявляются множественными пороками развития.

Выявление инверсий:

Дифференциальное окрашивание.

Фигура в виде двух противоположно расположенных петель в профазу мейоза 1.

Инверсии бывают 2 видов:

парацентрическая инверсия, которая не затрагивает центромеру, т.к. разрывы происходят в пределах одного плеча хромосомы

перицентрическая инверсия, которая затрагивает центромеру, т.к. разрывы происходят по обе стороны от центромеры.

При перицентрической инверсии может изменяться конфигурация хромосомы (если концы поворачиваемых участков не симметричны). А это делает невозможным в последующем конъюгацию.

Фенотипическое проявление инверсий наиболее мягкое по сравнению с другими хромосомными абберациями. Если рецессивные гомозиготы погибают, то у гетерозигот чаще всего наблюдается бесплодие.

Кольцевые хромосомы . В норме в кариотипе человека кольцевых хромосом нет. Они могут появляться при действии на организм мутагенных факторов, особенно радиоактивного облучения.

При этом в хромосоме происходит 2 разрыва, и образовавшийся участок замыкается в кольцо. Если кольцевая хромосома содержит центромеру, то образуется – центрическое кольцо. Если центромеры нет, то образуется – ацентрическое кольцо, оно разрушается ферментами и не наследуется.

Выявляются кольцевые хромосомы при кариотипировании.

В гомозиготном состоянии эти мутации летальны, а в гетерозиготном состоянии фенотипически проявляются, как делеции.

Кольцевые хромосомы являются маркерами радиоактивного облучения. Чем больше доза радиоактивного облучения, тем больше кольцевых хромосом, и тем хуже прогноз.

5. Транслокации, их сущность. Реципрокные транслокации, их характеристика и медицинское значение. Робертсоновские транслокации и их роль в наследственной патологии.

Транслокация – это перемещение участка хромосомы. Бывают взаимные (реципрокные) и не взаимные (транспозиции) транслокации.

Реципрокные транслокации происходят в тех случаях, когда две негомологичные хромосомы обмениваются своими участками.

Особую группу транслокаций составляют робертсоновские транслокации (центрические слияния). Им подвергаются акроцентрические хромосомы – они теряют короткие плечи, а их длинные плечи соединяются.


Причина 4-5% случаев рождения ребёнка-дауника – робертсоновские транслокации. При этом происходит перемещение длинного плеча 21 хромосомы на одну из хромосом группы D (13, 14, 15, чаще вовлекается 14 хромосома).

Типы яйцеклеток сперматозоид зигота Последствия

14 + 14, 21 14,14,21 моносомия 21 (леталь)

14/21,21 + 14, 21 14/21,21,14,21 трисомия 21 (дауник)

21 + 14, 21 21,14,21, моносомия 14 (леталь)

14,14/21 + 14, 21 14,14/21,14,21 трисомия 14 (леталь)

14/21 + 14, 21 14/21,14,21 фенотипически здоров

Как видим, женщина с робертсоновской транслокацией может родить здорового ребенка.

Потеря коротких плеч не влияет ни на что, так как там находятся ядрышкообразующие зоны, а они есть и в других хромосомах.

У больного с транслокационной формой синдрома Дауна в клетках 46 хромосом. В яичнике после транслокации будет 45 хромосом. Однако при сбалансированной мутации у женщины будет 45 хромосом.

Выявление транслокаций:

Дифференциальное окрашивание.

Фигура креста в профазу мейоза 1.

6. Траспозиции. Мобильные генетические элементы. Механизмы перемещения по геному и значение.

Если транслокации не носят характера взаимности, то говорят о транспозиции.

Особую группу транспозонов составляют Мобильные Генетические Элементы (МГЭ), или прыгающие гены, которые обнаружены у всех организмов. У мушки дрозофилы они составляют 5% генома. У человека МГЭ объединяют в семейство ALU.

МГЭ состоят из 300- 400 нуклеотидов, повторяющихся в геноме у человека 300 тыс. раз.

На МГЭ концах находятся повторы нуклеотидов, состоящие при из 50-100 нуклеотидов. Повторы могут быть прямыми и обратными. Повторы нуклеотидов, по-видимому, влияют на перемещение МГЭ.

Выделяют два варианта перемещения МГЭ по геному.

1. с помощью процесса обратной транскрипции. Для этого необходим фермент обратная транскриптаза (ревертаза). Этот вариант протекает в несколько этапов:

на ДНК фермент РНК-полимераза (другое название – транскриптаза) синтезирует иРНК,

на иРНК фермент обратная транскриптаза синтезирует одну цепь ДНК,

фермент ДНК-полимераза обеспечивает синтез второй цепочки ДНК,

синтезированный фрагмент замыкается в кольцо,

кольцо ДНК встраивается в другую хромосому или в другое место этой же хромосомы.

2. с помощью фермента транспозазы, который вырезает МГЭ и переносит его в другую хромосому или в другое место этой же хромосомы

В ходе эволюции МГЭ играли положительную роль, т.к. они осуществляли перенос генетической информации от одних видов организмов к другим. Важную роль в этом играли ретровирусы, которые содержат в качестве наследственного материала РНК, а также содержат обратную транскриптазу.

МГЭ перемещаются по геному очень редко, одно перемещение на сотни тысяч событий в клетке (частота перемещений 1 х 10 –5).

В каждом конкретном организме МГЭ положительной роли не играют, т.к. перемещаясь по геному, они изменяют работу генов, вызывают генные и хромосомные мутации.

7. Индуцированный мутагенез. Физические, химические и биологические мутагенные факторы.

Индуцированные мутации возникают при действии на организм мутагенных факторов, которые делятся на 3 группы:

Физические (УФЛ, рентгеновское и радиационное излучения, электромагнитные поля, высокие температуры).

Так ионизирующее излучение может действовать непосредственно на молекулы ДНК и РНК, вызывая в них повреждения (генные мутации). Косвенное воздействие этого

мутагена на наследственный аппарат клеток заключается в образовании генотоксических веществ (Н 2 О 2, ОН - , О 2 - ,).

Химические мутагенные факторы. Существует свыше 2 млн. химических веществ, способных вызывать мутации. Это соли тяжелых металлов, химические аналоги азотистых оснований (5-бромурацил), алкилирующие соединения (СН 3 , С 2 Н 5).

8. Радиационные мутации. Генетическая опасность загрязнения окружающей среды.

Радиационные мутации это мутации, вызванные радиацией. В 1927 году американский генетик, Генрих Мелёр впервые показал, что облучение рентгеновскими лучами приводит к существенному увеличению частоты мутаций у дрозофилы. Эта работа положила начало новому направлению в биологии – радиационной генетике. Благодаря многочисленным работам, проведенным за последние десятилетия, мы теперь знаем, что при попадании элементарных частиц (кванты, электроны, протоны и нейтроны) в ядро происходит ионизация молекул воды с образованием свободных радикалов (ОН - , О 2 -). Обладая большой химической активностью, они вызывают разрывы ДНК, повреждение нуклеотидов или их разрушение; всё это приводит к возникновению мутаций.

Так как человек является открытой системой, то различные факторы загрязнения окружающей среды могут попадать в человеческий организм. Многие из этих факторов могут изменять или повреждать наследственный материал живых клеток. Последствия воздействия этих факторов столь серьезны, что человечество не может игнорировать загрязнение окружающей среды.

9. Мутагенез и канцерогенез.

Впервые мутационную теорию рака в 1901 году предложил Гюго Де Фриз. В наши дни существует много теорий канцерогенеза.

Одна из них генная теория канцерогенеза. Известно, что в геноме человека содержится более 60 онкогенов, способных регулировать клеточное деление. Они находятся в неактивном состоянии в виде протоонкогенов. Под действием различных мутагенных факторов протоонкогены активируются и переходят в состояние онкогенов, которые вызывают интенсивную пролиферацию клеток и развитие опухолей.

ЛЕКЦИЯ 11Мутации числа хромосом. Гаплоидия, полиплоидия,

Анеуплоидия.

1. Сущность мутаций числа хромосом, причины и механизмы возникновения.

Каждый вид организмов характеризуется своим кариотипом. Постоянство кариотипа в ряду поколений поддерживается благодаря процессам митоза и мейоза. Иногда в ходе митоза или мейоза нарушается расхождение хромосом, в результате возникают клетки с измененным числом хромосом. В клетках может изменяться число целых гаплоидных наборов хромосом, в таком случае возникают такие мутации как:

Гаплоидия – одинарный набор хромосом (n)

Полиплоидия – увеличение числа хромосом кратное гаплоидному набору (3n, 4n и т.д.)

Анэуплоидия – изменение числа отдельных хромосом (46 +1).

Набор хромосом может измениться как в соматических клетках, так и в половых.

Причины нарушения расхождения хромосом:

увеличение вязкости цитоплазмы

изменение полярности клетки

нарушение функции веретена деления.

Все эти причины приводят к так называемому явлению “анафазного отставания”.

Это значит, что в анафазу митоза или мейоза хромосомы распределяются неравномерно, т.е. какая-то хромосома или группа хромосом не успевают за остальными хромосомами и теряется для одной из дочерних клеток.

2. Гаплоидия, характер изменения кариотипа, распространенность, феноти­пическое проявление.

Гаплоидия – это уменьшение числа хромосом в клетках организма до гаплоидного. В клетках резко уменьшается количество хромосом и доза генов, то есть изменяется система генотипа, а значит, изменяется и фенотип.