Система мононуклеарных фагоцитов (греч. monox один + лат. nucleos ядро: греч. рhagos пожирающий, поглощающий + гистол. суtus клетка; синоним: макрофагальная система, моноцитарно-макрофагальная система) - физиологическая защитная система клеток, обладающих способностью поглощать и переваривать чужеродный материал. Клетки, входящие в состав этой системы, имеют общее происхождение, характеризуются морфологическим и функциональным сходством и присутствуют во всех тканях организма.

Основой современного представления о С. м. ф. является фагоцитарная теория, разработанная И.И. Мечниковым в конце 19 в., и учение немецкого патолога Ашоффа (К. А.L. Aschoff) о ретикулоэндотелиальной системе (РЭС). Первоначально РЭС была выделена морфологически как система клеток организма, способных накапливать витальный краситель кармин. По этому признаку к РЭС были отнесены гистиоциты соединительной ткани, моноциты крови, клетки Купфера печени, а также ретикулярные клетки кроветворных органов, эндотелиальные клетки капилляров, синусов костного мозга и лимфатического узлов. По мере накопления новых знаний и совершенствования морфологических методов исследования стало ясно, что представления о ретикулоэндотелиальной системе расплывчаты, не конкретны, а в ряде положений просто ошибочны. Так, например, ретикулярным клеткам и эндотелию синусов костного мозга и лимфатических узлов длительное время приписывалась роль источника фагоцитирующих клеток, что оказалось неверным. В настоящее время установлено, что мононуклеарные фагоциты происходят из циркулирующих моноцитов крови. Моноциты созревают в костном мозге, затем поступают в кровяное русло, откуда мигрируют в ткани и серозные полости, становясь макрофагами. Ретикулярные клетки выполняют опорную функцию и создают так называемое микроокружение для кроветворных и лимфоидных клеток. Эндотелиальные клетки осуществляют транспорт веществ через стенки капилляров. Непосредственного отношения к защитной системе клеток ретикулярные клетки и эндотелий сосудов не имеют. В 1969 г. на конференции в Лейдене, посвященной проблеме РЭС, понятие «ретикулоэндотелиальная система» было признано устаревшим. Вместо него принято понятие «система мононуклеарных фагоцитов». К этой системе относят гистиоциты соединительной ткани, клетки Купфера печени (звездчатые ретикулоэндотелиоциты), альвеолярные макрофаги легких, макрофаги лимфатических узлов, селезенки, костного мозга, плевральные и перитонеальные макрофаги, остеокласты костной ткани, микроглию нервной ткани, синовиоциты синовиальных оболочек, клетки Лангергаиса кожи, беспигментные гранулярные дендроциты. Различают свободные, т.е. перемещающиеся по тканям, и фиксированные (резидентные) макрофаги, имеющие относительно постоянное место.

Макрофаги тканей и серозных полостей, по данным сканирующей электронной микроскопии, имеют форму, близкую к сферической, с неровной складчатой поверхностью, образованной плазматической мембраной (цитолеммой).

В условиях культивирования макрофаги распластываются на поверхности субстрата и приобретают уплощенную форму, а при перемещении образуют множественные полиморфные псевдоподии. Характерным ультраструктурным признаком макрофага служит наличие в его цитоплазме многочисленных лизосом и фаголизосом, или пищеварительных вакуолей (рис. 1 ). Лизосомы содержат различные гидролитические ферменты, обеспечивающие переваривание поглощенного материала. Макрофаги - активные секреторные клетки, которые освобождают в окружающую среду ферменты, ингибиторы, компоненты комплемента. Основным секреторным продуктом макрофагов является лизоцим. Активированные макрофаги секретируют нейтральные протеиназы (эластазу, коллагеназу), активаторы плазминогена, факторы комплемента, такие как С2, С3, С4, С5, а также интерферон.

Клетки С. м. ф. обладают рядом функций, в основе которых лежит их способность к эндоцитозу, т.е. поглощению и перевариванию инородных частиц и коллоидных жидкостей. Благодаря этой способности они выполняют защитную функцию. Посредством хемотаксиса макрофаги мигрируют в очаги инфекции и воспаления, где осуществляют фагоцитоз микроорганизмов, их умерщвление и переваривание. В условиях хронического воспаления могут появляться особые формы фагоцитов - эпителиоидные клетки (например, в инфекционной гранулеме) игигантские многоядерные клетки типа клеток Пирогова - Лангханса и типа клеток инородных тел. которые образуются путем слияния отдельных фагоцитов в поликарион - многоядерную клетку (рис. 2 ). В гранулемах макрофаги вырабатывают гликопротеид фибронектин, который привлекает фибробласгы и способствует развитию а.

Клетки С. м. ф. принимают участие в иммунных процессах. Так, непременным условием развития направленного иммунного ответа является первичное взаимодействие макрофага с антигеном. При этом антиген поглощается и перерабатывается макрофагом в иммуногенную форму. Иммунная стимуляция лимфоцитов происходит при непосредственном контакте их с макрофагом, несущим преобразованный антиген. Имунный ответ в целом осуществляется как сложное многоэтапное взаимодействие Г- и В-лимфоцитов с макрофагами.

Макрофаги обладают противоопухолевой активностью и проявляют цитотоксические свойства в отношении опухолевых клеток. Эта активность особенно выражена у так называемых иммунных макрофагов, осуществляющих лизис опухолевых клеток-мишеней при контакте с сенсибилизированными Т-лимфоцитами, несущими цитофильные антитела (лимфокины).

Клетки С. м. ф. принимают участие в регуляции миелоидного и лимфоидного кроветворения. Так, островки кроветворения в красном костном мозге, селезенке, печени и желточном мешке эмбрионе формируются вокруг особой клетки - центрального макрофага, организующего эритропоэз эритробластического островка. Клетки Купфера печени участвуют в регуляции кроветворения путем выработки эритропоэтина.


Мононуклеарные фагоциты (макрофаги) составляют наиболее важную группу способных кфагоцитозу долгоживущих клеток.

Тканевые макрофаги и их предшественники - моноциты, промоноциты и монобласты - образуют систему мононуклеарных фагоцитов.

Макрофаги - это долгоживущие фагоциты, имеющие много общих функций с нейтрофилами. Кроме того, макрофаги в качестве секреторных клеток участвуют во многих сложных иммунных и воспалительных реакциях, в которых не участвуют нейтрофилы.

Моноциты, как и нейтрофилы, покидают сосудистое русло путем диапедеза, но дольше циркулируют в крови: их период полуциркуляции составляет от 12 до 24 ч. После того как моноциты попадают в ткани, они превращаются в макрофаги, выполняющие специфические функции в зависимости от анатомической локализации. Особенно богаты этими клеткамиселезенка, печень, костный мозг и легкие, где функция макрофагов состоит в удалении из крови микроорганизмов и других вредных частиц.

Альвеолярные макрофаги, купферовские клетки, клетки микроглии, дендритные клетки, макрофаги селезенки, брюшины, костного мозга и лимфоузлов - все они выполняют специфические функции.

Мононуклеарные фагоцитов выполняет две основные функции, осуществляемые двумя разными типами клеток костномозгового происхождения:

- "профессиональными" макрофагами, главная роль которых - устранение корпускулярных антигенов, и
- антигенпрезентирующими клетками (АПК), роль которых заключается в поглощении, процессинге и представлении антигена T-клеткам.

Макрофаги образуются из промоноцитов костного мозга, которые после дифференцировки вмоноциты крови задерживаются в тканях в виде зрелых макрофагов, где и формируют систему мононуклеарных фагоцитов. Особенно высоко их содержание в печении медулярных синусахлимфатических узлов.

Макрофаги - долгоживущие клетки с хорошо развитыми митохондриями и шероховатым эндоплазматическим ретикулумом.

Роль макрофагов в иммунитете исключительно важна - они обеспечивают фагоцитоз, переработку и представление антигена T-клеткам. Макрофаги вырабатывают ферменты, некоторые белки сыворотки, кислородные радикалы, простагландины и лейкотриены, цитокины (интерлейкины, фактор некроза опухолей и другие). Макрофаги секретируют лизоцим, нейтральные протеазы, кислые гидролазы, аргиназу, многие компоненты комплемента, ингибиторы ферментов (антиактиватор плазминогена, альфа2-макроглобулин), транспортные белки (трансферрин, фибронектин, транскобаламин II), нуклеозиды и цитокины (ФНО альфа, ИЛ-1, ИЛ-8, ИЛ-12). ИЛ-1 выполняет много важных функций: воздействуя на гипоталамус, вызывает лихорадку; стимулирует выход нейтрофилов из костного мозга;

Активируетлимфоциты и нейтрофилы.

ФНОальфа (называемый также кахектином) - это пироген. Во многом он дублирует действие ИЛ-1, но кроме того, играет важную роль в патогенезесептического шока, вызванного грамотрицательными бактериями. Под влиянием ФНОальфа резко увеличивается образование макрофагами и нейтрофилами перекиси водорода и другихсвободных радикалов. При хроническом воспалении ФНОальфа активирует катаболические процессы и тем самым способствует развитию кахексии - симптома многих хронических заболеваний.

Основная функция макрофагов сводится к борьбе с теми бактериями, вирусами и простейшими, которые могут существовать внутри клетки-хозяина, при помощи мощных бактерицидных механизмов, которыми обладают макрофаги.

Таким образом, макрофаги являются одним из орудий врожденного иммунитета. Кроме того макрофаги наряду с B - и T-лимфоцитами участвуют и в приобретенном иммунном ответе, являясь "дополнительным" типом клеток иммунного ответа: макрофаги являются фагоцитирующими клетками, чья функция - "проглатывание" иммунногенов и процессирование их для представления T-лимфоцитам в форме, пригодной для иммунного ответа.

В отличие от лимфоцитов, макрофаги не обладают способностью специфичного узнавания. Кроме того, макрофаги, по-видимому, отвечают за индукцию толерантности (см. T-лимфоциты: толерантность).

При аутоиммунных заболеваниях макрофаги удаляют из крови иммунные комплексы и другие иммунологически активные вещества. Макрофаги участвуют в заживлении ран, удалении отживших клеток и образовании атеросклеротических бляшек.



СИСТЕМА МОНОНУКЛЕАРНЫХ ФАГОЦИТОВ (син.: макрофагальная система, моноцитарно-макрофагальная система ) - система, объединяющая клетки, к-рые обладают способностью к эндоцитозу, имеют общее происхождение, морфологическое, цитохимическое и функциональное сходство. Концепция С. м. ф. впервые предложена в 1969 г. на конференции в Лейдене вместо устаревшей концепции ретикулоэндотелиальной системы (см. Ретикулоэндотелиальная система). На последующих конференциях в Лейдене (1973, 1978) представления о С. м. ф. продолжали совершенствоваться, и в настоящее время эта концепция принята большинством исследователей.

В основу концепции С. м. ф. положены современные представления об общности происхождения и кинетике этих клеток, их морфологическом, цитохимическом и функциональном сходстве. Мононуклеарные фагоциты присутствуют во всех тканях, но в нормальных условиях пролиферация их предшественников происходит только в костном мозге (см.). Наиболее рано распознаваемыми предшественниками ряда дифференцировки этих клеток являются монобласты - прямые «потомки» коммутированных стволовых клеток. В результате деления монобластов возникают промоноциты - прямые предшественники моноцитов (см. Кроветворение). Моноциты поступают в кровеносное русло, а затем мигрируют в различные ткани и полости тела, где становятся макрофагами (см.). Экспериментальные исследования подтвердили происхождение макрофагов самой разной локализации из циркулирующих в крови моноцитов. Было также показано, что деление макрофагов в тканях существенного значения для их обновления не имеет, тогда как ретикулярные клетки, дендритные ретикулярные клетки, фибробласты, эндотелиальные и мезотелиальные клетки не имеют предшественников в костном мозге, а обновляются путем локального деления в тканях. На схеме показаны происхождение клеток, входящих в систему мононуклеарных фагоцитов, и их локализация в органах и тканях, разновидности макрофагов в норме и при воспалении в зависимости от его характера (рис. 1).

Функция системы мононуклеарных фагоцитов контролируется сложными регуляторными механизмами, обеспечивающими поступление макрофагов в ткани в условиях нормы и патологии. Для описания функционального состояния макрофагов используются разнообразные определения (активированные, иммунные, вооруженные, индуцированные, стимулированные, экссудативные и т. д.). Активирование макрофагов происходит при культивировании in vitro, при фагоцитировании бактерий, контакте с антигеном, иммунными комплексами, бактериальными липополисахари-дами, полинуклеотидами и при взаимодействии с лимфокинами (см. Медиаторы клеточного иммунитета). В частности, in vitro показано участие в моноцитопоэзе (и гранулоцитопоэ-зе) гликопротеидов-регуляторов, или так наз. колониестимулирующих факторов, к-рые влияют на скорость дифференцировки предшественников макрофагов и относятся к аз-глобулинам с молекулярным весом (массой) от 13 000 до 93 000 . При различных патологических процессах, когда повышается потребность в моноцитах, продукция последних увеличивается за счет вступления в цикл непролиферирующих промоноцитов (в норме у человека активно пролиферирует только ок. 40% промоноцитов) и укорочения клеточного цикла, к-рый в норме составляет в среднем ок. 30 часов. В условиях воспаления макрофаги очага повреждения вырабатывают и освобождают в циркуляторное русло фактор, к-рый усиливает моноцитопоэз и, достигая костного мозга, стимулирует продукцию моноцитов. Этот фактор представляет собой белок с молекулярным весом (массой) ок. 20 000. После устранения повреждающего агента макрофаги начинают вырабатывать другой фактор - ингибитор моноцитопоэза с молекулярным весом (массой) ок. 50 000.

Активированные макрофаги характеризуются увеличенными размерами, усиленными фагоцитарной, переваривающей и бактерицидной функциями. В них повышаются активность кислых гидролаз, обменные процессы. Морфологически активированные макрофаги характеризуются увеличением числа и размеров лизосом, расширением комплекса Гольджи, увеличением складчатости плазматической мембраны. Активированные макрофаги с увеличенным числом рецепторов для IgG описаны у больных, страдающих саркоидозом (см.), болезнью Крона (см. Крона болезнь) и туберкулезом (см.).

Стимулятором, обладающим выраженным и направленным действием на макрофаги, является глюкан (сложный полисахарид из оболочек дрожжевых клеток Saccharomyces cerevisiae). Введение глюкана мышам приводит к резкому увеличению фагоцитарной активности макрофагов, стимуляции гуморального и клеточного иммунитета (см.). При этом ярко проявляется противоопухолевый эффект макрофагов. Параллельно отмечено накопление макрофагов в печени, селезенке и легких. Исследователи, применявшие глюкан, подчеркивают отсутствие у экспериментальных животных каких-либо побочных явлений.

Препараты, блокирующие, или элиминирующие, макрофаги, прежт де всего препятствуют их участию в различных иммунных реакциях. Так, частицы захваченного коллоидного угля приводят к потере способности макрофагов в процессе развития иммунного ответа перерабатывать антиген или подготавливать его для взаимодействия с соответствующими лимфоцитами. В основе иммунодепрессивного действия на макрофаги каррагинанов (высокомолекулярных полигалактоз) и частиц кварца лежит их избирательный токсический эффект. Эти же агенты используются для изучения участия макрофагов в тех или иных процессах.

Пути миграции моноцитов в ткани различны и не до конца изучены. В легких, напр., моноциты прямо дифференцируются в альвеолярные макрофаги, минуя фазу созревания в интерстиции. В брюшную полость часть макрофагов поступает из млечных пятен (см.), где они дифференцируются из моноцитов. Способность макрофагов к рециркуляции через кровеносные сосуды весьма ограничена, однако доказано, что они хмогут мигрировать в близлежащие лимф, узлы, где погибают.

Морфофизиология

Характерными качествами, присущими клеткам С. м. ф., в частности макрофагам (см.), являются способность к эндоци-тозу, включающему фагоцитоз (см.) и пиноцитоз (см.), адгезии, миграции. Макрофаги тканей и серозных полостей имеют более или менее сферическую форму, складчатую плазматическую мембрану (цитолемму) и характеризуются прежде всего присутствием в цитоплазме многочисленных лизосом (см.) и фаголизосом, или пищеварительных вакуолей (рис. 2). В сканирующем электронном микроскопе (см. Электронная микроскопия) хорошо видны поверхностные складки и гребни макрофагов (рис. 3). Обладая выраженной способностью к адгезии, в условиях культивирования макрофаги сильно распластываются на поверхности субстрата и приобретают уплощенную форму. При перемещении по субстрату они образуют множество полиморфных псевдоподий (см. Клетка), причем на сканограммах видны складчатый ведущий край, направленный в сторону перемещения клетки, и длинные отростки, фиксирующие клетку к субстрату. Наряду с этим макрофаги различной локализации, даже в пределах одного органа, напр. лимф, узла, отличаются как морфологически, так и функционально. Так, макрофаги светлых (герминативных) центров в отличие от фиксированных и свободных макрофагов синусов лимф, узлов не фагоцитируют антигены, но поглощают другие инородные частицы и лимфоциты. Их обычно выделяют как макрофаги с окрашивающимися включениями.

Внутриклеточный метаболизм мононуклеарных фагоцитов зависит от стадии дифференцировки, тканевой локализации, активирования и эндоцитоза. Основными источниками энергии для мононуклеарных фагоцитов являются гликолиз, гек-созомонофосфатный шунт и аэробный метаболизм. Исследования последних лет показали, что макрофаги являются активными секреторными клетками, к-рые освобождают в окружающую их среду ферменты, ингибиторы, факторы и компоненты комплемента (см.). Основным секреторным продуктом макрофагов является лизоцим (см.), к-рый вырабатывается и секретирует-ся с постоянной скоростью. В отличие от лизоцима нек-рые нейтральные протеиназы секретируются в основном активированными макрофагами. Среди них лучше всего изучены эластаза (см.), коллагеназа (см.) и активаторы плазминогена (см. Фибринолиз), участвующие в разрушении и перестройке тканей (напр., при резорбции кости, инволюции молочных желез и послеродовой инволюции матки). Как фиксированные, так и свободные макрофаги секретируют нек-рые факторы комплемента, такие, как С2, СЗ, С4, С5, фактор В, а также интерферон (см.).

Методы исследования

Традиционные морфол. методы, особенно на светооптическом и даже на электронно-микроскопическом уровне, часто бывают недостаточными для идентификации мононуклеарных фагоцитов. Даже при изучении изолированных клеток иногда трудно отличить моноцит от лимфоцита или предшественников моноцита (монобласта и промоноцита), от предшественников гранулоцитов (миелобластов и промиелоцитов). Кроме того, тканевые макрофаги часто путают с ретикулярными клетками, фибробластами, эндотелиальными и мезотелиаль-ными клетками, хотя разделение этих клеток имеет принципиальное значение, т. к. их происхождение и функция совершенно различны.

Лишь использование специфических маркеров в сочетании с электронной микроскопией позволяет надежно идентифицировать и оценить участие мононуклеарных фагоцитов в тех или иных процессах. Одним из наиболее надежных маркеров для идентификации мононуклеарных фагоцитов человека и животных является фермент эстераза (КФ 3. 1. 1. 1.), к-рый определяется гистохимически при использовании в качестве субстрата а-нафтилбути-рата или а-нафтилацетата. При этом окрашиваются почти все моноциты и макрофаги, хотя интенсивность гистохим. реакции может варьировать в зависимости от вида и функционального состояния организма, а также от условий культивирования клеток. В мононуклеарных фагоцитах фермент локализуется диффузно, тогда как в Т-лимфоцитах выявляется в виде одной-двух точечных гранул.

Другой надежный маркер - лизоцим (КФ 3. 2. 1. 17.) - фермент, секретируемый макрофагами, к-рый может быть выявлен с помощью им-мунофлюоресцентного метода с использованием антител к лизоциму (см. Иммунофлюоресценция).

Выявлять различные стадии дифференцировки мононуклеарных фагоцитов позволяет пероксидаза (см.). Гранулы, содержащие фермент, окрашиваются положительно только в монобластах, промоноцитах, моноцитах и макрофагах экссудата; резидентные (т. е. постоянно присутствующие в нормальных тканях) макрофаги не окрашиваются.

В качестве ферментов-маркеров мононуклеарных фагоцитов используются также 51-нуклеотидаза, (КФ 3. 1. 3. 5), лейцинаминопептидаза (КФ 3. 4. 11. 1.), фосфодиэстёраза I (КФ 3. 1. 4. 1.), локализующиеся в плазматической мембране. Активность этих ферментов определяют либо в гомогенатах клеток, либо цитохимически. Выявление Б^нук-леотидазы позволяет отличать нормальные (резидентные) макрофаги от активированных (активность этого фермента высока в первых и низка во вторых). Активность лейцин-аминопептидазы и фосфодиэстеразы, наоборот, возрастает по мере активирования макрофагов.

Компоненты комплемента, в частности СЗ, также могут являться маркером, поскольку этот белок синтезируется только моноцитами и макрофагами. Он может быть выявлен в цитоплазме с помощью иммуно-цитохимических методов; компоненты комплемента у разных видов животных различаются по антигенным свойствам.

Весьма характерно для мононуклеарных фагоцитов наличие иммунол. рецепторов для Fc-фрагмента JgG (см. Иммуноглобулины) и для компонента СЗ комплемента. Мононук-леарные фагоциты несут названные рецепторы на всех стадиях развития, но среди незрелых клеток число мононуклеарных фагоцитов с рецепторами ниже, чем среди зрелых (моноцитов и макрофагов). Мононуклеарных фагоциты обладают способностью к эндоцитозу. Поэтому поглощение опсонизированных бактерий или покрытых IgG эритроцитов (иммунный фагоцитоз) является важным критерием, позволяющим отнести клетку к С. м. ф. Однако поглощения покрытых комплементом эритроцитов не происходит, если мо-нонуклеарные фагоциты не были предварительно активированы. Кроме фагоцитоза, все мононуклеар-ные фагоциты характеризуются интенсивным пиноцитозом. В макрофагах преобладает макропиноцитоз, к-рый лежит в основе захвата всех растворов; везикулы, образующиеся в результате интернализации мембраны (впячивания участка мембраны внутрь клетки), транспортируют вещества и за пределы клетки. Пи-ноцитоз отмечен и у других клеток (напр., у фибробластов), но в более слабой степени. Нетоксические витальные красители и коллоидный уголь мало подходят для характеристики эндоцитозной активности мононуклеарных фагоцитов, поскольку поглощаются и другими типами клеток.

Для выявления специфических для мононуклеарных фагоцитов антигенов могут быть использованы антисыворотки, однако получение антител, специфичных для этих клеток, все еще представляет большие трудности, т. к. многие из антисывороток содержат антитела, перекрестно реагирующие с другими типами клеток.

На клеточном уровне о способности клеток к делению судят по включению меченого предшественника ДНК 3Н-тимидина или по содержанию ДНК в ядрах.

Роль системы мононуклеарных фагоцитов в физиологических и патологических процессах

Мононуклеарные фагоциты - полифункциональ-ные клетки, к-рые, обладая выраженной способностью к эндоцитозу, выполняют в организме защитную функцию, принимают участие в процессах воспаления, иммунных реакциях, обладают противоопухолевой активностью, участвуют в регуляции кроветворения и обмена веществ.

Защитная функция

В основе защитной функции мононуклеарных фагоцитов лежит их способность избирательно поглощать и разрушать различные чужеродные агенты. За ними закрепился термин «профессиональные фагоциты», поскольку поглощение (эндоцитоз) - их основная функция. Моноциты и макрофаги способны к направленному движению, определяемому специфическими хемотаксическими факторами. Регуляция этих факторов сложна; в сыворотке крови человека выявлены их ингибиторы и инактиваторы. In vivo хемотаксис (см. Таксисы) вызывается компонентами комплемента СЗ и С4, калликреином, компонентами фибринолиза, продуктами лимфоцитов - лимфокинами. Привлекаются макрофаги также веществами, освобождающимися из бактерий. Благодаря хемотаксису макрофаги мигрируют в очаги инфекции и воспаления. После фагоцитоза микроорганизмов происходит их умерщвление и переваривание. По мере продвижения фагоцитарных вакуолей внутрь клетки в них освобождаются вещества, находящиеся в лизосомах, способные гидролизировать белки, липиды и углеводы, входящие в состав микроорганизмов. Нек-рые из освобождаемых компонентов макрофагов, такие, как пероксида-за, лизоцим и др., обладают антимикробной активностью. Лизоцим является антибактериальным агентом и вне клеток. Среда в фаго-лизосомах становится кислой, что способствует проявлению оптимальной активности ферментов лизосом. Одновременно в фагоцитирующих клетках происходит резкое повышение метаболизма. Переваривание завершается в течение одного-двух часов. Активированные макрофаги подобно нейтрофилам освобождают в окружающую среду перекись водорода и анионы супероксида и с их помощью могут лизировать различные клетки-мишени. Макрофаги захватывают также вирусы, причем нек-рые из них поступают в клетку путем пиноцитоза. Основной функцией клеток Купфера печени является клиренс (очищение) крови от бактерий и вирусов. Старые или поврежденные эритроциты фагоцитируются макрофагами костного мозга, селезенки и печени, а затем подвергаются внутриклеточному перевариванию (эритрофагоцитоз).

Участие в воспалении

Повреждающие агенты (агенты-раздражители) различной природы вызывают в общем однотипную реакцию организма - воспаление (см.). Однократное кратковременное раздражение индуцирует миграцию нейт-рофилов и их скопление в зоне повреждения. Через 6 час. приток нейт-рофилов постепенно ослабевает, после чего начинается миграция макрофагов, к-рая продолжается примерно в течение Зсут., а затем снижается. Макрофаги в очаге острого воспаления образуются только из циркулирующих моноцитов. При подостром и хроническом воспалении макрофаги часто становятся доминирующими клетками, причем если острый воспалительный процесс переходит в хрон. форму, то наблюдаются местная пролиферация и селекция долгоживущих макрофагов, направленные на поддержание численности макрофагов в очаге воспаления.

От природы раздражающего агента зависит сменяемость макрофагов в очаге повреждения. В случае устранения провоцирующего агента они исчезают (гибнут или мигрируют в лимф. узлы). При сохранении действия возбудителя воспаления макрофагальный инфильтрат остается. Если в процессе ответной реакции, направленной на устранение токсического и устойчивого раздражителя (напр., двуокиси кремния, бактерий), происходит потеря большого числа макрофагов, то формируется гранулема (см.) с высоким уровнем сменяемости клеток. Если раздражитель устойчив к действию макрофагов и в то же время нетоксичен, возникает гранулема с низким уровнем сменяемости клеток; в такой гранулеме преобладают долгоживущие макрофаги. Во многих специфических гранулемах (напр., при туберкулезе, саркоидо-зе, лепре) мононуклеарные фагоциты превращаются в эпителиоидные клетки (рис. 4) со слабой фагоцитарной активностью, но сильно выраженным пиноцитозом и способностью к секреции. В очагах хрон. воспаления мононуклеарные фагоциты при слиянии дают начало так наз. макрофагальным поликарионам, или многоядерным гигантским клеткам инородных тел (рис. 5) и клеткам типа Пирогова - Лангханса (см. Гигантские клетки). Последние обычно сохраняют очень слабую фагоцитарную активность, напр, по отношению к бактериям туберкулеза. В хрон. гранулемах, вызванных частицами кварца, происходит непрерывная гибель макрофагов в результате разрушения лизосом и са-мопереваривания клеток. При этом из клеток освобождается фиброгенный фактор, стимулирующий синтез коллагена фибробластами. Кроме того, активированные макрофаги вырабатывают фибронектин-гликопротеид с высокой молекулярной массой, являющийся, в частности, хемо-аттрактантом (привлекающим агентом) для фибробластов.

Участие в иммунных процессах

Клетки С. м. ф. принимают участие в иммунных процессах. Первичное взаимодействие макрофага с антигеном (см.) - непременное условие развития направленного и максимального иммунного ответа (см. Иммунитет). В результате такого взаимодействия антиген поглощается и перерабатывается внутри макрофага (процессинг), после чего секретируется в иммуно-генной форме, оказываясь фиксированным на его плазматической мембране. Иммунная стимуляция лимфоцитов происходит в результате их непосредственного контакта с макрофагами. В дальнейшем иммунная реакция протекает с участием В-лимфоцитов, Т-лимфоцитов и макрофагов (см. Иммунокомпетентные клетки).

Противоопухолевая активность

Макрофаги обладают противоопухолевой активностью и проявляют специфические и неспецифические цитотоксиче-ские свойства благодаря присутствию цитофильных антител или факторов, продуцируемых сенсибилизированными Т-лимфоцитами. Разрушение клеток-мишеней обычно оценивается по освобождению связанного с ними радиоактивного хрома после ицкубации с цито-токсическими макрофагами - эффекторами. Проявляемая макрофагами цитотоксичность имеет отношение к ряду иммунных реакций, таких, как отторжение аллотрансплантатов (см. Иммунитет трансплантационный) и противоопухолевый иммунитет (см. Иммунитет противоопухолевый) .

Цитотоксическими свойствами обладают две категории макрофагов- эффекторов: иммунные, или так наз. вооруженные, макрофаги, активно разрушающие специфические клет-ки-мишени, и неспецифические активированные макрофаги с менее избирательными свойствами. Цитотоксичность иммунных макрофагов по отношению к опухолевым клеткам продемонстрирована в опытах in vitro, в к-рых использовали макрофаги от мышей, иммунизированных син-генными (генетически идентичными) опухолевыми клетками. В то же время макрофаги не были способны разрушать опухолевые клетки, если были получены от мышей, иммунизированных аллогенными опухолевыми клетками (взятыми от другого животного того же вида). Специфическая подготовка (вооружение) макрофагов зависит от продукции специфического фактора сенсибилизированными Т-лимфоцитами. Точный механизм деструкции клеток вооруженными макрофагами пока неизвестен. Для лизиса опухолевых клеток необходим контакт между ними и макрофагами. Процесс разрушения опухолевых клеток включает в себя остановку их пролиферации и лизис. После специфической иммунной реакции между макрофагом и опухолевой клеткой-мишенью макрофаг может потерять специфичность. В этом случае он превращается в неспецифическую клетку-эффектор. Неспецифическая цитотоксичность может наблюдаться после инкубации макрофагов с различными веществами: эндотоксином, двуцепочечной РНК и адъювантом Фрейнда (см. Адъюванты).

Участие в регуляции кроветворения

Клетки С. м. ф. принимают участие в регуляции миелоидного и лимфоидного кроветворения (см.). В красном костном мозге, селезенке, печени и желточном мешке эмбриона описан так наз. центральный макрофаг, окруженный одним-двумя рядами эрит-робластов. Тонкие цитоплазматические отростки центрального макрофага проникают между эрит-робластами, а иногда их полностью окружают. Центральный макрофаг всегда становится центром эритропоэза, вместе с прилежащими к нему эритробластами он получил название эритробластического островка, к-рый рассматривается как функционально-анатомическая единица очагов эритропоэза. Центральный макрофаг поглощает ядра эрит-робластов, переваривает старые эритроциты и переносит накапливаемое железо в развивающиеся эритробласты. Нек-рые продукты распада поглощенных ядер могут реутилизироваться для нового синтеза ДНК кроветворными клетками. Центральный макрофаг отличается высокой устойчивостью к воздействию ионизирующего облучения и гипоксии. Центральные макрофаги являются стромальны-ми элементами и выполняют регулирующую функцию при созревании эритроидных клеток-предшественни-ков, напр. при фенилгидразино-вой анемии (см. Анемия, анемия экспериментальная). Появление новых интраваскулярных эритроб-ластических островков в костном мозге, печени и селезенке всегда связано с наличием фагоцитирующих макрофагов, дифференцирующихся из циркулирующих в крови моноцитов.

Клетки Купфера печени участвуют в регуляции эритропоэза посредством выработки эритропоэтина (см.).

С помощью агаровых культур установлено, что моноциты и макрофаги вырабатывают факторы, стимулирующие продукцию моноцитов, нейтрофилов и эозинофилов, а также пролиферацию макрофагов, в результате чего возникают дискретные клеточные колонии. С другой стороны, они могут оказывать ингибирующий эффект на рост колоний, синтезируя простагландин Е (см. Простагландины) .

В мозговом веществе и внутренней зоне коркового вещества долек тимуса и тимусзависимых зонах всех периферических лимф, органов (лимф, узлов, селезенки, скоплениях лимф, ткани жел.-киш. тракта) сравнительно недавно были описаны так наз. интердигитирующие клетки. Они характеризуются неправильной формой ядер и наличием в цитоплазме тубуловезикулярных структур. Их плазматическая мембрана образует многочисленные выпячивания, проникающие между аналогичными образованиями соседних клеток того же типа или лимфоцитов. Эти клетки морфологически очень сходны с макрофагами, а также клетками Лангерганса, локализующимися в эпидермисе (см. Кожа). В настоящее время большинство исследователей склоняется к тому, что интердигитирующие клетки - специфические стромальные элементы тимусзависимых зон, ответственные за миграцию и дифференцировку Т-лим-фоцитов.

Макрофаги участвуют в синтезе веществ, модулирующих пролиферацию и дифференцировку лимфоидных клеток. К ним относится фактор, активирующий лимфоциты и обеспечивающий митогенный (бластогенный) ответ Т-лимфоцитов на лектин и антигены гистосовместимости (см. Бластотрансформация лимфоцитов), а также факторы, усиливающие хелперную функцию Т-лимфоцитов (усиление антитело-образования в В-лимфоцитах). С помощью клонирования В-лимфоцитов показано, что макрофаги вырабатывают диффузный фактор, способствующий образованию колоний субпопуляцией В-лимфоцитов. Избыточное число макрофагов, наоборот, приводит к подавлению роста колоний в результате выработки простаг-ландина Е.

Обменная функция

Обменным процессом, в к-ром достоверно доказана роль макрофагов, является обмен железа. В результате эритрофагоцитоза в макрофагах костного мозга и селезенки происходит накопление железа в виде специфических игольчатых или палочковидных включений ферритина и гемосидерина. Ферритин затем поступает путем пиноцитоза (см.) в прилежащие эритробласты. При фе-нилгидразиновой анемии в макрофагах наблюдается увеличение палочковидных включений, содержащих ферритин.

Библиография: Mononuclear phagocytes, ed. by R. van Furth, Oxford - Edinburgh, 1970; Mononuclear phagocytes, In immunity, infection and pathology, ed. by R. van Furth, Oxford a. o., 1975; Mononuclear phagocytes, Functional aspects, ed. by R. van Furth, pt 1-2, Hague a. o., 1980.

H. Г. Хрущов, В. И. Старостин.

(греч. monox один + лат. nucleos ядро: греч. рhagos пожирающий, поглощающий + гистол. суtus клетка; синоним: макрофагальная система, моноцитарно-макрофагальная система)
физиологическая защитная система клеток, обладающих способностью поглощать и переваривать чужеродный материал. Клетки, входящие в состав этой системы, имеют общее происхождение, характеризуются морфологическим и функциональным сходством и присутствуют во всех тканях организма.
Основой современного представления о С. м. ф. является фагоцитарная теория, разработанная И.И. Мечниковым в конце 19 в., и учение немецкого патолога Ашоффа (К. А.L. Aschoff) о ретикулоэндотелиальной системе (РЭС). Первоначально РЭС была выделена морфологически как система клеток организма, способных накапливать витальный краситель кармин. По этому признаку к РЭС были отнесены гистиоциты соединительной ткани, моноциты крови, клетки Купфера печени, а также ретикулярные клетки кроветворных органов, эндотелиальные клетки капилляров, синусов костного мозга и лимфатического узлов. По мере накопления новых знаний и совершенствования морфологических методов исследования стало ясно, что представления о ретикулоэндотелиальной системе расплывчаты, не конкретны, а в ряде положений просто ошибочны. Так, например, ретикулярным клеткам и эндотелию синусов костного мозга и лимфатических узлов длительное время приписывалась роль источника фагоцитирующих клеток, что оказалось неверным. В настоящее время установлено, что мононуклеарные фагоциты происходят из циркулирующих моноцитов крови. Моноциты созревают в костном мозге, затем поступают в кровяное русло, откуда мигрируют в ткани и серозные полости, становясь макрофагами. Ретикулярные клетки выполняют опорную функцию и создают так называемое микроокружение для кроветворных и лимфоидных клеток. Эндотелиальные клетки осуществляют транспорт веществ через стенки капилляров. Непосредственного отношения к защитной системе клеток ретикулярные клетки и эндотелий сосудов не имеют. В 1969 г. на конференции в Лейдене, посвященной проблеме РЭС, понятие «ретикулоэндотелиальная система» было признано устаревшим. Вместо него принято понятие «система мононуклеарных фагоцитов». К этой системе относят гистиоциты соединительной ткани, клетки Купфера печени (звездчатые ретикулоэндотелиоциты), альвеолярные макрофаги легких, макрофаги лимфатических узлов, селезенки, костного мозга, плевральные и перитонеальные макрофаги, остеокласты костной ткани, микроглию нервной ткани, синовиоциты синовиальных оболочек, клетки Лангергаиса кожи, беспигментные гранулярные дендроциты. Различают свободные, т.е. перемещающиеся по тканям, и фиксированные (резидентные) макрофаги, имеющие относительно постоянное место.
Макрофаги тканей и серозных полостей, по данным сканирующей электронной микроскопии, имеют форму, близкую к сферической, с неровной складчатой поверхностью, образованной плазматической мембраной (цитолеммой). В условиях культивирования макрофаги распластываются на поверхности субстрата и приобретают уплощенную форму, а при перемещении образуют множественные полиморфные псевдоподии. Характерным ультраструктурным признаком макрофага служит наличие в его цитоплазме многочисленных лизосом и фаголизосом, или пищеварительных вакуолей (рис. 1). Лизосомы содержат различные гидролитические ферменты, обеспечивающие переваривание поглощенного материала. Макрофаги - активные секреторные клетки, которые освобождают в окружающую среду ферменты, ингибиторы, компоненты комплемента. Основным секреторным продуктом макрофагов является лизоцим. Активированные макрофаги секретируют нейтральные протеиназы (эластазу, коллагеназу), активаторы плазминогена, факторы комплемента, такие как С2, С3, С4, С5, а также интерферон.
Клетки С. м. ф. обладают рядом функций, в основе которых лежит их способность к эндоцитозу, т.е. поглощению и перевариванию инородных частиц и коллоидных жидкостей. Благодаря этой способности они выполняют защитную функцию. Посредством хемотаксиса макрофаги мигрируют в очаги инфекции и воспаления, где осуществляют фагоцитоз микроорганизмов, их умерщвление и переваривание. В условиях хронического воспаления могут появляться особые формы фагоцитов - эпителиоидные клетки (например, в инфекционной гранулеме) и гигантские многоядерные клетки типа клеток Пирогова - Лангханса и типа клеток инородных тел. которые образуются путем слияния отдельных фагоцитов в поликарион - многоядерную клетку (рис. 2). В гранулемах макрофаги вырабатывают гликопротеид фибронектин, который привлекает фибробласгы и способствует развитию склероза.
Клетки С. м. ф. принимают участие в иммунных процессах. Так, непременным условием развития направленного иммунного ответа является первичное взаимодействие макрофага с антигеном. При этом антиген поглощается и перерабатывается макрофагом в иммуногенную форму. Иммунная стимуляция лимфоцитов происходит при непосредственном контакте их с макрофагом, несущим преобразованный антиген. Имунный ответ в целом осуществляется как сложное многоэтапное взаимодействие Г- и В-лимфоцитов с макрофагами.
Макрофаги обладают противоопухолевой активностью и проявляют цитотоксические свойства в отношении опухолевых клеток. Эта активность особенно выражена у так называемых иммунных макрофагов, осуществляющих лизис опухолевых клеток-мишеней при контакте с сенсибилизированными Т-лимфоцитами, несущими цитофильные антитела (лимфокины).
Клетки С. м. ф. принимают участие в регуляции миелоидного и лимфоидного кроветворения. Так, островки кроветворения в красном костном мозге, селезенке, печени и желточном мешке эмбрионе формируются вокруг особой клетки - центрального макрофага, организующего эритропоэз эритробластического островка. Клетки Купфера печени участвуют в регуляции кроветворения путем выработки эритропоэтина. Моноциты и макрофаги вырабатывают факторы, стимулирующие продукцию моноцитов, нейтрофилов и эозинофилов. В вилочковой железе (тимусе) и тимусзависимых зонах лимфоидных органов обнаружены так называемые интердигитирующие клетки - специфические стромальные элементы, также относящиеся к С. м. ф., ответственные за миграцию и дифференцировку Т лимфоцитов.
Обменная функция макрофагов заключается в их участии в обмене железа. В селезенке и костном мозге макрофаги осуществляют эритрофагоцитоз, при этом в них происходит накопление железа в форме гемосидерина и ферритина, которое питом может реутилизироваться эритробластами.
Библиогр.: Карр Ян. Макрофаги: обзор ультраструктуры и функции, пер. с англ., М., 1978; Персина И.С. Клетки Лангерганса - структура, функция, роль в патологии, Арх. патол., т. 47, вып. 2, с. 86, 1985.
Рис. 2. Электронограмма макрофага очага асептического воспаления: 1 - фрагменты бобовидного ядра; 2 - фагоцитированный материал в пищеварительной вакуоли; ×21000.
Рис. 1. Электронограмма участка гигантской многоядерной клетки инородных тел: 1 - ядра, входящие в состав одной клетки; 2 - лизосомы; 3 - фагосомы; ×15000.


Смотреть значение Систе́ма Мононуклеа́рных Фагоци́тов в других словарях

Блок-система — блок-системы, ж. (ж.-д.). Блокировка, блокировочная система. См. (блок).
Толковый словарь Ушакова

Система — ж. греч. план, порядок расположенья частей целого, предначертанное устройство, ход чего-либо, в последовательном, связном порядке. Солнечная система, солнечная вселенная.........
Толковый словарь Даля

Система Ж. — 1. Структура, представляющая собою единство закономерно расположенных и функционирующих частей. 2. Определенный порядок в расположении, связи и действии составляющих........
Толковый словарь Ефремовой

Административно-командная Система — - система управления экономикой страны, в которой главная роль принадлежит распределительным, командным методам и власть сосредоточена у центральных органов управления,........
Политический словарь

Антрепренерская Система — - система рекрутирования элит, обладающая открытостью, широким кругом селектората и высокой конкурентностью отбора.
Политический словарь

Гильдий Система — - система рекрутирования элит, отличающаяся закрытостью, высокой степенью отбора, небольшим кругом селектората.
Политический словарь

Избирательная Система — - упорядоченная совокупность норм, правил и приемов, определяющих пути, формы и методы образования представительных и иных (напр., президентов, судей, присяжных) выборных........
Политический словарь

Избирательная Система — - установленный в законодательном порядке процесс организации и проведения выборов в органы, институты государственной власти, состоящий из совокупности правил и........
Политический словарь

Информационная Система — – организационно упорядоченная совокупность документов (массивов документов) и информационных технологий, в том числе с использованием средств вычислительной техники........
Политический словарь

Командно-административная Система Управления — - жесткая система управления народным хозяйством, основанная на иерархическом распределении функций управления и не допускающая отклонений от заранее намеченных........
Политический словарь

Мажоритарная Избирательная Система — (фр. majoritaire от majorite - большинство) - процедура определения результатов голосования, при которой избранным считается тот кандидат, который набрал большинство голосов.........
Политический словарь

Мажоритарная Система — - (франц. majorite - большинство), в государственном праве система определения результатов голосования при выборах в представительные органы. При мажоритарной системе........
Политический словарь

Партийная Система — - совокупность связей и отношений между партиями, претендующими на обладание властью в стране.
Политический словарь

— - одна из подсистем общества (наряду с экономической, социальной, духовно-идеологической и др.), представляющая собой сложную, многообразную и в то же время упорядоченную,........
Политический словарь

Политическая Система — (POLITICAL SYSTEM) - устойчивая форма человеческих отношений, через посредство которой принимаются и проводятся в жизнь авторитетно-властные решения для данного общества.........
Политический словарь

Политическая Система Индустриально Развитых Стран (теория) — Политическая система представляет собой совокупность лиц, институтов, участвующих в политическом процессе, неформальных и неправительственных факторов, влияющих........
Политический словарь

Политическая Система Общества — - сложная совокупность институциональных структур государства и общества, форм взаимодействия между ними, направленных на осуществление политической власти, управления,........
Политический словарь

Правовая Система — разновидность социальной системы, котороя тесно связана с другими системами и включает в себя комплекс юридических явлений, с помощью которых воздействует на поведение человека.
Политический словарь

Прогнозирующая Система — Система методов прогнозирования и средств их реализации, функционирующая в соответствии с основными принципами прогнозирования. Примечания. 1. Средствами реализации........
Политический словарь

Пропорциональная Избирательная Система — - избирательная система, при которой мандаты распределяются пропорционально голосам, полученными партиями или избирательными блоками.
Политический словарь

Пропорциональная Система Представительства — - избирательная система, в основу которой положен принцип пропорциональности между поданными за партию голосами избирателей и числом полученных ею мандатов (кандидаты........
Политический словарь

Пропорциональная Система Представительтва — - одна из самых распространенных избирательных систем, при которой нет одного победителя, поскольку она основана на соответствии между количеством голосов, поданных........
Политический словарь

Репрессивная Система — - от слова "репрессии" (латинское "repressare", "подавлять"). Репрессии - меры по подавлению. Система подавления со стороны власти или государства нежелательных внутренних элементов........
Политический словарь

Система Двухпартийная — - система, при которой реальную борьбу на выборах за власть в государстве ведут только две партии, причем одна из партий обеспечивает себе большинство голосов избирателей,........
Политический словарь

Система Избирательная — - совокупность избирательных прав и процедур, на основе которых осуществляются выборы в представительные органы власти или высших должностных лиц. Определение результатов........
Политический словарь

Система Многопартийная — - система, в которой более двух партий имеют достаточно сильную организацию и влияние, чтобы воздействовать на функционирование правительственных институтов. В числе........
Политический словарь

Система Однопартийная — - тема, при которой происходит закрепление (фактическое или юридического правящего статуса за одной из решенных политических партий, характеристики партийной систем........
Политический словарь

Система Партийная — - механизм отношений, существующих между политическими партиями в данном государстве. Основными сторонами партийной системы являются особенности внутренней структуры........
Политический словарь

Система Политическая — - представляет собой сложную, разветвленную совокупность различных политических институтов, социально-политических общностей, форм взаимодействия и взаимоотношений........
Политический словарь

Система Сдержек И Противовесов — - такая система взаимоотношения органов власти и людей, приближенных к ним, в соответствии с которой каждый участник этих взаимоотношений не только уравновешивает,........
Политический словарь

Клетки системы мононуклеарных фагоцитов

Представлены костномозговыми предшественниками фагоцитов, моноцитами и тканевыми макрофагами.

В зависимости от локализации имеют соответствующее название, строение и функции одинаковы.

Функции:

1. Ключевые эффекторные клетки врожденного иммунитета (наряду с NK-Л и нейтрофилами).

2. Являясь одной из форм АПК, участвуют в формировании адаптивного иммунитета (наряду с дендритными клетками и В-Л).

3. Активируемые в процессе эндоцитоза чужеродных частиц секретируют растворимые продукты различной активности: лизоцим, протеазы, коллагеназы, эластазы, активатор плазминогена, цитокины, компоненты системы комплемента, простаноиды, фибронектин, факторы свертывания крови и др.

4. Некоторые – хемоаттрактанты, рекрутируют в очаг воспаления разные гистологические типы клеток, в основном миелоидного ряда.

5. Некоторые – микробицидное действие благодаря продуктам лизосом, секретируемых при экзоцитозе.

6. Некоторые их продукты обладают ранозаживляющими свойствами.

7. Эндоцитоз отживших и разрушенных клеток собственного организма.

8. Ряд их цитокинов способствует межклеточным взаимодействиям, проявляет воспалительные свойства, развивает регуляторную активность по отношению к клеткам системы иммунитета, способствует деструкции опухолей.

Моноциты (3-11% в крови) – образуются в костном мозгу под влиянием цитокинов промоноциты монобласты миелоидная стволовая клетка, в течение суток выселяются в кровоток, где находится до 2-х сут. (12-32 ч.). Подразделяются на 2 группы: циркулирующие и пристеночные – тесно контактирующие с клетками эндотелия и готовые к межэндотелиальной миграции в ткани, где превращаются в макрофаги. Могут дифференцироваться в миелоидные дендритные клетки. В тканях находятся до 30 сут. В лизосомах моноцитов содержится большое количество ферментов (лизоцим, лактоферрин, пептиды-антибиотики, кислые гидролазы – протеазы, нуклеазы и др.). На мембране экспрессируется множество молекулярных структур, включающих антигены гистосовместимости, рецепторы для компонентов системы комплемента, цитокинов, хемокинов и др.Защитные функции – рекрутируют в воспалительный очаг клетки воспаления, эффекторные функции к генетически чужеродным клеткам-мишеням (антителозависимая клеточная цитотоксичность), секретируют бактерицидные продукты, поглощают антиген и обеспечивают его фрагментацию (1 моноцит фагоцитирует около 100 бактерий (нейтрофил – 5-25)), предшественник макрофагов

Макрофаги – первыми встречаются с антигеном в поврежденной им ткани (совместно с нейтрофилами). Продукция цитокинов вследствие их активации является важным индуцирующим стимулом для вовлечения в формирование воспалительного очага нейтрофилов и др. лейкоцитов, включая моноцитов, образующих макрофагов новой волны. А также является основой для создания количественной массы клеток, необходимой для полной фрагментации антигена и завершения воспаления. Долгоживущие клетки – живут в тканях месяцы – годы.

Направленная миграция макрофагов (хемотаксис) к антигену и в очаг формирующегося воспаления обеспечивается под влиянием хемотаксинов или хемоаттрактантов . Свойствами хемоаттрактантов обладают хемотаксические молекулы микробов; цитотаксины, продуцируемые фагоцитами и др. кл. под влиянием бактериальных эндотоксинов; продукты деструкции тканей; секреты активированных клеток в воспалительном очаге – интерлейкин, хемокины, гистамин, лейкотриен и др.; компоненты, образуемые при активации системы комплемента и др. Ограничивают хемотаксис – ряд бактериальных продуктов, некоторые гормоны, a2-макроглобулин и др. На мембране имеются соответствующие рецепторные структуры, взаимодействие лигандов с которыми формирует специфический сигнал, прохождение которого по внутриклеточным сигнальным путям определяет направление функционирования фагоцита, в частности направленное движение. Его основа – реакция белков цитоскелета (актина), изменение формы клетки из округлой в треугольную с псевдоподиями.

Движение клеток в отсутствие градиента хемоаттрактантов называют спонтанной миграцией фагоцитов , ненаправленное усиление подвижности клеток под влиянием химических веществ – хемокинезом .

Индуцированный хемоаттрактантами хемотаксис макрофагов сопровождается их взаимодействием с антигеном, его поглощением и фрагментацией, этот процесс включает этапы взаимодействия рецепторов с лигандами.

Рецепторы, обеспечивающие распознавание АГ на первичных стадиях доимунного воспаления называются рецепторы PRR (Pattern Recognition Receptors), т.е. распознающие общий образ АГ или его недетализированный тип.

Структура общего образа инфекционного АГ обозначается в качестве молекулярной мозаики патогена – PAMP (Pathogen-Associated Molecular Pattern) – это структуры бактерий, вирусов, простейших, грибов, компоненты в норме отсутствующие в организме.

Рецепторы PRR по функциональной активности подразделяют на распознающие PAMP антигена и способствующие его эндоцитозу и фрагментированию и сигнальные – активирующие гены цитокинов для формирования иммунного ответа.

Другой тип рецепторов для молекул эндогенного происхождения: к IgG и IgE, к компонентам комплемента, ряду цитокинов, белков адгезии и др. Важную роль играют расположенные на их мембране антигены гистосовместимости классов I и II, имеющие большое значение на поздних стадиях этапа доиммунного воспаления.

Фагоцитоз, опосредованный через рецепторы к молекулам сывороточного происхождения, опсонизирующим микробную клетку – С-реактивный белок, белки системы комплемента, пентраксины, фиколины, коллектины, антитела IgG и др. называется непрямым, а опосредованный через молекулярные структуры РАМР – прямым.

Группа РАМР-рецепторов включает семейства:

1. Toll-подобные рецепторы (11 классов) – TLR (Toll-Like Receptors) – на поверхности клетки, распознают разнообразные компоненты патогенных микроорганизмов;

2. Рецепторы, связывающие участки нуклеотидов, обогащенные лейциновыми повторами (20+14) – NBS-LRR (Nucleotide-Binding Site – Leucine-Rich Receptors) – внутриклеточные, распознают компоненты микроорганизмов, попавших в цитоплазму клетки.;

3. Рецепторы «для уборки мусора» (6)- SR (Scavenger Receptors) – на клеточной поверхности, связывают модифицированные липопротеины низкой плотности, подвергаются эндоцитозу (отличие от др. рецепторов) и фрагментации.

4. Полилектиновые рецепторы – MLRF (Multilectin Receptors Family) – распознают углеводы и связывают по типу белок-углевод и др.

Гранулоциты

Их цитоплазма содержит гранулы. В зависимости от окрашивания гранул подразделяются на базофилы (окрашиваются основными красителями), эозинофилы (кислыми красителями), нейтрофилы (не окрашиваются). Образуются в костном мозгу из общего миелоидного предшественника, проходят несколько стадий созревания и на последней стадии дифференцировки выселяются в кровь. После непродолжительной циркуляции в крови (часы) поступают в ткани, где погибают по механизму апоптоза.

1) Нейтрофилы (нейтрофильные гранулоциты) –полиморфноядерные лейкоциты, подразделяют на юные (метамиелоциты, бобовидное ядро), палочкоядерные (подковообразное ядро) и сегментоядерные (ядро из 2-5 сегментов). Созревают в костном мозгу от 7 до 14 дн. со скоростью 8 млн кл./ч. под влиянием цитокинов.

В процессе созревания в цитоплазме формируется 2 типа гранул , содержащих более 20 протеолитических ферментов и др.:

1. Первичные или азурофильные (на стадии промиелоцита);

2. Вторичные или специфические (миелоцит) – 80%.

Выселяются из костного мозга в течение суток после созревания, самая многочисленная популяция (60-75% - плотоядные, 50% - лошади, 20-30% - жвачные, 40-70% - человек).

В крови образуют 2 пула – циркулирующий (в крови 6-14 ч) и маргинальный или пристеночный (в ЖКТ, печени, легких, до 7 дн.), гибель апоптозом и фагоцитируются макрофагами.

Под влиянием хемотаксических стимулов (продукты микробов, поврежденные ткани и др.) первыми мигрируют в очаг воспаления (жар, покраснение, припухлость, боль, снижение функции), поглощают и переваривают АГ.

3) Базофилы или базофильные гранулоциты – 0,5-1%, живут в тканях несколько суток, в крови – 4-8 ч. Секретируют цитокины и экспрессируют рецепторы. Первичные гранулы содержат гидролитические ферменты, вторичные – гистамин, гепарин, анафилаксин, факторы хемотаксиса нейтрофилов и эозинофилов. Под влиянием аллергена происходит дегрануляция и высвобождение этих веществ. В результате формируется комплекс защитных реакций, обусловленных сокращением гладкой мускулатуры, бронхоспазмом, расширением сосудов, повышением сосудистой проницаемости, привлечением в зону др. типов клеток – мононуклеарных, нейтрофилов, эозинофилов, стимуляцией агрегации тромбоцитов и др.

Тучные клетки

Являются резидентными клетками соединительной ткани, содержатся преимущественно в коже, органах дыхания и ЖКТ. В свободном состоянии – в слизистых, просвете бронхов, соединительной ткани по ходу нервных волокон и кровеносных сосудов. По локализации и гранулярным продуктам подразделяют на соединительнотканные и слизистые (или атипичные). Содержат много крупных метахроматических гранул, представляющих собой модифицированные лизосомы. Синтезируют факторы хемотаксиса нейтрофилов и эозинофилов, цитокины, фактор агрегации тромбоцитов, медиаторы повреждения и репарации тканей – химаза, триптаза, гиалуроновая кислота, гистамин, серотонин, гепарин, лейкотриены, простогландины и др. При активации происходит денатурация, продукты гранул высвобождаются во внеклеточное пространство и проявляют различные эффекты, в зависимости от потребности – сокращение гладкой мускулатуры, хемотаксическое, ферментативное или вазоактивное действие, стимуляция периферических нервных окончаний и др. По функциям – аналоги базофилов, но от разных предшественников.

Тромбоциты

Безъядерные постклеточные структуры зрелых мегакариоцитов, фрагменты их цитоплазмы. Мегакариобласты Þ промегакариоциты Þ мегакариоциты - живут 10 сут. и каждый продуцирует 2-5 тыс. тромбоцитов - живут 8-11 сут., экспрессируют рецепторы, имеют изоантигены групп крови резус и А, В, 0.

2 типа гранул , включающих факторы свертывания крови: 1) a-гранулы – ферменты (глюкуронидаза, фосфатаза, тромбокиназа и др.) и 2) плотные тельца – соединения (фибриноген, серотонин, АДФ, АТФ и др.). При нарушении стенки сосудаиз поврежденной ткани секретируется внешний фактор свертывания крови, определяющий адгезию тромбоцитов к поврежденной поверхности. При этом из тромбоцита высвобождаются плотные гранулы, содержащие внутренний фактор свертывания крови . Он индуцирует агрегацию тромбоцитов, тромбирующих сосуд.

Оба фактора активируют протромбин (белок плазмы) в тромбин под влиянием кофактора тканевого тромбопластина, активирующегося при повреждении тканей. Под влиянием тромбина фибриноген образует нити фибрина, обеспечивающие коагуляцию (свертывание) крови. Прикрепляясь к нитям фибрина, тромбоциты содействуют уплотнению сгустка, который уменьшается в размерах за счет втягивания нитей фибрина внутрь тромба. Тромбирование сосудов предотвращает и расселение микробов с током крови по организму.

Активированные тромбоциты высвобождают вещества, участвующие в воспалении (гидролазы, вазоактивные липиды и др.).

Считается, что оказывают цитотоксическое действие на трематоды.

Клетки эндотелия

В покоящейся ткани клетки эндотелия мелких сосудов регулируют процессы физиологической экставазации макромолекул и лейкоцитов из кровеносных сосудов в ткани, поддерживающих генетическое постоянство внутренней среды организма.

Под влиянием микроорганизмов, продуктов нарушенной ткани или цитокинов, продуцируемых мононуклеарными фагоцитами, гранулоцитами, тучными клетками, тромбоцитами, лимфоцитами, клетки плоского эндотелия активизируются и трансформируются в клетки высокого (кубического) эндотелия, выстилающего посткапилярные венулы.

Это один из важнейших начальных этапов формирующегося воспаления, существенно влияющий на последующие стадии. Он приводит к развитию процессов, привлекающих клетки иммунной системы в формирующийся очаг воспаления: продукции цитокинов и прежде всего a-хемокинов (нейтрофилов) и b-хемокинов (мноцитов и лимфоцитов), являющихся основными хемоаттрактантами, активирующими эмиграцию лейкоцитов из крови в ткань. Значительно повышается экспрессия молекул адгезии на эндотелиальных клетках и лейкоцитах, последние задерживаются и фиксируются на поверхности первых, что способствует диапедезу лейкоцитов через сосудистую стенку.

Другие процессы при активации – повышение апоптотической устойчивости клеток, бактерицидной активности эндотелия (NO), активации тромбоцитов, синтеза простогландинов, боли, расширения сосудов, усиление их проницаемости, подавления агрегации тромбоцитов.

Лекция 6

1. Антигены

1. АГ и условия, определяющие их иммуногенность

Антигенами илииммуногенами называют вещества биологической или химической природы, структурно отличающиеся от молекул собственного организма, распознаваемые системой иммунитета как генетически чужеродные и способные при попадании в организм вызвать специфический иммунный ответ, направленный на их разрушение и элиминацию.

АГ подразделяют на 3 основные группы :

1. Экзогенные

2. Эндогенные – аутоантигены

3. Аллергены

АГ имеют структурные отличия, определяющие их специфичность.

Условия индукции иммунного ответа зависят от структуры АГ и генотипа иммунизируемой особи.

› АГ являются белки, полипептиды, полисахариды, липополисахариды, липопротеины, отдельные синтетические высокомолекулярные соединения, вирусы, бактерии, простейшие, грибы, гельминты, разные типы клеток и их компоненты и т.д.

› Формирование иммунного ответа определяется поступлением АГ и его распознаванием рецепторным аппаратом клетки. Распознается не вся молекула АГ, а небольшие его химические группировки – эпитопы или антигенные детерминанты .

› В организме образуется столько типов АТ, сколько имеется в АГ детерминант разной структуры, доступных распознаванию антигенраспознающими рецепторами лимфоидных клеток, т.е. к каждому эпитопу образуется комплементарное ему АТ, специфически взаимодействующее только с данным эпитопом или одинакового с ним строения.

› Объем эпитопа - 2-3 нм 3 , длина - 2,4 нм (7-15 аминокислотных или 6 моносахаридных остатков), молекулярная масса 0,6-1,0 кДж.

› Эти молекулы определяют специфичность АГ – линейного или глобулярного, отличия от др. АГ, взаимодействуют с антигенраспознающими рецепторами лимфоцитов и с АТ против конкретного АГ.

› Молекулярные структуры меньшей величины антигенными свойствами не обладают.

› Количество эпитопов в разных АГ различается: яичный альбумин – 5, дифтерийный токсин – 8, вирус тобачной мозаики – 650, лимфоцит – 1000.

› Число эпитопов, связавших максимальное количество молекул АТ, характеризует валентность антигена .

› Обычно валентность увеличивается с увеличением молекулярной массы АГ. Но не является точным критерием количества эпитоаов. Количество эпитопов в АГ может быть больше за счет участков внутри глобулы, недоступных для АТ.

› Поэтому АГ характеризуются высокой степенью специфичности. Исключение составляют перекрестно-реагирующие АГ , включающие эпитопы сходного строения (пр. реакция эритроцитов барана с антисывороткой кроликов, иммунизированных АГ органов морских свинок (печени, почек и др.) – форсмановский АГ).

› Противоположный процесс – эффект конкуренции антигенов , т.е отсутствие иммунологической реакции или ее заметное снижение на АГ или антигенную детерминанту при введении в организм другого АГ или детерминанты.

› Различают 3 формы конкуренции АГ :

› 1. Внутримолекулярная – конкурирующие АГ или детерминанты локализуются на одной молекуле АГ.

› 2. Межмолекулярная – конкурирующие эпитопы АГ локализуются на разных молекулах.

› 3. Последовательная – разновидность межмолекулярной, возникает при последовательной иммунизации разными АГ.

› АГ, индуцирующий подавление иммунного ответа к др. АГ, называется доминантным АГ .

› Иммунодоминантные эпитопы вызывают наибольшую стимуляцию иммунного ответа.

› Способность АГ создавать иммунитет характеризует их иммуногенность .

› Антигенность АГ – качественная способность вызывать иммунный ответ той или иной величины.

› Группы эпитопов, определяющие иммунологическую специфичность АГ, называют детерминантными группами .

› АГ, вызывающие развитие иммунного ответа и реагирующие с образованными против них АТ, называют полными АГ .

› АГ не способные на иммунный ответ и выработку АТ, но способные к реакции с АТ, называют неполными АГ или гаптенами (липиды, нуклеиновые кислоты, углеводы, лекарственные вещества и др.).

› Иммунный ответ против гаптенов развивается только при их соединении с высокомолекулярными АГ.

› Соединение белка с гаптеном или др. АГ, формирующее новую иммунологическую специфичность, называется конъюгированным АГ.

› Белок в составе конъюгированного АГ называется носителем .

› На конъюгированный АГ вырабатываютсяАТ 3 типов:

› 1) против носителя (распознают Т-Л),

› 2) против гаптена (В-Л),

› 3) против трансформированного участка молекулы в результате конъюгации носителя и гаптена (Т-Л).

› Антигены собственного организма способны вызвать иммунный ответ: при прорыве барьерных образований (пр. гематоэнцефалического) и иммунизации АГ забарьерных тканей или в результате мутаций или изменения структуры в результате различных воздействий (пр. денатурация белка), когда они становятся чужеродными для организма, при этом развиваются аутоиммунные поражения.

› Антигенность белков возрастает по мере увеличения филогенетических различий между донором АГ и реципиентом, а также зависит от функций (свойств), молекулярной массы, жесткости структуры, изометрии молекулы, дозы АГ и др.

› В зависимости от участия Т-лимфоцитов в процессе индукции иммунного ответа, в частности продукции АТ, АГ подразделяют на тимусзависимые и тимуснезависимые .

› Последние подразделяют на 2 типа: тимуснезависимые АГ класса I – активируют зрелые и незрелые В-Ли тимуснезависимые АГ класса II – активируют только зрелые В-Л.

› Единой классификации АГ нет. По растворимости – растворимые и корпускулярные (нерастворимые); по происхождению – лейкоцитарные, лимфоцитарные, тромбоцитарные, эритроцитарные, клеточные, сывороточные, микробные, бактериальные, раково-эмбриональные и т.д.; по зависимости от применяемых процедур – трансплантационные, по зависимости от кодирующих генетических структур – АГ главного комплекса гистосовместимости и т.д.

› Аллергены подразделяют на микробные, инсектные, бытовые, производственные, пищевые и т.д. Микробные – на бактериальные, вирусные и т.д.

› Выделенные из разных органов – органоспецифические, тканей – тканеспецифические, разные стадии развития в эмбриогенезе – стадиоспецифические; разных видов животных – видоспецифические; особи и группы в пределах вида – изоантигены, группоспецифические; отличающие компоненты разных микробов одного вида – типоспецифические.

Искусственные или синтетические – АГ, полученные в результате химического синтеза структур по принципу природных или неприродных аналогов.